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1. Introduction

Let g(u) and o(u) be the Weierstrass functions satisfying
/ 2 __ 3 __ — — e —l dud
o (1) = 19— g2p(0) g5, o) =uexp] [*[* (o)~ L) dudu}.

Then we have ((Hermite and) Frobenius-Stickelberger, 1877)

c(u+v)o(u—ov) 1 p(u)
— W\0) —pl\u — ’
cre@r PRI =
) i . 1 p®) @®) ... r=2)(GM0)
O'(u(l) 4@ o1yl )) il;[ja(u( ) _ u(])) L o) o' (u@) ... (=2 (4?)
ﬁ o (ul))n B I;U! : : : | :
j=1 1 p™) 'w®) ... r=2)0n)

These formulae correspond to the canonical involution v — —ov.

Today | will talk an extreme and elaborate generalization of these addition formulae.




2. Reformulation (1)

To step up higher genus cases smoothly, we reformulate the equalities for genus 1 case.

We start at the most general elliptic curve %" f(x,y) = 0, where

f(xy) =y + (px + p3)y — (& + pax® + pax + pe),
wt(x) = =2, wt(y) = =3, wt(y]-) = —j,

with the point oo at infinity.

We define
dx dx

- fy(ey) 2y + (pax +ps)
Let x(u#) and y(u) be the inverse functions defined by

(e(u) ()
u = / w.

o, + the canonical differential.

Then
x(u)=u*4+---, ylu)=—-u3+-...



3. Reformulation (2)
The sigma function o (u) is defined by using the natural symplectic base of
H'(%,C) = li;l}HO(Cg'dﬁ(n : oo))/dling}lHO(‘K, O(n-o)).
Then

o(u) = u+ (3) + )i+
We define

o(u) = —dd—;log o(u).
Then,
p(u) =x(u), '(u)=2y(u)+ mx(u) + ps.



4. The Reformulated Formula

Then we have

O'(u(l) —|— u(z) _I_ oo _|_ u(n)) Ho'(u(l) _ u(]))

i<j
Hjo'(u(f))"

1 g)(u(l)) p’(u(l)) @("—2)(u(1))

1 11 p®) o@w®) ... =2 (@)

1 go(u(")) p’(u(”)) p(n—Z)(u(n))
L ox(u) y(u) ) yx0) L)

1ox(®) yu) R(0) yr(®) )




5. Guide Function

We may extend this class of addition formulae by considering more general map
p: ¢ — P!

which belongs to Z[pu1,p2, -+« , uel[x(1), y(u)], and of homogeneous weight.
We suppose the coefficient of the lowest weight term w. r. t. x(u#) and y(u) is 1.
For example @(u) = x(u)y(u) + n2y(u) + prpa.

Let m > 2 be the order of unique pole of @, and u be the analytic variable of ¢
regarding % as a complex torus.

Then there exist

2 3 m—1
u, u, u*,u*, -, u* e C

such that these m variables are generically different, vary continuously, and satisfy

p(u) =pu™) =--- = @(u

Moreover, we may choose them as

ut+u*~+---4+u = 0.

Indeed d(u+u*+---+u ) can be regarded as a holomorphic 1-form on P!
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6. An Example of New Addition Formula
Take the guide function y(u).

Let # = u™ and v = u(? (two variable case). Then
Example. ([Eilbeck-England-O, 2014])  We have the addition formula
c(u+v)o(u+ov*)o(u+v**) o
oo @o@)e() YTV
= y(u) +y(v) + pmx(u) + ps

_ f(x(w),Y) = f(x(w), W)
Y—-W

Y=y(u), W=y(v)
Remark. The RHS is given by an operation in “umbral calculus”,
and obviously defined over Z|u| = Z|p1, 12, 13, pa, pis).

Remark. There is [Eilbeck-S.Matsutani-O, 2011] for > + uzy = x° + ps.



7. Second Example of New Addition Formula
Take the guide function x*(u).

Let # = u™ and v = u(? (two variable case). Then
Example. We have the addition formula

c(ut+v)o(u+v*)o(u+v"*)o(u40v**)

e ) £ € P s e ey o ey e A C A A O

Remark. The RHS is defined over Z[u| = Z[u1, p2, pi3, pia, pis).



8. Higher Genus Curves
For coprime positive integers g > d, let ¢ be the curve defined by f(x,y) = 0 with

f(x,y) = yd — x7 4 Z (some coeff.)xiyj, (wt(x) = —d, wt(y) = —q)
i,j:dg>ig+jd

adjoining unique point oo at infinity.

Call this (d,q)-curve. If % is non-singular, then its genus is given by ¢ = (d—1)2(q—1)_

f(xy) =y + (ux +ps)y — (& + pax® + pax + pe),

For example, { .
wt(x) = =2, wt(y) = =3, wt(y;) = —j.

{f (x,y) =v° + (mx+pa)y* + (pax>+psx+ps)y — (x*+psx® +pex®+pox+p2)
wt(x) = =3, wt(y) = —4, wt(y;) = —j.



9. Weierstrass Gaps at co and a Base of I'(%, Q')
Let wq, - -, Wy be the Weierstrass gap sequence at oo.
For example, (2,3)-curve ... wq = 1.
(3,4)-curve ... w1 =1, wy =2, wz = 5.
Let us fix the “natural” base w = (wwg,wwg_l, e Wy, ) of T(€,01).

Example. For (3,4)-curve

Fxy) =v° + (pax + pa)y” + (u2x® + psx + ps)y — (x* + pax® + pex® + pox + p12) =0,
dx xdx ydx

f&y) P T Ry T fGy)

we take the base w consists of w5 =

Then we get the period lattice A = { ]{Q} C C8.
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10. The sigma function

We define the sigma function o (u) for % by using natural symplectic base of

-

n

H'(¢,C) 2 lim H(%,d0(n - »)) /dlim H (¢, 0 (n - 0))

extending {wwg,wwg_l, o Wyt
The sigma function o (u) is an entire function on C& with g variables u = (uwg, s+, Uy, ) Whichis a

quite natural extension of certain Schur function.

Example. If € is (3,4)-curve,then
o (us, uz, u1) = (us — wux® + l1«!15) + (lmu{*uz — 1#1”23) .
> 2Tl 20 12 3
There is an R-bilinear form L(, ) : C8 X C8 — C, which is C-linear on the 1st space, having

the following properties:
(i) The map (£,k) — L(€,k) — L(k,£) on A X A is 27ti Z-valued,
(i) c(u+£) = x()o(u)L(u+ 1£,€), u € C8, £ € A,
with x (€) € {+1} satisfying x (£ + k) = x(£)x (k) exp 3[L(£, k) — L(k, £)] ;
(iii) The set of zeroes of u +— o (1) is exactly (pull-back of mod A of) the canonical

image ©8~ U of Sym8~ 1'% w. r. t. Abel-Jacobi map, which zero set is of order 1.
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11. On the Largest Stratum |(3,4)-curve, ¢ = 3
We define g-functions by

02 0

gii(u) := _Buiauj logo(u), pijk(u) — a—ukp,-]-(u), etc.

Then gi;(11) € r( Jac(%), ﬁ(Z(H)[g—l])), ik (1) € r( Jac(%), ﬁ(3®[8—1])), etc.
The case of the (3,4)-curve on the largest stratum in 2 variables.

Theorem. [J.C. Eilbeck, V.Enolskii, S.Matsutani, Y.O, E.Previato,2008]
For u, v € C° = K_l(W[3]) (this notation is explained later), we have

0'(’:(_”7;2‘;22); ?) —s5(1) + 055(v) — ps52(4) 21(0) + P52() P21 ()

— 51(1) P22(0) + 951(v) P22 (1) — 3 (11 () Q5111 (v) — P11(0) Q5111 (1))
+ %l/’l ($952(u) 911(v) — $52(v) po11(1) ) + pr1 (051 (1) 021 (v) — go51(0) 4921 (11) )

— 3 (1" = p2) (ps1(w) P11 () — 51 (v) 11 (1)) — 318 (11 () — 11(2)),

where

Q5111 = (5111 — 669516211-
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12. Differentials of the 1st kind and the Abel-Jacobi Maps
We fixed a base w = (Wwgr Wawy_1s*** ,Wa,) of T(E, Ol).
Example (revisited). For (3,4)-curve
f(xy) =y + (max + pa)y” + (u2x® + psx + ps)y — (x* + psx® + pex® + pox + p12) =0,

dx xdx ydx

, Wy = LWy = ,
fooy) T fy) T Ry
A = {%2} C C% be the period lattice. We define, for each integer k > 0,

we took the base w consists of ws =

L : Sym* (%) — C8/A = Jac(¥)

i

k /P
(Pl,...,Pk)HZ/]wmodA.
j=17e

We denote the mod A map by x : C8 — CE/A.
We denote WK = ((Sym*(%)). Then Wl =& Let

0" — [—1]W[k] W
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13. The Stratification

Summing up, we have the following stratification:

0o € €=Sym'% C Sym*¢ C --- C Sym$7l¥ C Symé¥

It It It It It
0 € 1) = w? o w® coeee c WE? c WY
| N N | |
1] 2] g —1] ]
0 € O C O c --- C ©O C O =CA
T K T K T K T K Tk

A Ccx @) c @) c - c x0T c x(0e")=cs.
We note that Jacobi's theorem implies

(g —1] (g —1]

S =W

We shall define certain function o« (%) (higher derivative of o (u)) on the k-th stratum in the

next two slides.
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14. Table of {”

(dp) |g| =8 |b=0| & gty
(2,3) |1 () () () OO0 10]0]:
(2,5) |2 (1) () () O 10101010
(27) |3 (3) (1) () O 10101010/
(2,9) | 4| (1,5) (3) 1 | O [OLOLTO0]:
(211) | 5| (3,7) 1,5 | @G | D [ OO OO0
(213) | 6| (1,59) | 37) | (L5 | 3) [ O[O0
(2,15) | 7 | (3,7,11) | (1,5,9) | (3,7) | (1,5) | (3) (Y1 () |-
(3,4) | 3| (2) (1) () OO0 10]0]:
(3,5) |4 (4) (2) (1) O 10101010
(3,7) | 6] (1,6) (1,5) | 4) | @ [ OO0

7| (410) (1,5) ) ()]

(3,9)

(4)
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15. Higher Derivatives of the Sigma Function

We define, for the multi-index " or for arbitrary multi-index I,

Examples.

If (drq) —

o1 = (T3 )rw-

jel
(3,4) then b = h?> = (1) and § = g = (2), and
oy (1) = o () = ai o (s, 12, 117),
oy () = o2 (u) = ai o (s, 12, 117).

We define oo (1) = 1, a constant function.
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16. Properties of the Satellite Sigma Functions (The most important slide!)
We call {x=1(@") > u — oy () 10 = n < g— 1} the satellite sigma functions for €. They
have the following very nice properties:
(i) opr(u+£) = x(£)oy(u)L(u+ 16,0), u e x~1(0"), £ € A.
(i) If u € x= Y (W — W=, then the function x~1(W) > v +— opsa(u+v) has
a zero at A of order wy_,, — g+ n+1,

and other ¢ — (wy—, — g+ n-+1) zeroes elsewhere mod A.
Moreover, oyu+1 (1 + v) = oy (u)v“s— 8"+ 4 “higher terms in v1".

The exact place of all zeroes of v +— o, (u + v) := o (u +v) is known.
oy(u) := oy (u) = £ v18 + - -+ (has only zero at A).
(iii) The set of zeroes of the function x~ (W) 34— oy (u) is x=1(OM),
which is of order 1.
(iv) For an index I, if wt(I) < wt(}f"), then o7(u) =0 on x~1(@"]).
(v) If wt(I) = wt(§f"), then the function o(u) = “an integer’- oy (1) on x~'(@").
Proof : By certain expression of ¢ (u#) as the determinant of an infinite matrix

(or by precise observation of power series expansions).
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17. On the First Stratum, Two Variables |(3,4)-curve, ¢ =3

We define the functions «~ Y (W) 23— x(u), « (W) 2> u— y(u) by
(x(u)y(u)) _o
u= (us,uz,u1) = / w.

(0 0)

Let us take x(u) be the guide function. For a variable v € x~1(WU), let {v,v’,v""} be a
complete representative modulo A of the inverse image of the map v +— x(v) such that " and

0"’ vary continuously with respect to v and v/ = v/ = 0 when v = 0.
Of course, y(u), y(u’), y(u"") are the three roots of the equation f(x(v),Y) = 0.
Lemma. [0, 2011] Then, for u, v € k=1 (W), we have

1 x(u) ’

1 x(v)

o,(u+7v)o,(u+9") oy, (u+0")
oy(u)’ oy (v) oy (v’) oy (0”)

Here we recall that

0y (1) = opp(u) = 02(u) = a%zv(u), oy(u) = op(u) = o1(u) = aiula(u).
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18. On the First Stratum, n Variables |(3,4)-curve, ¢ =3

Theorem. [0, 2011] In n-variable case (Here n > g for simplicity):
0'(1/1(1) + .o+ u(”)) Hi<j o'l(u(i) — u(j)’)o'l(u(i) - u(j)’,)
o2 ()2 =2+ gy (4 ()7 )i =Ty (u()77)i~1

1 x(u®) y@®) *@®) yx@®) y*®) £L@) yP(u?) yrx(u®)
1 x(u®) y@®) *@®) yx@®) y?*@®) £L@®) yPu?) yixu®)

1 x(u®) y@”) @) yx@?) y*@®) L@”) yx?@”) y*x(u)
1 x(u(l)) xz(u(l)) e o o xn_l(u(l))

1 x(u(z)) xz(u(z)) e o o xn_l(u(z))

1 x(u(”)) xz(u(”)) o oo xn_l(u("))
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19. Using Guide Function vy, on the 1st Stratum |(3,4)-curve, g =3
Theorem. [EEQ, 2014]

On the 1st stratum in 2-variables with guide function y (order 4), we have

c1(u~+v)or(u+0*) o (u 4+ 0**) o1 (u + v**)

0'2(M)40'2(7J)0'2(’0*)0'2(7J**)0'2(7)***)
= y(u)’+y(w)y(v)+y(v)* + (px(u)+pa) (y(u)+y(v)) + pox(u)*+ps x(u) +ps

_ f(X(u), Yl)( - "f:\gx(u)r W) SRR _ (y(v) o y(ul)) (y(v) o y(u//)).
Remark. Of course, y(u) = y(v*) = y(u**) = y(***),
y(u') =y@) =y@™') =y,
y(u//) — y(u*//) — y(u**//) — y(u***,,)-
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20. Using Guide Function v, on the 1st Stratum for (d, g)-curve

For the most general (d, q)-curve (g= (d—1)2(q—1))
fry) =@"+-) — (T +paxT 4+ +pag) =0,

we have

Theorem. [EEQ, 2014]

On the 1st stratum in 2-variables with guide function y (order 4), we have

o,(u+v)o,(u+0*) -0y (u+ v*q_l) _ f(x(u),Y)— f(x(u), W)
oy (1) oy (v) oy (v*) - - oy (0*") Y—-W Y=y(u),W=y(v)

= (y(@) —y (@) (y(@) —y@")) -+ (y(v) —y(@")).

Remark. As in the previous slide,

y(u) =yw*) =--- =y@@'),
y(@') =yw’)=--- =y,
y(’) = y(”) = - =y,

Keys of the proof. For a fixed u € k= 1(®1)), the map v+ o, (u+ )
hasazeroat v =0, u, -, 1" modulo A of order 1, and the map u — oy (u)

has only zero at # = 0 modulo A of order g, and no zeroes elsewhere.
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21. Summary and Some Questions

For each curve %, and for each setting of

(1) k --- the stratum : the 1lst stratum, by using x(u) and y(u);
the largest stratum, by using go-functions,

(2) n --- the number of variables,

(3) @ - - - the guide function,

we have an addition formula of F-S type.

Some Questions:
Q1 Is there further natural generalization?

Q2 Why the coefficients of RHS belong to Z[u]?

(It is obvious they belong to Q[u].)
(If the order of the guide function is small, Q2 is OK because the RHS is a determinant, etc. )

Q3 How do these formulae link with other existing mathematical world?
Or some applications?

Q4 Can the general RHS be regarded as a sort of higher generalization of

the concept of “determinant”?
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23a. Definition of 1" (in order to define oy (1))
For the given pair (d, q) of positive integers with d < g and ged(d, q) = 1, we define

multi-indices " consist of numbers in {1,2,---,¢}, where g

We explain by an example : (d,q) = (3,7), g = 6.
Write a ¢ X ¢ = 6 X 6 table as follows.

_ (d=1)(g-1)
2

as follows:

We first write the Weierstrass gap sequence with respect to (d, g) on the last column:

11

| N | = | Q1 | OO
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23a. Definition of 1" (in order to define oy (1))

For the given pair (d, q) of positive integers with d < g and ged(d, q) = 1, we define

multi-indices " consist of numbers in {1,2,---,¢}, where g = (d—1)2(q—1)' as follows:

We explain by an example : (d,q) = (3,7), g = 6.
Write a g X ¢ = 6 X 6 table as follows.

We first write the Weierstrass gap sequence with respect to (d,g) on the last column:

6|7 8|9 10 |11
3145|678
01|23 4|5
0/ 1,2|3 |4
0 1] 2

0 |1

Then, put into other boxes naturally increasing non-negative integers as above.
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23b. Definition of > for (d,q) = (3,7), ¢ = 6. (continuation)

If we wish to get §"” = §?, extract (g —n) X (g —n) = 4 X 4 minor on the lower right corner.

and Remove all rows and columns including 0.

6|78 91011
3|4 5|67 8
0|1|2|3|4|5| |2/3/4|5 |2|5
o123 |4| |1|2/3|4] |1]4
0|12 0|12
0|1 0|1
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23b. Definition of > for (d,q) = (3,7), ¢ = 6. (continuation)

If we wish to get §"” = §?, extract (g —n) X (g —n) = 4 X 4 minor on the lower right corner.

and Remove all rows and columns including 0.

6| 78] 9|10]11
3 4|5|6|7]8
01|2(3|4|5| |2|3/4|5 |2|B
o123 |4| |1|2/3|a] |14
0| 1|2 0|12
0|1 0|1

Finally, by reading the numbers on the off-diagonal, we have

hz — <11 5>
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