Vanishing Elliptic Gauss Sums and Bernoulli－Hurwitz Type Numbers

（ joint work with Fumio Sairaiji ）

by Yoshihiro Ônishi at Meijo Univ．

RIMS 研究集会「代数的整数論とその周辺」

9th December， 2019

Contents

(1) Main references
(2) Introduction
(3) Review of Elliptic Gauss Sums
4. The lemniscatic sine function
(5) The ray class field
(6) Asai's theorem for $\ell \equiv 13 \bmod 16$
(7) The corresponding Hecke L-series
(8) Some Congruence on the Coefficients of EGS
(9) Summary up to Here
(10) $\ell \equiv 1 \bmod 8$ case
(11) The elliptic Gauss sum for $\ell \equiv 1 \bmod 8$
(12) The coefficients of EGS
(13) Arithmetic on the elliptic curve associated to the EGS for $\ell \equiv 1 \bmod 8$
(14) The Congruence
(15) An analogue of the congruence numbers
(16) BSD Conjecture and EGS
(17) An example
(18) Vanishing EGS and Kummer-type congruence
(19) EGS and Kummer-type congruences
(20) Idea of the proof
(21) Sketch of the proof
(22) Some Observation

Main references

- Asai, T. : Elliptic Gauss sums and Hecke L-values at $s=1$, RIMS Kôkyũroku Bessatsu, 4(2007). [Asai]
- Birch,B.J. and Swinnerton-Dyer,H.P.F. : Notes on elliptic curves II, Crelle, 218(1965). [BSD]
- Ônishi, Y. : Congruence relations connecting Tate-Shafarevich groups with Hurwitz numbers, Interdisciplinary Information Sciences, 16(2010). [Ô]
- Koblitz, N. : Introduction to Elliptic Curves and Modular Forms (2nd ed.), G.T.M. 97, 1993
- Lutz, E. : Sur l'équation $y^{2}=x^{3}-A x-B$ dans les corps \mathfrak{p}-adiques, Crelle, 177(1937).
- Hurwitz, A. : Über die Anzahl der Klassen binärer quadratischer Formen von negativer Determinante, Acta Math., 19(1985). [H]
(The last reference was informed by G. Yamashita after the talk.)

Introduction

Theorem. (Hurwitz [H]) Let $p>3$ be an odd rational prime, $h(-p)$ be the class number of the imaginary quadratic field $\mathbf{Q}(\sqrt{-p})$. Then we have

$$
h(-p) \equiv\left\{\begin{array}{cc}
-2 B_{\frac{p+1}{2}} \bmod p & \text { if } p \equiv 3 \bmod 4 \\
2^{-1} E_{\frac{p-1}{2}} \bmod p & \text { if } p \equiv 1 \bmod 4
\end{array}\right.
$$

Here B_{n} is the n-th Bernoulli number, E_{n} is the n-th Euler number.
Moreover, the absolutely smallest residue of the RHS exactly equals to the value of LHS.

LHS comes from Dirichlet L-values $L(1,(\dot{\bar{p}}))$.
RHS comes from "trigonometric" Gauss sums.
We give an analogy for Tate-Shafarevich groups of this theorem.
Elliptic Gauss sums were already used, in order to compute numerically the L-series attached to some elliptic curves over \mathbf{Q}, in the famuous original paper [BSD] by Birch and Swinnerton-Dyer themselves. We wish to use them for investigation of L-series attached to some elliptic curves defined over $\mathbf{Q}(\boldsymbol{i})$.

The lemniscatic sine function

The inverse function $u \mapsto t$ of

$$
t \mapsto u=\int_{0}^{t} \frac{d t}{\sqrt{1-t^{4}}}=\sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}=t+\cdots
$$

is the lemniscatic sine function, which is denoted by $t=\operatorname{sl}(u)$.

$$
\varpi=2 \int_{0}^{1} \frac{d t}{\sqrt{1-t^{4}}}=\int_{1}^{\infty} \frac{d x}{2 \sqrt{x^{3}-x}}=2.262205 \cdots
$$

$\mathrm{sl}(u)$ is an elliptic function whose period lattice is $\Omega=(1-\boldsymbol{i}) \varpi \mathbf{Z}[i]$ and its divisor modulo Ω is

$$
\operatorname{div}(\mathrm{sl})=(0)+(\varpi)-\left(\frac{\varpi}{1-\boldsymbol{i}}\right)-\left(\frac{\boldsymbol{i} \varpi}{1-\boldsymbol{i}}\right)
$$

It is expanded as

$$
\begin{aligned}
\operatorname{sl}(u) & =u-\frac{1}{10} u^{5}+\frac{1}{120} u^{9}-\frac{11}{15600} u^{13}+\cdots \\
& =\sum_{m=0}^{\infty} C_{4 m+1} u^{4 m+1}
\end{aligned}
$$

The ray class field

Through out this talk, we denote $\varphi(u)=\operatorname{sl}((1-i) \varpi u)$.
(The period lattice of this function is $\mathbf{Z}[\boldsymbol{i}]$.)
Take a prime $\ell \equiv 1 \bmod 4, \in \mathbf{Z} . \quad \ell=\lambda \bar{\lambda}$ with $\lambda \equiv 1 \bmod (1+\boldsymbol{i})^{3}$.
Let $S \subset \mathbf{Z}[i]$ be a fixed set such that
$(\mathbf{Z}[i] /(\lambda))^{\times} \simeq S \cup-S \cup i S \cup-i S, \quad|S|=\frac{\ell-1}{4}$. Moreover we define

$$
\begin{aligned}
& \Lambda=\varphi\left(\frac{1}{\lambda}\right), \quad \mathscr{O}_{\lambda}=" \text { the ring of integers in } \mathbf{Q}(\boldsymbol{i}, \Lambda) ", \\
& \tilde{\lambda}=\gamma(S)^{-1} \prod_{r \in S} \varphi\left(\frac{r}{\lambda}\right), \text { where } \\
& \left\{\begin{aligned}
\{ \pm 1, & \pm \boldsymbol{i}\} \ni \gamma(S) \equiv \prod_{r \in S} r \bmod \lambda \\
\{ \pm i\} \ni \gamma(S)^{2} \equiv \prod_{r \in S} r^{2} \bmod \lambda & \text { if } \ell \equiv 1 \bmod 8,
\end{aligned}\right.
\end{aligned}
$$

Then, we have

$$
(\lambda)=(\Lambda)^{\ell-1}, \quad \Lambda \in \mathscr{O}_{\lambda}, \quad \tilde{\lambda}^{4}=\left(\frac{-1}{\lambda}\right)_{4} \lambda .
$$

Note that $\mathbf{Q}(i, \Lambda)$ is the ray class field over $\mathbf{Q}(i)$ of conductor $(1+i)^{3}(\lambda)$. (T. Takagi [1920], §32) (Remind that $\left(\mathbf{Z}[i] /(1+\boldsymbol{i})^{3}\right)^{\times} \simeq\{ \pm 1, \pm i\}$.)

Asai's theorem for $\ell \equiv 13 \bmod 16$ (Typical case)

Assume $\ell \equiv 13 \bmod 16 . \quad \ell=\lambda \bar{\lambda}$ such that $\lambda \equiv 1 \bmod (1+i)^{3} . \quad \chi_{\lambda}(r)=\left(\frac{r}{\lambda}\right)_{4}$.

$$
\operatorname{egs}(\lambda)=\frac{1}{4} \sum_{r=1}^{\ell-1} \chi_{\lambda}(r) \operatorname{sl}\left((1-\boldsymbol{i}) \varpi \frac{r}{\lambda}\right)
$$

Since the terms of this summation are alg. integers, egs (λ) is an alg. integer.

Theorem. ([Asai]) $\exists A_{\lambda} \in 1+2 \mathbf{Z}$ such that

$$
\operatorname{egs}(\lambda)=A_{\lambda} \tilde{\lambda}^{3}
$$

$$
\left(\tilde{\lambda}=\gamma(S)^{-1} \prod_{r \in S} \varphi\left(\frac{r}{\lambda}\right)\right) .
$$

In particular, $\operatorname{egs}(\lambda) \neq 0$.

Proof. Use the functional equation for the Hecke L-series corresponding to χ_{λ} and the formula of Cassels-Matthews for classical quartic Gauss sum.
-. Note that $\mathrm{BSD} \Longrightarrow$ Rationality of EGS \Longrightarrow Cassels-Matthews.
-. We call A_{λ} the coefficient of $\operatorname{egs}(\lambda)$. (Asai)
一. In the definition of $\operatorname{egs}(\lambda)$, if we replace χ_{λ} by another character χ such that $\chi(\boldsymbol{i})=\boldsymbol{i}$, then the sum trivially vanishes.
Each character χ "knows" which elliptic function corresponds to itself.

The corresponding Hecke L-series

$\ell \equiv 13 \bmod 16$ Keeping in mind that $\left(\mathbf{Z}[\boldsymbol{i}] /(1+\boldsymbol{i})^{2}\right)^{\times} \simeq\{1$, $\boldsymbol{i}\}$, we define

$$
\begin{aligned}
\chi_{0}{ }^{\prime}(\alpha) & =\varepsilon^{2} \quad \text { for } \alpha \equiv \varepsilon \bmod (1+i)^{2}, \varepsilon \in\{1, i\}, \\
\tilde{\chi} & =\chi_{\lambda} \chi_{0}{ }^{\prime} .
\end{aligned}
$$

This is a Hecke character of conductor $\left(\lambda(1+i)^{2}\right)$.
Theorem. ([Asai])

$$
L(1, \tilde{\chi})=-\varpi(1-i)^{-1} \chi_{\lambda}(2) \lambda^{-1} \operatorname{egs}(\lambda)
$$

The elliptic curve corresponding to $L(s, \tilde{\chi})$ is $\mathscr{E}_{-\lambda}: y^{2}=x^{3}+\lambda x$.
Deuring showed that

$$
L_{\mathscr{E}_{-1} / \mathbf{Q}(i)}(s)=L(s, \tilde{\chi}) L(s, \overline{\tilde{\chi}}) .
$$

Proposition. If the full statement of BSD conjecture for the curve $\mathscr{E}_{-\lambda}: y^{2}=x^{3}+\lambda x$ is ture, then $\# Ш\left(\mathscr{E}_{-\lambda} / \mathbf{Q}(i)\right)=\left|A_{\lambda}\right|^{2}$.

Some Congruence on the Coefficients of EGS

We define $C_{j} \in \mathbf{Q}$ by the expansion of $u \mapsto \operatorname{sl}(u)$ as follows:

$$
\operatorname{sl}(u)=\sum_{m=0}^{\infty} C_{4 m+1} u^{4 m+1}=u-\frac{1}{10} u^{5}+\frac{1}{120} u^{9}-\frac{11}{15600} u^{13}+\cdots
$$

Theorem. ([Ô]) Assuming $\ell \equiv 13 \bmod 16$, we have

$$
\pm \sqrt{\sharp \amalg\left(\mathscr{E}_{-\lambda} / \mathbf{Q}(i)\right)} \stackrel{?}{=} A_{\lambda} \equiv-\frac{1}{4} C_{\frac{3(\ell-1)}{4}} \bmod \ell .
$$

The absolutely minimal residue of the RHS is exactly the LHS. (?) This is a generalization of the following :

Theorem. (revisited) For any prime $p>3$, we have

$$
h(-p) \equiv\left\{\begin{array}{rll}
-2 B_{\frac{p+1}{2}} \bmod p & \text { if } p \equiv 3 \bmod 4, \\
2^{-1} E_{\frac{p-1}{2}} & \bmod p & \text { if } p \equiv 1 \bmod 4 .
\end{array}\right.
$$

Summary up to here

$\ell \equiv 13 \bmod 16$ The corresponding elliptic curve is

$$
\mathscr{E}_{-\lambda}: y^{2}=x^{3}+\lambda x
$$

and $L(1, \tilde{\chi}) \neq 0$. Coates-Wiles' theorem implies that

$$
\operatorname{rank} \mathscr{E}_{-\lambda}(\mathbf{Q}(i))=0
$$

$\ell \equiv 5 \bmod 16$ We have a similar story.
The corresponding ellipitic curve is

$$
\mathscr{E}_{\frac{1}{4} \lambda}: y^{2}=x^{3}-\frac{1}{4} \lambda x
$$

and, similarly, it has $\operatorname{rank} \mathscr{E}_{\frac{1}{4} \lambda}(\mathbf{Q}(\boldsymbol{i}))=0$.

We proceed to the other case :
$\ell \equiv 1 \bmod 8$. About 18% of the 172 examples of this case in [Asai],

$$
\operatorname{egs}(\lambda)=0
$$

$\ell \equiv 1 \bmod 8$ case

ε always denotes an element in $\{ \pm 1, \pm \boldsymbol{i}\}$.
Define χ_{0} by

$$
\chi_{0}(\alpha)=\varepsilon \quad \text { if } \alpha \equiv \varepsilon \bmod (1+i)^{3} \quad(\alpha \neq 0 \in \mathbf{Z}[i]) .
$$

$\ell \equiv 1 \bmod 16$ Since $\chi_{\lambda}(\boldsymbol{i})=1$, we define $\chi_{1}=\chi_{\lambda} \chi_{0}$.
Then $\tilde{\chi}((\alpha))=\chi_{1}(\alpha) \bar{\alpha}$ is a Hecke character of condunctor $\left(\lambda(1+i)^{3}\right)$.
We have

$$
L(1, \tilde{\chi})=\varpi \overline{\chi_{\lambda}(1+i)} 2^{-1} \lambda^{-1} \operatorname{egs}(\lambda)
$$

Here, $\operatorname{egs}(\lambda)$ is defined in the next page.
$\ell \equiv 9 \bmod 16$ Since $\chi_{\lambda}(\boldsymbol{i})=-1$, we define $\chi_{1}=\chi_{\lambda} \overline{\chi_{0}}$.
Then $\tilde{\chi}((\alpha))=\chi_{1}(\alpha) \bar{\alpha}$ is a Hecke character of conductor $\left(\lambda(1+i)^{3}\right)$.
We have

$$
L(1, \tilde{\chi})=\varpi \overline{\chi_{\lambda}(1+i)} 2^{-1} \lambda^{-1} \operatorname{egs}(\lambda)
$$

Here $\operatorname{egs}(\lambda)$ is defined in the next page.

The elliptic Gauss sum

Our situation: $\ell \equiv 1 \bmod 8$ is a prime, and

$$
\ell=\lambda \bar{\lambda}, \quad \lambda \equiv 1 \bmod (1+i)^{3}, \quad \chi_{\lambda}(v)=\left(\frac{v}{\lambda}\right)_{4}, \quad \chi_{\lambda}(i)=i^{\frac{\ell-1}{4}}= \pm 1 .
$$

Using $\operatorname{cl}(u)=\operatorname{sl}\left(u+\frac{\pi}{2}\right)$, we define $\psi(u)=\operatorname{cl}((1-i) \varpi u)$ and
the elliptic Gauss sum by

$$
\operatorname{egs}(\lambda)=\sum_{v \in S \cup i S} \chi_{\lambda}(v) \psi\left(\frac{v}{\lambda}\right)
$$

Then we have (revisited)
Proposition. ([Asai])

$$
L(1, \tilde{\chi})=\varpi \overline{\chi(1+i)} 2^{-1} \lambda^{-1} \operatorname{egs}(\lambda)
$$

The coefficients of EGS

For the coefficients, we recall the following
Theorem. ([Asai]) Let $\zeta_{8}=\exp (2 \pi \boldsymbol{i} / 8)$. There exists $A_{\lambda} \in \mathbf{Z}\left[\zeta_{8}\right]$ such that

$$
\operatorname{egs}(\lambda)=A_{\lambda} \tilde{\lambda}^{3}
$$

where A_{λ} is given by

$\ell \bmod 16$	$\chi_{\lambda}(1+\boldsymbol{i})=1$	$\chi_{\lambda}(1+\boldsymbol{i})=-1$	$\chi_{\lambda}(1+\boldsymbol{i})=\boldsymbol{i}$	$\chi_{\lambda}(1+\boldsymbol{i})=-i$
1	$\boldsymbol{i} \sqrt{2} \cdot a_{\lambda}$	$\sqrt{2} \cdot a_{\lambda}$	$\zeta_{8} \cdot a_{\lambda}$	$\boldsymbol{i} \zeta_{8} \cdot a_{\lambda}$
9	$\boldsymbol{i} \zeta_{8} \cdot a_{\lambda}$	$\zeta_{8} \cdot a_{\lambda}$	$\boldsymbol{i} \sqrt{2} \cdot a_{\lambda}$	$\sqrt{2} \cdot a_{\lambda}$

and $a_{\lambda} \in \mathbf{Z}$.

Proof.

Use the formula of Cassels-Matthew and the functional equation of $L(s, \tilde{\chi})$.
Remark. Asai observed that $a_{\lambda} \in 2 \mathbf{Z}$.

Arithmetic on the elliptic curve associated to the EGS for $\ell \equiv 1 \bmod 8$ $\ell=8 n+1=\lambda \bar{\lambda}$ The Hecke L-series associated to $\operatorname{egs}(\lambda)$ is a factor of the L-series of the elliptic curve

$$
\mathscr{E}_{\lambda}: y^{2}=x^{3}-\lambda x
$$

The conductor of this is $\left((1+\boldsymbol{i})^{3} \lambda\right)^{2}$ (See [Serre-Tate], Thm.12), and the reduction type at $(1+i)$ is of type III, and that at λ is of type $I_{2}{ }^{*}$.
Each Tamagawa number $\tau_{\mathfrak{p}}$ and $A_{\lambda}=$ "the coeff. of egs (λ) " are as follows:

$\ell \bmod 16$	Invariants	$\chi_{\lambda}(1+\boldsymbol{i})=1$	$\chi_{\lambda}(1+\boldsymbol{i})=-1$	$\chi_{\lambda}(1+\boldsymbol{i})=\boldsymbol{i}$	$\chi_{\lambda}(1+\boldsymbol{i})=-\boldsymbol{i}$
1	A_{λ}	$\boldsymbol{i} \sqrt{2} \cdot a_{\lambda}$	$\sqrt{2} \cdot a_{\lambda}$	$\zeta_{8} \cdot a_{\lambda}$	$\boldsymbol{i} \zeta_{8} \cdot a_{\lambda}$
	$\tau_{(\lambda)}$	2	2	2	2
	$\tau_{(1+\boldsymbol{i})}$	4	4	2	2
9	A_{λ}	$\boldsymbol{i} \zeta_{8} \cdot a_{\lambda}$	$\zeta_{8} \cdot a_{\lambda}$	$\boldsymbol{i} \sqrt{2} \cdot a_{\lambda}$	$\sqrt{2} \cdot a_{\lambda}$
	$\tau_{(\lambda)}$	2	2	2	2
	$\tau_{(1+i)}$	2	2	4	4

Asai observed that $a_{\lambda} \in 2 \mathbf{Z}$.
It is quite certain that $\left(\frac{1}{2} a_{\lambda}\right)^{2}=\sharp \amalg\left(\mathscr{E}_{\lambda}\right)$ if $a_{\lambda} \neq 0$.

The congruence for $\ell \equiv 1 \bmod 8$

We define the $C_{2 j} s$ by the expansion of the lemniscateic cosine $u \mapsto \operatorname{cl}(\mathrm{u})$ as

$$
\operatorname{cl}(u)=1+\sum_{j=2}^{\infty} C_{2 j} u^{2 j}=1-u^{2}+\frac{1}{2} u^{4}-\frac{3}{10} u^{6}+\frac{7}{40} u^{8}-\cdots .
$$

For the sake of simplicity, we restrict the case $\ell \equiv 1 \bmod 16$, and assume, as before, that

$$
\ell=\lambda \bar{\lambda}, \quad \lambda \equiv 1 \bmod (1+i)^{3} .
$$

Take a set S such that $(\mathbf{Z}[i] /(\lambda))^{\times}=S \cup-S \cup i S \cup-i S$ and $|S|=\frac{\ell-1}{4}$.
Since $\chi_{\lambda}(v) \equiv v^{\frac{\ell-1}{4}} \bmod \ell$, we see $\chi(i)=1$.
Define $\psi(u)=\operatorname{cl}((1-i) \varpi u)$. According to [Asai],

$$
\operatorname{egs}(\lambda):=\sum_{v \in S \cup i S} \chi_{\lambda}(v) \psi\left(\frac{v}{\lambda}\right)=A_{\lambda} \tilde{\lambda}^{3} \text { with } A_{\lambda} \in \mathbf{Z}\left[\zeta_{8}\right] .
$$

Theorem. (alternative of [Ô]) In $\mathbf{Z}\left[\zeta_{5}\right]$, we have

$$
A_{\lambda} \equiv-\frac{1}{2} C_{\frac{3(\ell-1)}{4}} \bmod \ell
$$

Remark. $\mathbf{Z}\left[\zeta_{8}\right]$ is Euclidian. It is quite prospective that the absolute minimal residue of the RHS gives the exact value of A_{λ}.

Recall

$$
\Lambda:=\varphi\left(\frac{1}{\lambda}\right), \quad \tilde{\lambda}:=\gamma(S)^{-1} \prod_{r \in S} \varphi\left(\frac{r}{\lambda}\right) \equiv \Lambda^{\frac{\ell-1}{4}} \bmod \Lambda^{\frac{\ell-1}{4}+1}, \quad \tilde{\lambda}^{4}=\left(\frac{-1}{\lambda}\right)_{4} \lambda .
$$

Let g be a generator of the cyclic group $(\mathbf{Z}[i] /(\lambda))^{\times}$. Write $\chi_{\lambda}=\chi$ for simplicity.

$$
\begin{aligned}
\operatorname{egs}(\lambda) & =\left.\sum_{j=0}^{\frac{\ell-3}{2}} \chi\left(g^{j}\right) \operatorname{cl}\left(g^{j} u\right)\right|_{u=(1-i) w \frac{1}{\lambda}}=\left.\sum_{j=0}^{\frac{\ell-3}{2}} \chi\left(g^{j}\right) \operatorname{cl}\left(g^{j} \sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}\right)\right|_{t=\Lambda} \quad(t=\operatorname{sl}(u)) \\
& =\left.\sum_{j=0}^{\frac{\ell-3}{2}} \chi\left(g^{j}\right) \sum_{m=0}^{\infty} C_{2 m}\left(g^{j} \sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}\right)^{2 m}\right|_{t=\Lambda} \\
& =\left.\sum_{m=0}^{\infty}\left(\sum_{j=0}^{\frac{\ell-3}{2}} \chi\left(g^{j}\right) g^{2 j m}\right) C_{2 m}\left(\sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}\right)^{2 m}\right|_{t=\Lambda} .
\end{aligned}
$$

Concerning $\bmod \Lambda^{\frac{3(-1)}{4}+1}$, we see

$$
\begin{gathered}
\left.\equiv \sum_{m=0}^{\frac{3(t-1)}{8}}\left(\sum_{j=0}^{\frac{\ell-3}{2}} \chi\left(g^{j}\right) g^{2 j m}\right) C_{2 m}\left(\sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}\right)^{2 m}\right|_{t=\Lambda} \bmod \left(\Lambda^{\frac{3(\ell-1)}{4}+1}\right) \\
\searrow=\sum_{j=0}^{\frac{\ell-3}{2}} g^{\frac{j(\ell-1)}{4}} g^{2 j m}=\sum_{j=0}^{\frac{\ell-3}{2}} g^{j\left(\frac{\ell-1}{4}+2 m\right)}
\end{gathered}
$$

Proof of the congruence (in a few words) (2/2)

Because of

$$
\sum_{j=0}^{\frac{\ell-3}{2}} g^{j\left(\frac{\ell-1}{4}+2 m\right)}=\left\{\begin{array}{ll}
0 & \text { if }(\ell-1) \nmid\left(\frac{j(\ell-1)}{4}+2 m\right), \\
\frac{\ell-1}{2} & \text { if }(\ell-1) \left\lvert\,\left(\frac{j(\ell-1)}{4}+2 m\right)\right.
\end{array} \quad 0 \leq 2 m \leq \frac{3(\ell-1)}{4},\right.
$$

the terms in the previous page vanish unless $2 m=\frac{3(\ell-1)}{4}$. Therefore,

$$
\begin{aligned}
& \left.\equiv \frac{\ell-1}{2} C_{\frac{3(\ell-1)}{4}} \cdot\left(\sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{t^{4 n+1}}{4 n+1}\right)^{\frac{3(\ell-1)}{4}}\right|_{t=\Lambda} \bmod \left(\Lambda^{\frac{3(\ell-1)}{4}+1}\right) \\
& \equiv \frac{\ell-1}{2} C_{\frac{3(\ell-1)}{4}} \cdot \Lambda^{\frac{3(\ell-1)}{4}} \bmod \left(\Lambda^{\frac{3(\ell-1)}{4}+1}\right)
\end{aligned}
$$

This implies

$$
\operatorname{egs}(\lambda) \equiv A_{\lambda} \Lambda^{\frac{3(\ell-1)}{4}} \equiv \frac{\ell-1}{2} C_{\frac{3(\ell-1)}{4}} \cdot \Lambda^{\frac{3(\ell-1)}{4}} \bmod \left(\Lambda^{\frac{3(\ell-1)}{4}+1}\right)
$$

and, at last, we have :

$$
A_{\lambda} \equiv-\frac{1}{2} C_{\frac{3(\ell-1)}{4}} \bmod \left((\Lambda) \cap \mathbf{Z}\left[\zeta_{8}\right]\right)
$$

The rationality of A_{λ} (Asai's theorem) yields the congruence $\bmod \ell$.
The absolutely minimal residues of the RHS in numerical check coincide with the values in the table of [Asai].

An analogue of the congruence numbers

The following is well-known : (see, for example, Koblitz' GTM book)
Theorem. Let $n \in \mathbf{Z}$. For the elliptic curve $\mathscr{E}_{n^{2}}: y^{2}=x^{3}-n^{2} x$ the following three are equivalent each other:
(1) $\exists u, \exists v \in \mathbf{Q}$ such that $n^{2}=u^{4}-v^{2}$,
(2) n is a conguence number,
(3) rank $\mathscr{E}_{n^{2}}(\mathbf{Q})>0$.

An analogue of the congruence numbers

Some numerical calculation suggests the following analogue:
Conjecture. (Gaussian congruence numbers)
Let λ be a first degree Gaussian prime such that $\lambda \equiv 1 \bmod (1+\boldsymbol{i})^{3}$.
There exist $\alpha, \beta \in \mathbf{Q}(\boldsymbol{i})$ satisfying

$$
\lambda=-\alpha^{4}+\beta^{2} \boldsymbol{i},
$$

if and only if $\operatorname{egs}(\lambda)=0$.
-. All the examples in [Asai] satisfy this conjecture.
-. In the examples of [Asai] such that egs $(\lambda)=0$, except $\lambda \bar{\lambda}=4817$, we can take $\alpha, \beta \in \mathbf{Z}[i]$.
—. If $\lambda=-\alpha^{4}+\beta^{2} \boldsymbol{i}$, the point $(x, y)=\left(\alpha^{2} \boldsymbol{i}, \pm \alpha \beta\right)$ is on $\mathscr{E}_{\lambda}(\mathbf{Q}(\boldsymbol{i}))$. Indeed

$$
x^{3}-\lambda x=-\alpha^{6} \boldsymbol{i}-\left(-\alpha^{4}+\beta^{2} \boldsymbol{i}\right) \alpha^{2} \boldsymbol{i}=(\beta \alpha)^{2}=y^{2} .
$$

This is a non-torsion point.
(From Nagell-Lutz argumant, we see the torsion part of $\mathscr{E}_{\lambda}(\mathbf{Q}(\boldsymbol{i}))$ is $\{(0,0), \infty\}$.)

BSD Conjecture and EGS

We summerize the result up to here :

$$
\begin{aligned}
\lambda \text { is of the form }-\alpha^{4}+\beta^{2} \boldsymbol{i} & \Longleftrightarrow \operatorname{rank} \mathscr{E}_{\lambda}(\mathbf{Q}(\boldsymbol{i}))>0 \\
& \Longleftrightarrow \\
& \Longleftrightarrow(1, \tilde{\chi})=0 \\
& \Longleftrightarrow \operatorname{egs}(\lambda)=0 .
\end{aligned}
$$

An example

Example. Take $\lambda=41+56 \boldsymbol{i}, \ell=\lambda \bar{\lambda}=4817$.
Then $\lambda=-\alpha^{4}+\beta^{2} \boldsymbol{i}$, where

$$
\alpha=\frac{\boldsymbol{i}(1+2 \boldsymbol{i})(2+3 \boldsymbol{i})}{3}, \quad \beta=\frac{\boldsymbol{i} 7(1+\boldsymbol{i})(2+\boldsymbol{i})(4+\boldsymbol{i})}{3^{2}} .
$$

MAGMA says that the Mordell-Weil rank of \mathscr{E}_{λ} is 2 .
The Mordell-Weil group is probably a rank one $\mathbf{Z}[i]$-module generated by $\left(\alpha^{2}, \pm \alpha \beta\right)$.

Remark. Since

$$
L(s, \tilde{\chi}) L(s, \overline{\tilde{\chi}})=L_{\mathscr{C}_{\lambda} / \mathbf{Q}(i)}(s),
$$

the analytic rank of $\mathscr{E}_{\lambda} / \mathbf{Q}(\boldsymbol{i})$ is even.
This is consistent with that the MW-group of \mathscr{E}_{λ} over $\mathbf{Q}(i)$ is a $\mathbf{Z}[i]$-module.
MAGMA says that all cases in the table in [Asai] are of MW-rank two.

Vanishing EGS and Kummer-type congruence

We define $G_{2 j} \in \mathbf{Z}$ by

$$
\begin{aligned}
\operatorname{cl}(u) & =1+\sum_{j=2}^{\infty} G_{2 j} \frac{u^{2 j}}{(2 j)!} \quad(\text { Hurwitz coefficients of } \operatorname{cl}(u)) \\
& =1-u^{2}+6 \frac{u^{4}}{4!}-216 \frac{u^{6}}{6!}+882 \frac{u^{8}}{8!}-368928 \frac{u^{10}}{10!}+\cdots
\end{aligned}
$$

We denote by H_{ℓ} the Hasse invarinat of $y^{2}=x^{3}-x$ at $\ell(\equiv 1 \bmod 4)$:

$$
H_{\ell}=(-1)^{(\ell-1) / 4}\binom{\frac{\ell-1}{2}}{\frac{\ell-1}{4}}=\lambda+\bar{\lambda} .
$$

We see $\operatorname{egs}(\lambda)=0$ is equivalent to

$$
\ell \left\lvert\, G_{\frac{3}{4}(\ell-1)}\right.
$$

if the behavior of $|\operatorname{egs}(\lambda)|$ w.r.t. $\ell \rightarrow \infty$ is quite small. Indeed, the estimation for the egs coefficient $\left|A_{\lambda}\right|<\ell^{1 / 4}$ is hopeful.
(This last sentence and the next page included typos pointed out by Sairaiji after the talk and now are corrected.)

EGS and Kummer-type congruences

The following theorem was proved by Fumio Sairaiji, which had been a conjecture untill a few months ago.

Theorem. (EGS and congruences of Kummer-type)
Assume that the expected estimation $\left|A_{\lambda}\right|<\ell^{1 / 4}$ holds.
The following three are equivalent:
(1) $\operatorname{egs}(\lambda)=0$;
(2) $\ell \left\lvert\, G_{\frac{3}{4}(\ell-1)}\right.$;
(3) For any $0 \leq a<\ell$, we have

$$
\sum_{r=0}^{a}\binom{a}{r}\left(-H_{\ell}\right)^{a-r} \frac{G_{\frac{3}{4}(\ell-1)+r(\ell-1)}}{\frac{3}{4}(\ell-1)+r(\ell-1)} \equiv 0 \bmod \ell^{a+1} .
$$

Moreover, under the same assumption, we can show that for $0 \leq a<\nu \ell$

$$
\begin{equation*}
\sum_{r=0}^{a}\binom{a}{r}\left(-H_{\ell}\right)^{a-r} \frac{G_{\frac{3}{4}(\ell-1)+r(\ell-1)}}{\frac{3}{4}(\ell-1)+r(\ell-1)} \equiv 0 \bmod \ell^{a-\nu+2} \tag{4}
\end{equation*}
$$

if and only if $\operatorname{egs}(\lambda)=0$.

Idea of the proof

Taking an $(\ell-1)$ th root ζ of 1 in \mathbf{Z}_{ℓ}, we define

$$
\mathrm{Cl}(u)=\sum_{j=0}^{\ell-1} \chi_{\lambda}\left(\zeta^{j}\right) \operatorname{cl}\left(\zeta^{j} u\right)
$$

Note that $\chi_{\lambda}(\zeta)=\zeta^{-\frac{3}{4}(\ell-1)} \leftrightarrow\{ \pm 1, \pm i\}$.
Then we have $\mathrm{Cl}\left(\mathrm{sl}^{-1}(\Lambda)\right)=\operatorname{egs}(\lambda)$ and

$$
\mathrm{Cl}(u)=(\ell-1) \sum_{a=0}^{\infty} G_{\frac{3}{4}(\ell-1)+a(\ell-1)} \frac{u^{\frac{3}{4}(\ell-1)+a(\ell-1)}}{\left(\frac{3}{4}(\ell-1)+a(\ell-1)\right)!} .
$$

We see that the last statement (3) of the theorem is equivalent to the Hurwitz coefficient of degree $\frac{3}{4}(\ell-1)$ of

$$
\left(\left(\frac{\partial}{\partial u}\right)^{\ell-1}-H_{\ell}\right)^{a}\left(\frac{\mathrm{Cl}(u)}{u}\right)
$$

belongs to $\ell^{a+1} \mathbf{Z}_{\ell}$.

Sketch of the proof

We show $(1) \Longrightarrow(3)$ (and (4)), which is the most difficult part of the proof.
So, we assume egs $(\lambda)=0$.
We identify the completion $\mathbf{Z}[i]_{\lambda}$ with \mathbf{Z}_{ℓ}.
LT : Lubin-Tate formal group over \mathbf{Z}_{ℓ} corresponding to λ-plication $x \mapsto \lambda x+x^{\ell}$.
$f_{0}(x)$: the formal log of $\mathbf{L T}$.
$\widehat{\mathbf{s l}} \quad:$ the formal group defined by $t_{1}+t_{2}=\operatorname{sl}\left(\mathrm{sl}^{-1}\left(t_{1}\right)+\mathrm{sl}^{-1}\left(t_{2}\right)\right)$ over \mathbf{Z}_{ℓ}.
Since $\ell-H_{\ell} T+T^{2}=(\lambda-T)(\bar{\lambda}-T)$ is a special element of $\widehat{\mathbf{s} \mathbf{l}}$, we have a strong isomorphism

$$
\begin{aligned}
\iota: \mathbf{L T} & \longrightarrow \widehat{\mathbf{s}} \\
x & \longmapsto \iota(x)=t=\varphi(u) \\
\exists \eta & \longmapsto \iota(\eta)=\Lambda=\varphi\left(\frac{1}{\lambda}\right) .
\end{aligned}
$$

So that $\eta^{\ell}=-\lambda$.
Since $\mathrm{Cl}\left(\mathrm{sl}^{-1}(t)\right) \in \mathbf{Z}_{\ell}[[t]], \mathrm{Cl}\left(f_{0}(x)\right) \in \mathbf{Z}_{\ell}[[x]]$.
(continuation)
We want to show the terms of degree up to $\ell(\ell-1)$ of

$$
\frac{\mathrm{Cl}(u)}{u}=\frac{\mathrm{Cl}\left(\mathrm{sl}^{-1}(t)\right)}{\mathrm{sl}^{-1}(t)}
$$

are in $\ell \mathbf{Z}_{\ell}$, because this and a theorem of Hochschild yield
(The term(s) of degree (less than or equal to)
$\frac{3}{4}(\ell-1)$ in t-expansion of $\left.\left(\left(\frac{d}{d u}\right)^{\ell-1}-H_{\ell}\right)^{a} \frac{\mathrm{Cl}(u)}{u}\right) \in \ell^{a+1} \mathbf{Z}_{\ell}[[t]] \subset \ell^{a+1} \mathbf{Z}_{\ell}\langle\langle u\rangle$
provided $\frac{3}{4}(\ell-1)+a(\ell-1)<\ell(\ell-1)$.
However, since $\widehat{\mathbf{s l}}$ is strongly isomorphic to $\mathbf{L T}$, it is sufficient to check leading terms of

$$
\frac{\mathrm{Cl}\left(f_{0}(x)\right)}{f_{0}(x)}
$$

Since $0=\operatorname{egs}(\lambda)=\operatorname{Cl}\left(\mathrm{sl}^{-1}(\Lambda)\right)$ and then, $\mathrm{Cl}\left(f_{0}\left(\zeta^{j} \eta\right)\right)=0$ for $1 \leq j \leq \ell-1$ as well,
we have $0=\mathrm{Cl}\left(f_{0}\left(\zeta^{j} \eta\right)\right)$ and then, $\mathrm{Cl}\left(f_{0}(x)\right)$ is divisible by $\lambda x+x^{\ell}=x \prod_{j=1}^{\ell-1}\left(x-\zeta^{j} \eta\right)$.
Hence we shall check leading terms of

$$
\frac{\mathrm{Cl}(u)}{u}=\frac{\mathrm{Cl}\left(f_{0}(x)\right) /\left(\lambda x+x^{\ell}\right)}{f_{0}(x) /\left(\lambda x+x^{\ell}\right)}=\lambda \frac{\mathrm{Cl}\left(f_{0}(x)\right)}{f_{0}(x)} \cdot \frac{\lambda x+x^{\ell}}{\lambda f_{0}(x)}, \text { namely, of } \frac{\lambda x+x^{\ell}}{\lambda f_{0}(x)} .
$$

(continuation)

To get (4), we take a $v \in \mathbf{N}$ and fix it. Thanks to $f_{0}(\zeta x)=\zeta f_{0}(x)$, we shall let

$$
f_{0}(x)=\sum_{j=0}^{\infty} \frac{b_{1+j(\ell-1)}}{1+j(\ell-1)} x^{1+j(\ell-1)}=x+\frac{b_{\ell}}{\ell} x^{\ell}+\cdots \quad\left(b_{1+j(\ell-1)} \in \mathbf{Z}_{\ell}\right) . \quad \text { It is shown } b_{\ell} \in\left(\mathbf{Z}_{\ell}\right)^{\times} .
$$

There exists a polynomial $h(x) \in \mathbf{Z}_{\ell}[x]$ such that

$$
\frac{\lambda x+x^{\ell}}{\lambda f_{0}(x)} \equiv 1+\left(\frac{b_{\ell}}{\ell}\right)^{v} x^{\nu \ell(\ell-1)}+\frac{1}{\ell^{v-1}} h(x) \bmod . \operatorname{deg}(\nu \ell(\ell-1)+1)
$$

Hence $\frac{\operatorname{Cl}\left(f_{0}(x)\right)}{\lambda x+x^{\ell}} \cdot \frac{\lambda x+x^{\ell}}{\lambda f_{0}(x)} \quad$ has the same property.
So that, any coefficients of terms of degree $<\nu \ell(\ell-1)$ of

$$
\frac{\mathrm{Cl}(u)}{u}=\frac{\mathrm{Cl}\left(f_{0}(x)\right) /\left(\lambda x+x^{\ell}\right)}{f_{0}(x) /\left(\lambda x+x^{\ell}\right)}=\lambda \frac{\mathrm{Cl}\left(f_{0}(x)\right)}{f_{0}(x)} \cdot \frac{\lambda x+x^{\ell}}{\lambda f_{0}(x)} \quad \text { belongs to } \quad \frac{1}{\ell^{v-2}} \mathbf{Z}_{\ell} .
$$

We finally have

$$
\ell^{\nu-2} \sum_{r=0}^{a}\binom{a}{r}\left(-H_{\ell}\right)^{a-r} \frac{G_{\frac{3}{4}(\ell-1)+r(\ell-1)}}{\frac{3}{4}(\ell-1)+r(\ell-1)} \equiv 0 \bmod \ell^{a}
$$

for any $a>0$ satisfying $\frac{3}{4}(\ell-1)+a(\ell-1)<v \ell(\ell-1)$, namely, for $0<a<v \ell$. Therefore,

$$
\sum_{r=0}^{a}\binom{a}{k}\left(-H_{\ell}\right)^{a-r} \frac{G_{\frac{3}{4}(\ell-1)+r(\ell-1)}}{\frac{3}{4}(\ell-1)+r(\ell-1)} \equiv 0 \bmod \ell^{a-v+2}
$$

Some Observation

(the last formula)

$$
\sum_{r=0}^{a}\binom{a}{r}\left(-H_{\ell}\right)^{a-r} \frac{G_{\frac{3}{4}(\ell-1)+r(\ell-1)}}{\frac{3}{4}(\ell-1)+r(\ell-1)} \equiv 0 \bmod \ell^{a-v+2}
$$

implies, for example,

$$
\frac{G_{\frac{3}{4}(\ell-1)}}{\frac{3}{4}(\ell-1)} \equiv\left(-H_{\ell}\right)^{k \ell^{b-1}} \cdot \frac{G_{\frac{3}{4}(\ell-1)+k \ell^{b-1}(\ell-1)}}{\frac{3}{4}(\ell-1)+k \ell^{b-1}(\ell-1)} \bmod \ell^{b}
$$

They look like interpolating $L\left(1+j(\ell-1), \tilde{\chi}^{1+j(\ell-1)}\right)(j=1, \cdots)$, via

$$
\left(\frac{d}{d u}\right)^{j(\ell-1)} \mathrm{Cl}(u) \quad \text { ("higher derivative of the elliptic Gauss sum") }
$$

