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Introduction

Theorem. (Hurwitz [H]) Let p > 3 be an odd rational prime, h(−p) be the class number
of the imaginary quadratic field Q(

√−p ). Then we have

h(−p) ≡


−2 B p+1

2
mod p if p ≡ 3 mod 4,

2−1 E p−1
2

mod p if p ≡ 1 mod 4.

Here Bn is the n-th Bernoulli number, En is the n-th Euler number.
Moreover, the absolutely smallest residue of the RHS exactly equals to the value of LHS.

LHS comes from Dirichlet L-values L(1,
(
·
p

)
).

RHS comes from “trigonometric” Gauss sums.

We give an analogy for Tate-Shafarevich groups of this theorem.

Elliptic Gauss sums were already used, in order to compute numerically the L-series

attached to some elliptic curves over Q, in the famuous original paper [BSD] by Birch

and Swinnerton-Dyer themselves. We wish to use them for investigation of L-series

attached to some elliptic curves defined over Q(i).
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The lemniscatic sine function

The inverse function u 7→ t of

t 7→ u =
∫ t

0

dt
√

1 − t 4
=

∞∑
n=0

(−1)n
(
− 1

2
n

)
t 4n+1

4n + 1
= t + · · ·

is the lemniscatic sine function, which is denoted by t = sl(u).

ϖ = 2
∫ 1

0

dt
√

1 − t 4
=

∫ ∞

1

dx

2
√

x3 − x
= 2.262205 · · ·

sl(u) is an elliptic function whose period lattice is Ω = (1 − i)ϖZ[i]
and its divisor modulo Ω is

div(sl) = (0) + (ϖ) −
(
ϖ

1 − i

)
−

(
iϖ

1 − i

)
.

It is expanded as

sl(u) = u − 1
10

u5 +
1

120
u9 − 11

15600
u13 + · · ·

=

∞∑
m=0

C4m+1 u4m+1.

ϖ 2ϖ
Re

Im
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The ray class field
Through out this talk, we denote φ(u) = sl

(
(1 − i)ϖ u

)
.

( The period lattice of this function is Z[i]. )

Take a prime ℓ ≡ 1 mod 4, ∈ Z. ℓ = λλ with λ ≡ 1 mod (1 + i)3.

Let S ⊂ Z[i] be a fixed set such that(
Z[i]/(λ)

)× ' S ∪ −S ∪ iS ∪ −iS , |S | = ℓ−1
4 . Moreover we define

Λ = φ
( 1
λ

)
, Oλ = “ the ring of integers in Q(i, Λ) ”,

λ̃ = γ(S )−1
∏
r ∈ S

φ
( r
λ

)
, where{±1, ±i} 3 γ(S ) ≡∏

r ∈ S r mod λ if ℓ ≡ 5 mod 8,

{±i} 3 γ(S )2 ≡∏
r ∈ S r2 mod λ if ℓ ≡ 1 mod 8.

Then, we have

(λ) = (Λ)ℓ−1, Λ ∈ Oλ, λ̃4 =

(
−1
λ

)
4
λ.

Note that Q(i, Λ) is the ray class field over Q(i) of conductor (1 + i)3(λ).
( T. Takagi [1920], §32 ) ( Remind that

(
Z[i]/(1 + i)3

)× ' {±1, ±i }. )
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Asai’s theorem for ℓ ≡ 13 mod 16 (Typical case)

Assume ℓ ≡ 13 mod 16. ℓ = λλ such that λ ≡ 1 mod (1 + i)3. χλ(r) =
( r
λ

)
4
.

egs(λ) =
1
4

ℓ−1∑
r=1

χ
λ
(r) sl

(
(1 − i)ϖ

r
λ

)
.

Since the terms of this summation are alg. integers, egs(λ) is an alg. integer.

Theorem. ( [Asai] ) ∃ Aλ ∈ 1 + 2Z such that

egs(λ) = Aλ λ̃
3,

(
λ̃ = γ(S )−1

∏
r ∈ S

φ
( r
λ

) )
.

In particular, egs(λ) , 0.

Proof. Use the functional equation for the Hecke L-series corresponding to χλ

and the formula of Cassels-Matthews for classical quartic Gauss sum. □

—. Note that BSD =⇒ Rationality of EGS =⇒ Cassels-Matthews.

—. We call Aλ the coefficient of egs(λ). (Asai)

—. In the definition of egs(λ), if we replace χλ by another character χ such that χ(i) = i,
then the sum trivially vanishes.

Each character χ “knows” which elliptic function corresponds to itself.
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The corresponding Hecke L-series
ℓ ≡ 13 mod 16 Keeping in mind that

(
Z[i]

/
(1 + i )2

)× ' { 1, i }, we define

χ0
′(α) = ε2 for α ≡ ε mod (1 + i)2, ε ∈ { 1, i },
χ̃ = χλ χ0

′.

This is a Hecke character of conductor
(
λ(1 + i)2

)
.

Theorem. ( [Asai] )

L(1, χ̃) = −ϖ (1 − i)−1χλ(2)λ−1 egs(λ).

The elliptic curve corresponding to L(s, χ̃) is E−λ : y2 = x3 + λx.

Deuring showed that

LE−λ/Q(i)(s) = L(s, χ̃) L(s, χ̃ ).

Proposition. If the full statement of BSD conjecture for the curve E−λ : y2 = x3 + λx is ture,

then ♯X
(
E−λ/Q(i)

)
= |Aλ|2.
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Some Congruence on the Coefficients of EGS

We define C j ∈ Q by the expansion of u 7→ sl(u) as follows:

sl(u) =
∞∑

m=0

C4m+1 u4m+1 = u − 1
10 u5 + 1

120 u9 − 11
15600 u13 + · · · .

Theorem. ([Ô]) Assuming ℓ ≡ 13 mod 16, we have

±
√
♯X

(
E−λ/Q(i)

) ?
= Aλ ≡ −

1
4

C 3(ℓ−1)
4

mod ℓ.

The absolutely minimal residue of the RHS is exactly the LHS. (?)

This is a generalization of the following :

Theorem. (revisited) For any prime p > 3, we have

h(−p) ≡

 −2 B p+1
2

mod p if p ≡ 3 mod 4,

2−1 E p−1
2

mod p if p ≡ 1 mod 4.
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Summary up to here

ℓ ≡ 13 mod 16 The corresponding elliptic curve is

E−λ : y2 = x3 + λx

and L(1, χ̃) , 0. Coates-Wiles’ theorem implies that

rank E−λ
(
Q(i)

)
= 0.

ℓ ≡ 5 mod 16 We have a similar story.

The corresponding ellipitic curve is

E 1
4λ

: y2 = x3 − 1
4λx

and, similarly, it has rank E 1
4λ

(
Q(i)

)
= 0.

We proceed to the other case :

ℓ ≡ 1 mod 8 . About 18% of the 172 examples of this case in [Asai],

egs(λ) = 0.
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ℓ ≡ 1 mod 8 case
ε always denotes an element in { ±1, ±i }.
Define χ0 by

χ0(α) = ε if α ≡ ε mod (1 + i)3 ( α , 0 ∈ Z[i] ).

ℓ ≡ 1 mod 16 Since χλ(i) = 1, we define χ1 = χλ
χ0 .

Then χ̃((α)) = χ1(α)α is a Hecke character of condunctor (λ(1 + i)3).
We have

L(1, χ̃) = ϖχ
λ
(1 + i) 2−1λ−1 egs(λ).

Here, egs(λ) is defined in the next page.

ℓ ≡ 9 mod 16 Since χλ(i) = −1, we define χ1 = χλχ0 .

Then χ̃((α)) = χ1(α)α is a Hecke character of conductor (λ(1 + i)3).
We have

L(1, χ̃) = ϖχ
λ
(1 + i) 2−1λ−1 egs(λ).

Here egs(λ) is defined in the next page.

11 / 28



The elliptic Gauss sum
Our situation: ℓ ≡ 1 mod 8 is a prime, and

ℓ = λλ, λ ≡ 1 mod (1 + i)3, χλ(ν) =
(
ν

λ

)
4
, χλ(i) = i

ℓ−1
4 = ±1.

Using cl(u) = sl
(
u + ϖ

2

)
, we define ψ(u) = cl

(
(1 − i)ϖu

)
and

the elliptic Gauss sum by

egs(λ) =
∑

ν∈S∪iS
χλ(ν)ψ

(
ν

λ

)
.

Then we have (revisited)

Proposition. ([Asai])

L(1, χ̃) = ϖχ(1 + i) 2−1λ−1 egs(λ).
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The coefficients of EGS

For the coefficients, we recall the following

Theorem. ([Asai]) Let ζ8 = exp(2πi/8). There exists Aλ ∈ Z[ζ8] such that

egs(λ) = Aλ λ̃
3
,

where Aλ is given by

ℓ mod 16 χλ(1 + i) = 1 χλ(1 + i) = −1 χλ(1 + i) = i χλ(1 + i) = −i

1 i
√

2 · aλ
√

2 · aλ ζ8 · aλ iζ8 · aλ
9 iζ8 · aλ ζ8 · aλ i

√
2 · aλ

√
2 · aλ

and aλ ∈ Z.

Proof.
Use the formula of Cassels-Matthew and the functional equation of L(s, χ̃). □

Remark. Asai observed that aλ ∈ 2Z.
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Arithmetic on the elliptic curve associated to the EGS for ℓ ≡ 1 mod 8

ℓ = 8n + 1 = λλ The Hecke L-series associated to egs(λ) is

a factor of the L-series of the elliptic curve

Eλ : y2 = x3 − λx.

The conductor of this is
(

(1 + i)3λ
)2 (See [Serre-Tate], Thm.12),

and the reduction type at (1 + i) is of type III,
and that at λ is of type I2

∗.

Each Tamagawa number τp and Aλ = “ the coeff. of egs(λ) ” are as follows :

ℓ mod 16 Invariants χλ(1 + i) = 1 χλ(1 + i) = −1 χλ(1 + i) = i χλ(1 + i) = −i

Aλ i
√

2 · aλ
√

2 · aλ ζ8 · aλ iζ8 · aλ
1 τ(λ) 2 2 2 2

τ(1+i) 4 4 2 2

Aλ iζ8 · aλ ζ8 · aλ i
√

2 · aλ
√

2 · aλ
9 τ(λ) 2 2 2 2

τ(1+i) 2 2 4 4

Asai observed that aλ ∈ 2 Z.

It is quite certain that
(

1
2 aλ

)2
= ♯X(Eλ) if aλ , 0.
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The congruence for ℓ ≡ 1 mod 8

We define the C2 js by the expansion of the lemniscateic cosine u 7→ cl(u) as

cl(u) = 1 +
∞∑
j=2

C2 j u2 j = 1 − u2 +
1
2

u4 − 3
10

u6 +
7

40
u8 − · · · .

For the sake of simplicity, we restrict the case ℓ ≡ 1 mod 16, and assume, as before, that

ℓ = λλ, λ ≡ 1 mod (1 + i)3.

Take a set S such that
(
Z[i]/(λ)

)×
= S ∪ −S ∪ iS ∪ −iS and |S | = ℓ−1

4 .

Since χλ(ν) ≡ ν
ℓ−1

4 mod ℓ, we see χ(i) = 1.

Define ψ(u) = cl
(
(1 − i)ϖu

)
. According to [Asai],

egs(λ) :=
∑

ν ∈ S ∪ iS
χλ(ν)ψ

(
ν

λ

)
= Aλ λ̃ 3 with Aλ ∈ Z[ζ8].

Theorem. ( alternative of [Ô] ) In Z[ζ8], we have

Aλ ≡ −1
2 C 3(ℓ−1)

4
mod ℓ.

Remark. Z[ζ8] is Euclidian. It is quite prospective that the absolute minimal residue of the

RHS gives the exact value of Aλ.
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Proof of the congruence (in a few words) (1/2)

Recall

Λ := φ
(1
λ

)
, λ̃ := γ(S )−1

∏
r ∈ S

φ
( r
λ

)
≡ Λ ℓ−1

4 mod Λ
ℓ−1

4 +1, λ̃4 =

(
−1
λ

)
4
λ.

Let g be a generator of the cyclic group
(
Z[i]/(λ)

)×. Write χλ = χ for simplicity.

egs(λ)=

ℓ−3
2∑

j=0

χ(g j) cl(g ju)
∣∣∣∣
u=(1−i)ϖ 1

λ

=

ℓ−3
2∑

j=0

χ(g j) cl
(
g j
∞∑

n=0

(−1)n
(
−1

2
n

)
t 4n+1

4n + 1

)∣∣∣∣∣
t=Λ

(
t = sl(u)

)

=

ℓ−3
2∑

j=0

χ(g j)
∞∑

m=0

C2m

(
g j
∞∑

n=0

(−1)n
(
− 1

2
n

)
t 4n+1

4n + 1

)2m∣∣∣∣∣
t=Λ

=

∞∑
m=0

( ℓ−3
2∑

j=0

χ(g j) g2 jm
)

C2m

( ∞∑
n=0

(−1)n
(
− 1

2
n

)
t 4n+1

4n + 1

)2m∣∣∣∣∣
t=Λ
.

Concerning mod Λ
3(ℓ−1)

4 +1, we see

≡
3(ℓ−1)

8∑
m=0

( ℓ−3
2∑

j=0

χ(g j) g2 jm
)

C2m

( ∞∑
n=0

(−1)n
(
− 1

2
n

)
t 4n+1

4n + 1

)2m∣∣∣∣∣
t=Λ

mod
(
Λ

3(ℓ−1)
4 +1

)
.

↘
=

ℓ−3
2∑

j=0

g
j(ℓ−1)

4 g2 jm =

ℓ−3
2∑

j=0

g j( ℓ−1
4 +2m)
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Proof of the congruence (in a few words) (2/2)

Because of
ℓ−3

2∑
j=0

g j( ℓ−1
4 +2m) =

 0 if (ℓ − 1) 6
∣∣∣ ( j(ℓ−1)

4 + 2m
)
,

ℓ−1
2 if (ℓ − 1)

∣∣∣ ( j(ℓ−1)
4 + 2m

)
,

0 ≤ 2m ≤ 3(ℓ − 1)
4

,

the terms in the previous page vanish unless 2m = 3(ℓ−1)
4 . Therefore,

≡ ℓ − 1
2

C 3(ℓ−1)
4
·
( ∞∑

n=0

(−1)n
(
− 1

2
n

)
t4n+1

4n + 1

) 3(ℓ−1)
4

∣∣∣∣∣
t=Λ

mod
(
Λ

3(ℓ−1)
4 +1

)
≡ ℓ − 1

2
C 3(ℓ−1)

4
· Λ

3(ℓ−1)
4 mod

(
Λ

3(ℓ−1)
4 +1

)
.

This implies

egs(λ) ≡ Aλ Λ
3(ℓ−1)

4 ≡ ℓ − 1
2

C 3(ℓ−1)
4
· Λ

3(ℓ−1)
4 mod

(
Λ

3(ℓ−1)
4 +1

)
,

and, at last, we have :

Aλ ≡ −
1
2

C 3(ℓ−1)
4

mod
(
(Λ) ∩ Z[ζ8]

)
.

The rationality of Aλ (Asai’s theorem) yields the congruence mod ℓ.
The absolutely minimal residues of the RHS in numerical check coincide with the values in the

table of [Asai].
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An analogue of the congruence numbers (1/2)
The following is well-known : (see, for example, Koblitz’ GTM book)

Theorem. Let n ∈ Z. For the elliptic curve En2 : y2 = x3 − n2x
the following three are equivalent each other:
(1) ∃ u, ∃ v ∈ Q such that n2 = u4 − v2,
(2) n is a conguence number,
(3) rank En2(Q) > 0.
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An analogue of the congruence numbers (2/2)

Some numerical calculation suggests the following analogue:

Conjecture. (Gaussian congruence numbers)
Let λ be a first degree Gaussian prime such that λ ≡ 1 mod (1 + i)3.

There exist α, β ∈ Q(i) satisfying

(★) λ = −α4 + β2 i,
if and only if egs(λ) = 0.

—. All the examples in [Asai] satisfy this conjecture.

—. In the examples of [Asai] such that egs(λ) = 0, except λλ = 4817,

we can take α, β ∈ Z[i].
—. If λ = −α4 + β2 i, the point (x, y) = (α2 i, ±αβ ) is on Eλ(Q(i)). Indeed

x3 − λ x = −α6i − (−α4 + β2 i)α2 i = (β α)2 = y2.

This is a non-torsion point.

( From Nagell-Lutz argumant, we see the torsion part of Eλ(Q(i)) is {(0, 0),∞}. )
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BSD Conjecture and EGS

We summerize the result up to here :

λ is of the form −α4 + β2 i ⇐⇒ rank Eλ (Q(i)) > 0
?⇐⇒ L (1, χ̃) = 0

⇐⇒ egs(λ) = 0.
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An example
Example. Take λ = 41 + 56 i, ℓ = λλ = 4817.

Then λ = −α4 + β2i, where

α =
i(1 + 2i)(2 + 3i)

3
, β =

i 7(1 + i)(2 + i)(4 + i)
32 .

MAGMA says that the Mordell-Weil rank of Eλ is 2.

The Mordell-Weil group is probably a rank one Z[i]-module generated by

(α2, ±αβ).

Remark. Since
L(s, χ̃) L(s, χ̃) = LEλ/Q(i)(s),

the analytic rank of Eλ/Q(i) is even.

This is consistent with that the MW-group of Eλ over Q(i) is a Z[i]-module.

MAGMA says that all cases in the table in [Asai] are of MW-rank two.
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Vanishing EGS and Kummer-type congruence
We define G2 j ∈ Z by

cl(u) = 1 +
∞∑
j=2

G2 j
u2 j

(2 j)!
( Hurwitz coefficients of cl(u) )

= 1 − u2 + 6
u4

4!
− 216

u6

6!
+ 882

u8

8!
− 368928

u10

10!
+ · · · .

We denote by Hℓ the Hasse invarinat of y2 = x3 − x at ℓ (≡ 1 mod 4) :

Hℓ = (−1)(ℓ−1)/4
( ℓ−1

2
ℓ−1

4

)
= λ + λ.

We see egs(λ) = 0 is equivalent to

ℓ
∣∣∣ G 3

4 (ℓ−1),

if the behavior of | egs(λ) | w.r.t. ℓ → ∞ is quite small.

Indeed, the estimation for the egs coefficient | Aλ | < ℓ1/4 is hopeful.

( This last sentence and the next page included typos pointed out by Sairaiji after the talk and now are corrected. )
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EGS and Kummer-type congruences
The following theorem was proved by Fumio Sairaiji,

which had been a conjecture untill a few months ago.

Theorem. ( EGS and congruences of Kummer-type )
Assume that the expected estimation | Aλ | < ℓ1/4 holds.

The following three are equivalent:

(1) egs(λ) = 0 ;

(2) ℓ
∣∣∣ G 3

4 (ℓ−1) ;

(3) For any 0 ≤ a< ℓ, we have
a∑

r=0

(
a
r

)
(−Hℓ)a−r

G 3
4 (ℓ−1)+r(ℓ−1)

3
4 (ℓ − 1) + r(ℓ − 1)

≡ 0 mod ℓ a+1.

Moreover, under the same assumption, we can show that for 0 ≤ a < νℓ

(4)
a∑

r=0

(
a
r

)
(−Hℓ)a−r

G 3
4 (ℓ−1)+r(ℓ−1)

3
4 (ℓ − 1) + r(ℓ − 1)

≡ 0 mod ℓ a−ν+2

if and only if egs(λ) = 0.
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Idea of the proof

Taking an (ℓ − 1)th root ζ of 1 in Zℓ, we define

Cl(u) =
ℓ−1∑
j=0

χλ(ζ
j) cl(ζ ju).

Note that χλ(ζ) = ζ−
3
4 (ℓ−1) ↔ {±1, ±i }.

Then we have Cl
(
sl−1(Λ)

)
= egs(λ) and

Cl(u) = (ℓ − 1)
∞∑

a=0

G 3
4 (ℓ−1)+a(ℓ−1)

u
3
4 (ℓ−1)+a(ℓ−1)(3

4 (ℓ − 1) + a(ℓ − 1)
)

!
.

We see that the last statement (3) of the theorem is equivalent to

the Hurwitz coefficient of degree 3
4 (ℓ − 1) of((

∂

∂u

)ℓ−1
− Hℓ

)a(Cl(u)
u

)
belongs to ℓ a+1 Zℓ.
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Sketch of the proof

We show (1) =⇒ (3) (and (4)), which is the most difficult part of the proof.

So, we assume egs(λ) = 0.

We identify the completion Z[i]λ with Zℓ.

LT : Lubin-Tate formal group over Zℓ corresponding to λ-plication x 7→ λx + x ℓ.

f0(x) : the formal log of LT.

ŝl : the formal group defined by t1 +̇ t2 = sl
(
sl−1(t1) + sl−1(t2)

)
over Zℓ.

Since ℓ − Hℓ T + T 2 = (λ − T )(λ − T ) is a special element of ŝl,
we have a strong isomorphism

ι : LT ŝl

x ι(x) = t = φ(u)

∃ η ι(η) = Λ = φ
(

1
λ

)
.

So that η ℓ = −λ.

Since Cl
(
sl−1(t)

)
∈ Zℓ[[t]], Cl ( f0(x)) ∈ Zℓ[[x]].
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(continuation)

We want to show the terms of degree up to ℓ(ℓ − 1) of

Cl(u)
u
=

Cl
(
sl−1(t)

)
sl−1(t)

are in ℓZℓ, because this and a theorem of Hochschild yield
The term(s) of degree (less than or equal to)

3
4 (ℓ − 1) in t-expansion of

( (
d

du

)ℓ−1

− Hℓ

)a Cl(u)
u

 ∈ ℓ a+1Zℓ[[t]] ⊂ ℓ a+1Zℓ〈〈u〉〉

provided 3
4 (ℓ − 1) + a(ℓ − 1) < ℓ(ℓ − 1).

However, since ŝl is strongly isomorphic to LT, it is sufficient to check leading terms of
Cl

(
f0(x)

)
f0(x)

.

Since 0 = egs(λ) = Cl
(
sl−1(Λ)

)
and then, Cl

(
f0(ζ j η)

)
= 0 for 1 ≤ j ≤ ℓ − 1 as well,

we have 0 = Cl
(
f0(ζ j η)

)
and then, Cl( f0(x)) is divisible by λx + xℓ = x

ℓ−1∏
j=1

(x − ζ j η).

Hence we shall check leading terms of
Cl(u)

u
=

Cl
(
f0(x)

)
/(λx + xℓ)

f0(x)/(λx + xℓ)
= λ

Cl
(
f0(x)

)
f0(x)

· λx + xℓ

λ f0(x)
, namely, of

λx + xℓ

λ f0(x)
.
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(continuation)

To get (4), we take a ν ∈ N and fix it. Thanks to f0(ζx) = ζ f0(x), we shall let

f0(x) =
∞∑
j=0

b1+ j(ℓ−1)

1 + j(ℓ − 1)
x1+ j(ℓ−1) = x +

bℓ
ℓ

xℓ + · · · ( b1+ j(ℓ−1) ∈ Zℓ ). It is shown bℓ ∈ (Zℓ)×.

There exists a polynomial h(x) ∈ Zℓ[x] such that

λx + xℓ

λ f0(x)
≡ 1 +

(
bℓ
ℓ

)ν
xνℓ(ℓ−1) +

1
ℓ ν−1 h(x) mod.deg (νℓ(ℓ − 1) + 1).

Hence
Cl

(
f0(x)

)
λx + xℓ

· λx + xℓ

λ f0(x)
has the same property.

So that, any coefficients of terms of degree < νℓ(ℓ − 1) of

Cl(u)
u
=

Cl
(
f0(x)

)
/(λx + xℓ)

f0(x)/(λx + xℓ)
= λ

Cl
(
f0(x)

)
f0(x)

· λx + xℓ

λ f0(x)
belongs to

1
ℓ ν−2 Zℓ.

We finally have

ℓν−2
a∑

r=0

(
a
r

)
(−Hℓ)a−r

G 3
4 (ℓ−1)+r(ℓ−1)

3
4 (ℓ − 1) + r(ℓ − 1)

≡ 0 mod ℓ a

for any a > 0 satisfying 3
4(ℓ − 1) + a(ℓ − 1) < νℓ(ℓ − 1), namely, for 0 < a < νℓ.

Therefore,
a∑

r=0

(
a
k

)
(−Hℓ)a−r

G 3
4 (ℓ−1)+r(ℓ−1)

3
4 (ℓ − 1) + r(ℓ − 1)

≡ 0 mod ℓ a−ν+2.
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Some Observation

(the last formula)
a∑

r=0

(
a
r

)
(−Hℓ)a−r

G 3
4 (ℓ−1)+r(ℓ−1)

3
4 (ℓ − 1) + r(ℓ − 1)

≡ 0 mod ℓ a−ν+2

implies, for example,
G 3

4 (ℓ−1)

3
4 (ℓ − 1)

≡ (−Hℓ)k ℓ b−1 ·
G 3

4 (ℓ−1)+k ℓ b−1(ℓ−1)

3
4 (ℓ − 1) + k ℓ b−1(ℓ − 1)

mod ℓ b.

They look like interpolating L
(

1 + j (ℓ − 1), χ̃ 1+ j (ℓ−1)
)

( j = 1, · · · ), via(
d
du

) j (ℓ−1)

Cl(u) ( “ higher derivative of the elliptic Gauss sum ” )
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