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Classical theory of elliptic functions ( of Weierstral3)

Let A be a lattice in the complex plane C.
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Modern approach to elliptic functions (1)

In this talk we do not follow the classical theory in the previous slide.
We shall start from the elliptic curve :

<é’:y2:3(3+‘u4x+yé.

The sigma function o(u) associate to this curve is
2my\1 =i =1 r 2 [ ] -1 ”
A 8 -1 -9 .
o(u) = (a) ) exp( F@ (@0 u, 0" )

where
A = —16(4us> + 27u6%) = the discriminant,

[w/ (4)”:|: Llw j’;lw
N MU

and (aq, B1) is a symplectic basis of H;(%,Z), and

with w=2, p= 2
Ty Ty

S[la]](z,f) = Z exp2m( T(n + b)? + (n + b)(z + a) ) (a, beR)
nez
is Jacobi’s theta series.



Modern approach to elliptic functions (2)
The sigma function o(u) is given by

27 )1/2 1

o(u) = (E A8 exp( - —w' 11]'112) S[ ](w_lu, " Ja').

ISIESIE

Then

C(u) = —iIOga(u) pu) = - ;2 loga(u),

o WP = 400 + () + sy, ~ T DI () = )

The formula of Frobenius-Stickelberger : for n variables u®), -,

u™ | we have
() (n) i) — ()
(_1)(n—1)(n—2)/2(1!2!‘..(n_1)[) o+ T a(u’ )
g(u(l))n 00 g(u(")
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On the first factors of definition of o(u)

—. ltis not clear that o(u) is independent of the choice of a; and ;.
(This is obvious if we adapt the classical definition.)

—. However, eventually the changes of the Two factors cancel!

—. Using the Dedekind eta function

=

7](,7:) — L’% H(l _ 62711'7!‘[)
n=1

the first part in

1
A8 exp( - %m’*ln’u ) : \9[ 2 ](w_lu, " [@")
2



Why do we particularly investigate sigma functions?

Because :

(1) it is a fundamental functions as g;; = —% log o, , ug);

(2) it behaves nicer than theta functions in algebraic sence (which less depends on base ring);
(3) it is useful for analytic calculation more than tau functions;

(4) addition formula, (Hermite-)Frobenius-Stickelberger formulae

(5) n -plication formula

(6) it is a natural generalization of the Schur polynomials.



Why do we investigate power series expansions of the sigma functions?
Because:
—. Weierstrass investigated; (negative reason ...)
—. it has application to n-plication formula by using a(nu)/a(u)”z;
—. the coefficients of the power series expansions of sigmas are polynomial of
the coefficient of the defining equation of the curve, and has Hurwitz integrality
which permits to define p-adic sigma functions

The function o(u) has a power series expansion at the origin as follows:

B (pau®)™ (ueu®)"s
o() = ), bt o) (1 + 471y + 61g)!
ny, ng20

ud u? U u2 11
=u-+ 2‘u4 + 24[.15 36[.14 o1 288[14{16 11'

where b(ny, ng) € Z.
(This expansion also shows the independence of (u) with respect to the choice of ay and p).
In general, for € : y* + (u1x + )y = x> + uox® + g + pe, We have
e P
o) =+ (5 + p2) 57 + () + 202(5) + prapny + iz + 2410) 57
+((F)° +3pa(F) + 6ps(F)’ +312%(F)* + 6pa(5)?

7
+ 6[u3pz + yz + 64 + 6;13 + 24y6)



Characterization of ¢ in genus 1 case

A::{ﬁw}, BL,w= d—x
2y + x + s

Foru € C, we define v/, u” € R by u=uv'w +u"w”.
For e A, we define ¢/, €Z by {=0w" +{"w"”.
Lu,v):=u@'n +v"n"), x() :=expmi(t' +¢" +{'C").

Proposition (Characterization of ¢ of genus 1)

The sigma function for ¢ is characterize by the following 5 properties :

(S1) o(u) is an entire function on C ;

(52) o(u + €) = x(£) o(u)exp L(u + %f, ¢) forany u €C and £€A;

(S3) o(u) is expanded as a power series around the origin with coefficients in Q[u] of
homogeneous weight 1 ( = %) ; TerEL, wi(yy) = —j, wt(w) =1;

(54) o(u)lu=0 = u (the Schur polynomial s;3(1) = u for genus one) ;

(S5) o(u) =0 & uecA.

These properties might be independent each other.



1
Heat equation finds A8

Analytic construction of the sigma in genus 1 case:
1
o(u) = —n(w' 1 ”) - eXp( MZT]ICL), 1) [ﬂ(w'ilu‘w' 1&)”)
2

It is expected that the sigma function o(u) corresponding to a plane telescoplic curve (which we
mention later) ¢ of genus g is a function of g variables is constructed by

s -1

1
o(u) = o(u, Q) = ((|n,)|g) exp(——ur]w u)

3 Z exp (3 f0n+8") 0 " (n+6") +(n+6") 0 T u+8))( = A~85(u), say).
nezs
Here, A is the discriminant of ¢ i.e. A € Z[u] which is irreducible and “A # 0 < ¥’ is smooth”.
Theta characteristic [‘;] e (%z)zg is determined by the Riemann constant of %

‘Fact: o(u) is G(u) times a function of ;. ‘ Let 6(u) = A~ G(u). ]Conj.: o) = 6(u) |

There is a proof for genus 2 case ( by D.Grant using Thomae’s formula)).

Theorem (Buchstaber-Leykin + EGOY)

If the (plane telescopic) curve is of genus 3 or smaller, we have up to non-zero multiplicative
absolute constant that
o(u) = o(u).



One glance on Abelian functions of higher genus ( H.F. Baker)
For simlicity we avoid y? + (u1x2 + uax + s)y = x° + pox* + pgx® + pex® + pgx + p1p and consider
C o y? =20 + upxt + g + pex® + psx + o
Then

o = dx w xdx __(3x3+2y2x2+y4x)dx _xzdx
1= %7 Z_Zy'm_ 2 , ==

We denote w=(w; wp m 12).

vo fo] e for} o[ Lo) w=[fo]

i i

12
1/2
o(u) = o(uz,u1) = (2—7?) P exp( ;a)’ 1n'u2) 1/2 (0w, 0”@’ ™).
1/2
8
9ij(u) = a logo(u),  pa3(u), @a1(4), 9114,

—% = P3s(i) - P36(0) + P31 (WP11(0) — P31 (@Vpra ().



The classical heat equation
Let z and 7 (Im7 > 0) are complex variables. For the theta series
ﬂzkz¢)=§:e¢2n4%Tm+bﬂ+(n+m@+aU (a, beR)
nez o)

and operators L =4ni—, H = 2 we have a Heat Equation
Z

-9 ]z =0
which is already holds for individula terms.

g:

Weierstrass work on o \

Theoretically it suffice to rewrite the heat equation above into a diff. eq. in terms of g, g3 and u.

However, it is not easy task.

Starting from the diff. eq. of ¢(u), he derived a recurion equation of the coefficients of the power

series expansion of o(x) around u = 0.

(Considering the definition of p(u), it looks that some information of o(1) might be dropped.
But, by regarding g, and g3 as variables ...)

Buchstaber-Leykin’s work on ¢

Significantly reformulates and generalises Weierstrass work to multivariate o.
For the purpose, they investigate the tangent space of the variety A = 0.
Firstly, they gave a heat equation of the top exponetial function of the sigma.
Then proceeded to a heat equation for the sigma function.



The recursion in the (2,3)-case (Weierstrass’ work)
[Weierstrass 1882] Regarding ¢’> = 49> + 4uyp +4ue as a differential equation for o(u),
by highly technical feat he got the heat eq. of o(u) :
d d d
(L[] —H())U(l/l) = (4‘114(9}'—[4 + 6#65 - Ma + 1)0’(1/[) =
4 ,9 1
R H4 5372
3% Qus  20u2
From the 1st formula, we see the sigma is of the form:

(L, — Hp)o(u) = (6‘u6 38 + %,uwz)a(u) =0.

u (pgut)" (ueu®)"s
o(u)=u b(ng, ng) —mm .
@) n;‘;o (4, 16) = 2 + 6mg) g+1
From the 2nd formula ( by rewirting p = n4, g = ng ), q
b(p.q) = 3(p+ 69 - D2p + 39 - Db(p~1,9) g-1
-3@+1)bp-2,9+1)
+12p+1)b(p+1,9-1), p—2 P

-1 p+1
b(p,q) =0 if p<0 or q<0. ”

From this, we get
il

o 20
o(u) =u+ 2‘u4 + 24;16 36;& o1 288y4y6 T



Work of Frobenius-Stickelberger

Work of Frobenius-Stickelberger (published in the same year as Weierstrass’ paper).
This is anothor observation of Weierstrass’ heat equations. In the paper, they investigated
1

’ ’ 1
A= =60Y —— 4y —g3=140Y ———
He = 82 n;‘,, W +n"w”)* o & n;", ' +n"w")°
p(u) = HLZ + ;TZ]I/2 + ‘;—;1/“l + f\;(;()u(’ +-o, Cu+n'o +n"@")=Cu)+n'n +n"n”,
and got the following :
%82 983
o @ g dor || 482 683
o dg2 g3 —6g3  —38°
Jw”  dw”
i ' 8?0' + (u"% = —4g2a% - 6g3£3 (former part of Lo —Hp),
8g2
iplvi 1
Multiplying g 've have ’7/% ¥ ”"_a(i” = _6g3a% = 5522% (former part of L, — Hy).

98 [ Analytic Side | =

Algebraic Side ‘

Moreover, ((u’ % +w” #)(m]’ +bn") =an’ +by’; (17’%}, + n”#)(aq’ +bn") = =2 (aw’ +baw”).

—. We want to get similar fourmulae for ¢ > 1. But there are no longer such Eisenstein seres!
—. Here we note that the RHSs of the operators are tangent to g23 - 27g32.



Overview of the Work

1) Get the primary heat equation.

(1)
(2) Hypothesise o(u) = 6(u) := R (clue is in genus one case).
(3)

3) Check the tangent space of A = 0.
(4) Find abasis Lo = Ly, , ... , Loy, (if modality is 0) using a method known in the singularity
theory (but number theorists may not know) :
(5) Using the primary heat equation, we get algebraic heat operators :
Ly, H" (L, log 4).

(6) Solve alg. heat equations for our higher genus cases (2,3), - -+, (3,4),
and show that the solution space is of dimension 1. This implies the standard solution is no

other than o(u) : R
o(u) = o(u)

We express the whole theory in one breath : Weierstrass’ heat equation
d d J 1 3
Ay — +6g=— —U=— — = + = =
( Ha 2 e e “ouT2"2 )o(u) 0,
oue 0 4,29 12
“’8;44 g dug 2 Ju?

is generalized to (L]v —HY + %L/(logd)) o(u) = 0, where (j runs certain 2g integersin 1, -,
49— 2.
L; are A tangent vectors of A, and HY is determined by the action of L;s on H! (€, 0[u).

1
+ 6#4”2 +O+0)o(u) =0




Plane Telescopic Curves

We will treat the curves of the following type: Let e and g be a fixed pair of positive integers such
that e < g, ged(e,q) = 1. For indeterminates x and y, we let

fEy) =y + @Y+ + e (Y — pe().
Here p;(x) is a polynomial of x of degree not exceeding [%w We write this as
pj(x) = Z Hjg—ek Folgj<e-1), plx)=xT+ Heg1)XT ™1 + - + lgg.
k:jq—ek>0
The base ring can be taken quite arbitrary, However, for simplicity, we assume p; are generic
values in C.

Definition
We denote by % the (non-singular) curve defined by f(x,y) =0 which is added unique point co
at infinity, which is called (e, g)-curve, or plane telescopic curve.

Examples :
(2,3)-curve :  f =12+ (ux + pa)y — (o3 + uox® + pig + pe)-
(2,5)-curve: f= y2 + ([ulx2 + U3X + Us)y — (o + yzx4 + y4x3 + yﬁxz + X + H10)-
(2,7)-curve : f =%+ (x> + usx® + psx + pr)y — (7 + wox® + pax® + pext + psx® + pox? + X + ).
(3,4)-curve :  f =17+ (u1x + pa)y? + (pax® + psx + pg)y — (x* + uzx® + ex? + pox + Upo).
We introduce a weight defined by
wi(y) = —j, wt(x) =e, wt(y) =4.
Then all the formulae and expressions are of homogeneous weight, e.g. f is of homog. wt. eq.



Discriminant of the Curve

A discriminant A of the curve % is defined by the property
A € Z[u] is irreducible, and “A # 0 <= ¥ is smooth”.

Conjecture
Let the coefficients y; of the defining equation f(x, y) = 0 be indeterminates, and define
Ry = rslt(rslty (£, 1), %), wslty(f(x,y), 2f(x,y)),
Ry = rslty (rsltx( £, 1), &), sl f(x,y), 2f(x,y)),
R =ged(Ry,Ry) in Z[p].

Here rslt, is the Sylvester resultant with respect to z. This R might be a square : R = A’2.
Then we restore y; to their original values. It is quite plausible that A” = + A.

—. ltis so hard to compute A naively following this definition.

—. If (e,q9) = (2,2¢ + 1), A is no other than a discriminant of a polynomial in one variable.
—. If e > 3, we require another method.

—. | will explain later a method which works if modality is 0.

—. Itis checked at least for modality 0 case that

wt(4) = —eqle - 1)(g - 1).
(e~ 1)g-1)

We write ¢ = — which is the genus of ¢ if this is a non-singular curve.



Characterization for the Sigma Functions
We shall characterize the sigma function as follows.

Proposition (F.Klein, H.F.Baker, ... , Nakayashiki)

Assume the coefficients {y;} are complex numbers, and A # 0.

There is unique function o(u) satisfying the following :

(S1) o(u) is an entire function on C¢ ;

(52) o(u + €) = x(£) o(u)exp L(u + %f, ¢) forany u € C3 andany € A;

(S3) o(u) is expanded around the origin as a power series with coefficients in Q[u]
and is homoge. weight of (- 1)(112 —-1)/24;

(54) The top part o(u) |y=o is the Schur plynomial s4(u) ;

(S5) o(u) =0 & u € x (@), and the order of zeroes along ® is 1.

Here [6” &' ] € ( Z ) gives the Riemann constant vector of %,
X(0) = exp (2mi ({6 +'¢78 + 1107)), L, ) :="u@'n’ +v"n"),

where 1 and 1" are period matices for 7;s of a symplectic basis w;, -+, wg, 1, *++, 75 Of HY(€,Qlu)),

= (@1, -, wp) (eg.if () =25, then w; = B = @), A;:{Sﬂw}c@i,

Ty Ty
©® := Abel-Jacobi image of Sym$™ (%) with the base oo, k : C¥ —> Jac(%)(C) = CS/A,
3 2 6 5
_ L - us® u’us L R L. M
$23 = U1, S35 = U3 2 ETIG S27 = UjlUs — 2 2' 2 31 +16 o’ 834 = Us — UjU” + 6 51



The zeroes of o(u) and a Schur polynomial

We explain for (e, q) = (2,5) (g = 2) what is the Schur polynomial.

Let t= xz/y which is a local parameter around co.

Note that the zeroes of o(u) is the pul-back of © := Symg’l(%) with respect to Abel-Jacobi map
w. I. t. ¥ := modA.

So that in our case the coordinates (i3, 11) € C? is expressed by using the value t of the local
parameter on ¢

() 1 )
Uz = —dx = f (# +---)dt = 1£ + “higher terms”,

=S}

(xy)
Uy = —dx = f (1+---)dt =t + “higher terms”.

)

Namely, the expansion of o(u) should be
1 .
Uz — §u13 + “higher terms”.

This top part is the Schur polynomial s; s,
which is the Schur polynom. attached the semi-group generated by 2 and 5 € Z.



What was known without using heat equations?
Forgetting A‘%, we define
= = _ (ZR)g % % 1t, 7 s—1
o(u)=0(u, Q) = (m) Mexp( —sunw u)
. Z exp (i +8") ' " 0" (n+6") +(n+6") @ T u+ ).
nezs
Then G(u) satisfies (S1) ~ (S5) except (S4) (the top part is certain Schur plynomial).
This is roughly known by H.F.Baker ,..., Leykin, and completely proved by Nakayashiki for general
plain telescoplic curves curves.

Moreover (S4) is satisfied up to non-zero multiplicative constant which may contain y;s.
Namely, we need only to fix such multiplicative constant which is a function of y;s.

To fix it, the discriminant A of ¢ takes very important rolet.



The Primary Heat Equation (1)

We proceed to the case of a general curve ¢. We shall fix “correct’L later.
Here, for arbitrary chosen linear operator ( vector field ) L € @j Q[y]a%j, which is regraded to

correspond | Algebraic Side |, we want to find the corresponding operator in .

However, it is sufficient to know only L(Q).
By a lemma due to Chevalley, thhe operator L acts
H'(%,Qlp)) = im (%, dO (k - ©0))/dT (%, O (k - )
¥ “The forms of the 2nd kind with only pole at co”

“The exact forms in that space”

7

we have T =T’ suchthat L('w) = w.

Integrating this along various roop paths, we have L(Q) =TI'Q, and operating L to the Legendre
relation 1
tQJQ =2ni], where |= [ . g]
=g

we get ‘IJ+JT =0. This means that K :=I'J is a symmetric matrix. Denoting

Q= [w, w,,]/ = [ a ﬁ] (a, y is symmetric),
n n V4

‘B

e L|_[#8 —a]
it T o (]

B’ —an P’ —an” ] .
ro= [ , , " L, |=L(Q), (allthe entries of a, , y are € Q[u]).
yo' =g yw” ="y o7 #

we have



The Primary Heat Equation (2) (fEF8% L and HY)

(EB% L 3 Q OFRDZZHICET 2HMAMERRE UTEZTTETEARBLA,)
L(Q) DXR&OF(FHHhDI. DED, ’ Analytic Side ‘ M’ Algebraic Side ‘ TH>

DT,

L\E Weierstrass DB 71O 1ERAR

Lo—HM = 4;14% +6{J6£ -u=—+1,

d 4 d 1 1

_ gl — 2 1o 1. .9
L, - H 6‘u68y 3;4 9#6 28142 + 6[.14Ll
DRI Ly & Ly (F&) # L ELTENE,

1|’ gy
3

#¥0 Ho & H2 OEEUW—ILEUTO®BD. KL L H5B5NEHTI

a P =Y
K:[,ﬁ ﬂ=FLI (a, y [FXFRITH), (rL:[i g )
(CHUT, EB% H: %=

8

9>
]Z‘ Aj 5= 0 + 2B ula +y1]uu])+ Tr(B)
TEHID ([BL]) .



The Primary Heat Equation (3)
Theta #f# & sigma W ZRAET 2HF

Go(u, Q) = (c(lze?()j )% exp( - % tu n’a)’_lu)

[CDWT
(L —HY) Go(u, 2) =0

DEDIID.
Proof. 52 A, L(Q)=TQ %{E8D7T check 3.



The Primary Heat Equation (4)

Z NI characteristic b = {[b’ b”'] @ theta DIBZEHMNF 7=
2n)y

det(w)
BEAND. TN o) OFEEROEn BT n+0" d]=b="T" V] &LIEHDICHEBSEL.
CNEDVWTHRDEERBHLDILD.
ZNHLEDIBSRDERERD T primary heat equation EIERZ & (2T B.
([BL] ® Thm.13 OEER )

1
G(b,u, Q) = ( )2 exp( — %fur]'a)’*lu) - exp ( 27‘(i( %tb"wklw"b” +i (@0 Tu+ 1) ))

Theorem (Primary heat equation)
For the function G(b, u, Q) above, one has
(L-HYYG(b,u,Q) =0.

CNEBBAETREL, MEDDFHEZET 2.
Z2ZTH, BBBA L(Q)=TQ ZFDTHET 3.



The Primary Heat Equation (5)

( Proof of the Primary Heat Equation )
SHE L(GO,u,Q)) & H(G(b,u,Q)) % straight forward C5t8 L TIFBAL THL.
J. Gibbons K% 212, BBLDKXWSEAZZ USATED, DI DBHZRIRICTERVEXR.

Yebm ) | HCOLO) s vnot
Go,%0) Goua) ° =55
11‘ t =1t s 1 -1 tb// = 10(7],0.),_114—2712%,” r—1 f = lb//_ Za”(,
+ 218" o' " u — tue’ 'y Bu + 4 Ltep + Luyu

nan'w’ "u—2mi
&732%. (QED)




The Primary Heat Equation (6)

Zn&h, B5lC
1
o(u) ::((Tgﬁg)zxexp(— Lhun'w'” =i ) S[i’:](w_lulw“/w/)
[CDWTH
(L-HY3w) =0
AEDIIDZ EDHHB.
HRDERT BHBCONTIE, BROIC 5w) ¢ Qulllu]]) THBZ ENDHBNS, EAR
Le@i@u5% X LTH, B

(L-HYow) =0, ) e Qulllul]
(FFEEBRBRRERZL.
o(u) E—BI B EFREND 6(u) EHTIEAR

L-H" + “aconstant” eQ[p][aiW,a%j]

H#5AND L [E, A ZBOPBHFECEDHDTHLL TREBSKL. (TNEETETTS.)



Outline of Proof of the Main Result
(1) 6(u) = A~3 5(u) %T operators Z1EF .
ZNEE, RESROBREEMBL
A ZEIRATED ZHAAICIFDHF/R space of vector fields
BRI 3. (& BEV “aconstant” D& Z SDRTE)

(@) [BL] DFSEICKDT, —MEIC 475 5(u) ERICSTHRARAREBRTEZ,
() =23),(25),27), (34
DIFEICE, ZNE5HS/SNDERFBOBFRAN—BNICRIZ I EZRI I ECKD,
B, 53 (BE (- 1)(¢7 - 1)/24 THER) BREOBHERECRSNZ A DB,
(3) LNBIC o(w) & AT 5() BEKSS (1 £8383) LHNEEBLOTHIDS,
RICEFIED o) OEH (u) OBH) HEFNBTEFDHDTHS.

(4) DT, FEONTHEED o) TRENERSRE.



Modality, Weierstrass Form
(e,q)-curve DARRK f(x,y) =0 [EHLT Q[u] L£® Tschirnhaus ZIRT 171 & ! OBEEE
LieFEDH D% Weierstrass form & 0FSR.
Weierstrass form [ UDSE 1 DBRIZTDNIAICRLIZEDZEENS.
BINE (e,9) = (3,4) BS(F
f = VLI + (2% + psx + ps)y — (¢ BpsC + pex® + pox + o).
ZORERED 1 DEEIS 2¢ UTFICB 3D, 2DZE% modality & IFS.
Modality (&

e-3)g-3)+ H -1
TEABNB. I
modality = 0 < (¢,q) = 2,2¢+1), (3,4), (3,5).



The Operator Space which is tangent to the Discriminant Variety (1)
—REOREEHIRDHIBINZ ESPDOTEET DD
Modality A% 0 DEIRDHERT B.
(2,5)-case %Zfl(c L, discriminant & tangent (C%2% operators L DEMK %7889 3.
Qlp] LB Qlullx,yl/(fy, fy) (modality 0 D BBEME 29) HNSEEND —eqf(x,y) BEK
EEAT, BE (P, 2 x 1) CETZERTINE T=[T,] (2 REATI) £BE
det(T) = “non-zero rational” - A.

LB, 2O T &, A TORICEEICHESNDWHTI V OADEBINNCERTH 3.
fl(x/y) —fl(z,w) fZ(x/y) —fz(Z,lU)

He= 1 ¥z ¥z @) = 2 fey), Hloy) = >y
2| fey-Aaw) fay-hew) || AED =GN pEN=5 Y,
y-—w y-—w

M=[x 22 x 1] (4=2)
EBE, Q[ryzu|/(Aity), Loy, ilw), hEwv) OPT
'MVM =f(x,y)H
T V=[Vij] € Mat(2g,Q[p]) ZE&ET 3.
CDEZEV FTICEAEREL=ATINERITLBDCHRD I ENBHICHMD,
det(V) = det(T) = “non-zero rational” - A
ERRB.



The Operator Space which is tangent to the Discriminant Variety (2)
E50L7T

.22l
j [ d U]'
& wH(Ly;) = vj ERBIRICHEBATEEREL
NS0 Ly, H'TE A=0 ZBAIEDZERALE T S operators DEEZRD.
( BERSKDIER )

BINE (e,9) = (2,3) DHFER
4y 6ue ]
V=
[6116 —3 14’
THD, det(V) =34 THD. Ffc v1=0, 1n=2 THDIT, Ly & L, &

0 d
Lo =4uy— + 6ug——,

0 H4‘9H4 Hﬁayé

d 4 J
L, = P P
2 £ 6(9}14 3 4 8}16

EERSND.



Algebraic Heat Operator L and H-

FlRBER
L (& {,u]} [CBIT2ENT, H: (& {u) ICB9 589,
WK 2 Z {y) OHD ({uj) ICRELRL) E#HEITNIE,

L(Eo()) = (LE)o(u) + E(Lo(w)), H'EG(u) = EH"G(u)).
f€DT, Eo(u) [cDWVWT

ml [

(L -H")(EG U(M))— Eo(u) = (Llog &) Ea(u),
2% (L-H"-L(og 5))(25(w) =0

BL Zo(u) DKRDB o) € Q[ull[u]] TH3B5(E, Log E) Zo(u) € Qull[u]] TH.
WRIC, o(u)=0(u) THDEBIES, Llogld) € Qu] B3 L ZRINRETHD.

Jm B
ME&KD,

L(log A) € Q[u] %3 Le@ 2 [zonT

(L - H! -~ L(log 47%)) 6(u) =

#%D27T, L £UT Aipage D L, EZEHRNEINTHSS.



Values Ly, log(4) = Ly, (4)/A

Let M(x,y)w; be the canonical basis of H'(%, Q[p]).
For example, if ¢ is the (2,2¢ + 1)-curve, we have
1
M@x,y)=[1x --- 81, @ = de.

Then we have ( proved by S. Yasuda )
M(x,y) [Loy -+ Loy, 1(4) = Hess f(x,y) - A.

(ZNEDEBOBRABAR ! LHAULHEXDHNSNTHREL ? ZEENSIKDIERCH D ?)
Proof. If e=2, f(x,y) is of the form 32 — p(x).

Compute Hessf __¢P"® in the localized ring (F[x]/(P’(x)))

f p(x)

multiplicative set {1, p(x), p(x)?, --+}.
For other cases, this was checked directly.

o O (FIx1/(p' (x))) w.rt. the

ZOHNS, BASHIC

Ly log2) = 22 € Q.



Algebraic Heat Equations

Proposition (CZ X TDRE®D )

(1) 1750V = [V;] (BHTFIT, det(V) = 4 £133.

(2) Lo;(log ) € Qlp] THD, {Ly, } (& {4 =0} D tangent space Z5R>.
() 4=0} & (L} O 1 DOBABERSHKATHD.

b2 (Chevalley, BPIEHZRIRL TOEREMTOELHNELRBWN) D5 Ly, &

H'(%,Qlp)) = im (%, d0(k - ©0))/dT(%, O (k - )
k __ “The forms of the 2nd kind with only pole at co”
B “The exact forms in that space”

[CEART%. 22T
ij(tw) = I“thw

[E&LDTT, ZEDHDE, CNOENZET D & CAMOBERAIESND
Ly, (Q) = T, Q.

BT Q [E2DLTD Legendre DBIFRANS [] FHMMTINITHD. T, 15 H" #=fEnid,

(4) (Lo, = H" = Ly, (log A™%)) A3 G(u) = 0.



One Dimesionality of the Heat Equations (Main Result)

Theorem (E-G-O-Y)
BE o) € Qulllu]] (1 = (uw,, ++- , thy)) €DV TDFFRERFR
(Loy ~H" ~ Ly (l0g 478)) () =0 (j =0, -, 2g)
DRZ[ (S, BE 3 LITDHE
(e,9)=(2,3), 2,5, 2,7), (3,4
DIRTIZBNT 1RTT, DEO 6(u) = A7 5(1) DR ERIEDORHETH .

Proof.

We can explicitly construct a recursion system for the coefficients and check uniqueness of the
solution once the initial coefficient is given. It is easy to check the solution is independent of the
choice of such a recursion system. O

—. It would be very nice if one has find a proof which reveals intrinsic structure of the heat
equations for any plane telescopic curve.



Sample calculation in the (2,3) case (1)
(e,9)=(2,3) DIFE:

M=[x 1] A= 5 fo0) = =32~ s, o) = 5o foy) =20

fl(x/y) —fl(z,w) fz(x/]/) _fZ(Z/w)

H'—l X—Z xX=x —6(+)
T2 Ay -fikw) Ay -frw) |0
y—w y—w

&R0, Q[x,y,z, w]/(fl(x,y), fxy), fizw), fz, w)) DPT
MV M = f(x,y) H = 4paxz + 6z + 616X — %mz.

&£2T
dps bpe ]
V=
[6#6 ~3ua®
THD, BHIC det(V) =34 THD.
HECEKD Ly & L, &

d a
L() —4;14% +6y6ﬂ,

0 4 0
Ly = 6ug—— — ~pu2-2.
Z 6y68y4 3P4 due



Sample calculation in the (2,3) case (2)
Choose the differential forms and the local parameter by

1
2/

dx  xdx _
w = (w1, 771):(@, 2% ), =g
and suppose a%-t =0 for any .
]

9
So, we have e

Using f(x,y) = 5% = (° + pax + ), wesee 2y52-y =x and 2y32-y =1, so that
P
8y4y 2y’ 3y6y 2y°

x =0 for j =4, 6, and we compute the matrix T' as follows.

Therefore, we have
d © 1 i d : 0 X d
—_— = —_-— 5 —_— = — =
dus " T Twp om T G

By computing d(i) d(s—j) d(%) we get

x2

—d. —m = —=d.
4y3 ) 3P4 m 4y3 X

2

Lo(wr) = —w1 +d(§), Lo(m) = m —d(%),

2\ 2 1 1
Lo =m~d(T)-3d(3) L2 =5 o +usd;)



Sample calculation in the (2,3) case (3)

We have got 1 2
Lo(wy) = —wy + d(-), Lo(m) =m — d(—),
Y Y
2y 2 /1 1
Ly(w1) =m — d(%) -3 d(;), La(m) = % w1 + e d(;)

Therefore, we have on H'(%,Q[u]) that
-1
L) =To[¥'] (9 ) =T[$'] where To=[ ] Ta=|

Recall F:[ P _% ] and the definition of HL :
y -

Ha
3

9?2

i g 8
9 1 J
HE=1 [ta% fu ]FL][‘Z‘] + 3 Tr() = 5 E E % paw o 2Bjj =~ +Vij uiuj) + 3 Tr(B).
j

i=1 j=1
Since
[Lo L2](4) =[12 0]4,
we have arrived at
(Lo — Ho)6o(u) = (4 i+6 i—ui+1 o(u) =
0 W= ‘u43y4 H(’&y du B

s @ 4 5,9 190 1 o).
(Lz—Hz)U(”)—(@%ay 3 o 232 e o(u) =0,

where H; = H" + {L;logA for j=0and 2.



Explicit Expression of the Heat Operators (1)

For (2,5)-curve y? = x° + puox* + pax® + pex® + psx + p1p, We have

dx xdx B (323 + 2upx? + pgx)dx 2dx

@, wzzgr m= 2y s M=

w1 =

Lo = 4;@% + 6;16% +8y8% + 10y109%m,
9 29 P P
Ly = bpe 55 + £(10us — 3us Vo t £(25p10 — duopia) i — %#8#4%,
Ly= Sﬂsﬁ + 3(25u10 - 4#4#6)3!,6 2 (Buaps — 3ue” )3,,8 + 8(5uapin0 — #6#8)ﬁ,
gl gl 2y_d
Le = 10055, — $Hspagg; + &(5uiops — spie) 55 + 3 Grirops — 2us”) 5o
The action of these operators on the discriminant A is as follows:

[LO Lz L4 L6]A=[40 0 12{14 4}16]A
The representation matrices I; for L;'s acting on the space HY%,Q[u]) are

-3 0 0 0 0 -1 0 0
o -1 0 o0 Ly 0 0 1
D=lo o 3 of & fu?-3ps 0 0 —ful
0 0 0 1 0 Sps 1 0
—Uis 0 0 1 1 0
£ e 0 1 0 5 Us 0 0
Fi=|¢ 6 ’ B!
Spape —6p0  —ps  pa —%pe 3 bapis ‘2 o 0 —5pus
— s % U 0 0 —2 1o 5 us 0 0



Explicit Expression of the Heat Operators (2)

Therefore, we have the operators H; = HY + %Lj log A as follows:

d a
H0—3M3%+u1% +3,

ol ® 0 4 9 3 2 (3, 2 2.2

27 2 ou2 T Mgu; T 5t T ot (2“8 5 )“3’

H —i_é i i_l 2 _(3 Pl ) 2

4= SuLdi3 5#6”35u1 +/J4M39u3 5#6“1 + gl uz (5M4#6+ H10 U™ + Uy,

gool® 3. .9
6= 2ouz 518"

By the first heat equation (Lo — Hp) o(u) = 0, where

—l 2 +2 uu—it uz—1
10.“81 HioUsy 10}8#43 2.“6~

9 9 9 2 9
Lo—Hp = (4[’143;114 + 6“6m + 8“189;_!3 + 10‘1110%) - (3143@ - Mlm + 3),
the sigma function should be of the form

u13($)’"(y4u14)"4 (nema®) " (ser®) " (a0 ™)

10

ouu:mennnnn
(13,1) (m, 11,4, e, 15, 110) m! (3 — 3m + 4y + 6115 + 811 + 1017)!
g e, ng,1n10>0
3-3m-+4ny+6ns+8ng+10n19=0



Recursion in the (2,5)-case

Let k=3-3m+ 4114 + 6ng + 8ng + 107110.
Then the other heat equations (L; — H;) o(u) = 0 (j = 2, 4, 6) imply the following recursion relations:

b(m, ng,ne, ns, 110)
20(ng + 1) b(m, ny, ne, ng + 1,119 — 1)
+16(ng + 1) b(m, ng, ng + 1,ng — 1, n19)
+12(ng + 1) b(m, ng + 1,n6 — 1, ng, n19)
—Z(ng + 1) b(m, ny — 2,6 + 1,18, 119)
+2(=k + 3)(—k + 2) b(m, ny — 1,16, 13, 119)
—8(mo + 1) b(m, ny — 1,n6,ng — 1,m19 + 1)
= —15—6(118 + 1) b(m,ng —1,n6 — 1,ng + 1, n19)
+2(—k + 2) b(m ar 1, Ny, Ng, Ng, 1’!10)
=3m(m — 1) b(m — 2,ny,ne,ng — 1,110)
+2m(m — 1) b(m — 2,ns — 2, n6, 13, n10)
+§mb(m—1,n4—1,n5,n8,n10 (if k>1 and m=0),

10(ng + 1) b(m — 1,n4,n6 + 1,ng,m79 — 1) + - - - (if k=1 and m >0),

—%’(1+n10)b(m—2,n4,n6,ng—2,n10+1)+--~ (if k=0 and m>1).



The Expansion of (2,5)-Sigma Function

From these, we see the expansion of ¢(u) is Hurwitz integral over Z) :

u 3 u 7 6 u Zu B u 3
o(us, up) = uz — 2L = 4p4 1 2y4 + 64y6 = 8‘u(, —2u6 32'3'1 +He3r 3
Z 5 B2
Uz~uq Uusz~uq
+ (- 408}14 + 1600}18) 11' (4}14 + 32“8) - 8{.13 215! - 2#8 300 TP oce g



The recursion in (3,4)-case

We have 6 heat equations (L; — H;)o(u) =0 for j=0, 3, 4, 6, 7, 10.
Thus, 6 recursion relations.
The first equation (Lo — Hp)o(1r) = 0 implies the sigma is of the form

o(us, uz,u1) = Z b(€, m, ny,ne, ng, n19, 12, 114)
Cmnyng,ng,
110,112,114
14 m
6 u5 u3 4 g 6 g 8 ng 10 n10 12 Hyp 14 N4
w®(5) (5) () (onn®)™ (pastn) ™ (o)™ (st 2)™ (uraan ™)
1 1

[ (6= 5¢ = 3m + 4ny + 616 + 8ng + 10m10 + 12115 + 14n14)! €1 m! .

The set of rest 5 recursion relations indeed gives the sigma function.
However, we need a kind of “switch back” on weight.



Expansion of the (3, 4)-Sigma Function
ZZTl&
@ y) = v + (uax + pa)y? + (uax® + psx + pg)y — (x* + usx® + pex® + pox + )
EXHT2HDEENTHL . == =us = pg =0 ELEHDOHSEDRBRERS.
ou)=Cs5+Ce+Cy+Cg +Co +---

& u [CB89 % weight & [CH(FD &
5
Cs = us — uluzz + 6ML/

5!
4 3
up uz
RAr TR TRETE ¥
7 8] 2
uy ui~ up
=10(11* - 3p2) = + 2#27 >
6 M12 u23
Cs = 2(u® + 93 — 2#1#2) 6' , = 6#37?,
N 05 u?
Co = 14(u” - 3u2)" 5 + 22ua — 2 + iz + 6pirpt3) , o

ul Us
—2(4y1y3+4y4+y2)1, 4! +20a = 7y



Problem
We have a proof of the one-dimensionality of the solution space of the system of heat equations
only for any plane telescopic curves of genus 3 or smaller. Our proof of the one-dimensionality is
a consequence of expected good behalf of the recursion system. However, the (3,4)-recursion is
so complicated. So, we shall pose the following

Problem
Can we prove one-dimensionality of the solution space of the system of heat equations
{ @ ~Hy)ow =0|j=0,1,--, 2]

for any telescopic curve of modality one?

It might be a hint for this problem that
there is the following closed form of entries of the matrix V' for (2, g)-case, which is given by JCE.

Lemma
2i(q — j) .
Vij=- qq 4 Hoitiaj + Z 2(j — i + 2m) po(i—m) 2G+m)
m=1
lorj
2i(g - = .
= q umlz; T Z (i +] = 20) pae poivj-0),
=ty

where pg =1, up = 0, mp = min{i, g — j}, and £p = max{0,i +j — g}.
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