Further generalization of the addition formula of Frobenius-Stickelberger to higher genus Abelian functions (joint work with John Christopher Eilbeck and Matthew England) by Yoshihiro Ônishi at Meijo Univ. The 2nd conference on "Multiple sine functions and their generalization" (at Kobe University, 7th February 2020) ### Contents - Distraction - 2 Main references - Introduction - The most general genus one curve - 5 The sigma function for the most general genus 1 curve - 6 The reformulated Frobenius-Stickelberger - Sample of the main results - Two more samples - Meta-mathematics on the generalization - Warming up via genus 2 - Characterization of the sigma function - Probenius-Stickelberger in genus 2 - B Higher genus curves - Weierstrass gaps at ∞ of the curve - Differentials of the 1st kind and the Abel-Jacobi maps - 16 The stratification - The sigma function for a higher genus curve - 18 On the largest stratum - Higher derivatives of the sigma function - 20 Table of $abla^n$ - 21 Properties of the satellite sigma functions - Quide function - An example of new addition formulae - Second example of new addition formulae - On the first stratum in two variables - 26 On the first stratum, n variables - 27 Using guide fct. y, on the 1st Stratum - 28 Connection with multiple Gamma functions? - Summary and some questions ## The Double Gamma function and the Weierstrass σ function From E.W. Barnes: The Theory of Double Gamma Function (p.310). $$\sigma(z) = e^{-\mu z - \nu \frac{z^2}{2}} \cdot z \cdot \frac{\prod \Gamma_2^{-1}(z \mid \pm \omega_1, \pm \omega_2)}{\prod \Gamma_1^{-1}(z \mid \pm \omega_1) \prod \Gamma_1^{-1}(z \mid \pm \omega_2)},$$ #### Main references - ► C.Hermite: Extrait d'une lettre de M. Ch. Hermite adressée à M. L. Fuchs. Crelle J., 82(1877) - ► F.G.Frobenius and L.Stickelberger : Über die Addition und Multiplication der elliptischen Functionen. Crelle J., 88(1880) - ▶ J.Fay : Theta functions on Riemann surfaces. Lect. Notes in Math. 352(1973), Springer-Verlag - ▶ D.Grant : A generalization of a formula of Eisenstein. Proc. London Math. Soc., 62(1991) - ▶ Y.Ônishi : Determinant expressions for Abelian functions in genus two. Glasgow Math. J., 44(2002) ★ - Y.Ônishi: Determinantal expressions for hyperelliptic functions in genus three. Tokyo J. Math., 27(2004) - Y.Ônishi: Determinant expressions for hyperelliptic functions, (with an Appendix by Shigeki Matsutani: Connection of the formula of Cantor and of Brioschi-Kiepert type). Proc. Edinburgh Math. Soc., 48(2005) - ▶ J.C.Eilbeck, V.Z.Enol'skii, S.Matustani, Y.Ônishi, and E.Previato: Abelian functions for trigonal curves of genus three. Internat. Math. Res. Notices, 2008(2008) - J.C.Eilbeck, S.Matustani and Y.Ônishi: Addition formulae for Abelian functions associated with specialized curves. Phil.Trans. Royal Society A, 369(2011) - ➤ Y.Ônishi : Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case. Internat. J. Math., 20(2009) ★ - Y.Ônishi: Determinant formulae in Abelian functions for a general trigonal curve of degree five. Computational Methods and Function Theory, 11(2011) - ► J.C. Eilbeck, M.England, and Y.Ônishi: Some new addition formulae for Weierstrass elliptic functions. Proc. R. Soc. A 470(2014) ★ #### Introduction Let $\wp(u)$ and $\sigma(u)$ be the Weierstrass functions satisfying $$\wp'(u)^2 = 4\wp(u)^3 - g_2\wp(u) - g_3,$$ $$\sigma(u) = u \exp\left\{ \int_0^u \int_0^u \left(\wp(u) - \frac{1}{u^2}\right) du du \right\}, \quad \wp(u) = -\frac{d^2}{du^2} \log \sigma(u).$$ Then we have ((Hermite and) Frobenius-Stickelberger, 1877) $$\frac{\sigma(u+v)\,\sigma(u-v)}{\sigma(u)^2\,\sigma(v)^2} = \wp(v) - \wp(u) \quad \left(= \begin{vmatrix} 1 & \wp(u) \\ 1 & \wp(v) \end{vmatrix} \right),$$ $$\frac{\sigma(u^{(1)}+u^{(2)}+\dots+u^{(n)})\prod_{i< j}\sigma(u^{(i)}-u^{(j)})}{\prod_{j=1}^n \sigma(u^{(j)})^n} = \frac{1}{\prod_j !} \begin{vmatrix} 1 & \wp(u^{(1)}) & \wp'(u^{(1)}) & \dots & \wp^{(n-2)}(u^{(1)}) \\ 1 & \wp(u^{(2)}) & \wp'(u^{(2)}) & \dots & \wp^{(n-2)}(u^{(2)}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \wp(u^{(n)}) & \wp'(u^{(n)}) & \dots & \wp^{(n-2)}(u^{(n)}) \end{vmatrix}.$$ These formulae correspond to the canonical involution $v \mapsto -v$. Today I will talk on an extreme and elaborate generalization of these addition formulae. #### I-1. The most general genus one curve To step up higher genus cases smoothly, we reformulate the equalities for genus $1\ \text{case}.$ We start with the most general genus one curve $\mathscr{C}: f(x,y)=0$ (not with $\wp(u)$), where $$f(x,y) = y^2 + (\mu_1 x + \mu_3)y - (x^3 + \mu_2 x^2 + \mu_4 x + \mu_6),$$ $$\mathbf{wt}(x) = -2, \ \mathbf{wt}(y) = -3, \ \mathbf{wt}(\mu_i) = -j,$$ with the point ∞ at infinity. Then $$H^{1}_{dR}(\mathscr{C}/Q[\mu]) \cong \left\{ \frac{h(x,y) dx}{f_{y}(x,y)} \middle| h(x,y) \in Q[\mu][x,y] \right\} / dQ[\mu][x,y]$$ $$= Q[\mu] \frac{dx}{f_{y}} + Q[\mu] \frac{xdx}{f_{y}} (= Q[\mu] \omega + Q[\mu] \eta.)$$ (Note that $f_x(x,y) dx + f_y(x,y) dy = 0$.) Let x(u) and y(u) be the inverse functions defined by $$u=\int_{\infty}^{(x(u),y(u))}\omega.$$ Then $$x(u) = \frac{1}{u^2} + \cdots, \quad y(u) = -\frac{1}{u^3} + \cdots.$$ ## I-2. Sigma function for the most general genus 1 curve The sigma function $\sigma(u)$ associate to the genus 1 curve is $$\frac{\sigma(\mathbf{u}) = \left(\frac{2\pi}{\omega'}\right)^{1/2} \Delta^{-\frac{1}{8}} \cdot \exp\left(-\frac{1}{2}\omega'^{-1}\eta'\mathbf{u}^2\right) \cdot \vartheta\left[\frac{\frac{1}{2}}{\frac{1}{2}}\right] (\omega'^{-1}\mathbf{u}, \, \omega'' \! / \omega'),$$ where Δ = the discriminant of \mathscr{C} , $$\begin{bmatrix} \omega' & \omega'' \\ \eta' & \eta'' \end{bmatrix} = \begin{bmatrix} \int_{\alpha_1} \omega & \int_{\beta_1} \omega \\ \int_{\alpha_1} \eta & \int_{\beta_1} \eta \end{bmatrix} \quad \text{with} \quad \omega = \frac{dx}{f_y} , \quad \eta = \frac{xdx}{f_y}$$ and $\{\alpha_1, \beta_1\}$ is a symplectic basis of $H_1(\mathcal{C}^{an}, \mathbf{Z})$. However, $\sigma(u)$ is modular invariant. Indeed we have more tightly $$\sigma(u) = u + \left(\left(\frac{\mu_1}{2}\right)^2 + \mu_2 \right) \frac{u^3}{3!} + \dots \in \mathbf{Z}[\mu, \tfrac{\mu_1}{2}] \langle\!\langle u \rangle\!\rangle \qquad \text{(Hurwitz-integral series)}.$$ We define $$\wp(u) := -\frac{d^2}{du^2} \log \sigma(u).$$ Then, we have the solution to Jacobi's Umkehr problem $$\wp(u) = x(u), \quad \wp'(u) = 2y(u) + \mu_1 x(u) + \mu_3.$$ ## I-3. The reformulated Frobenius-Stickelberger Then we have $$\sigma(u^{(1)} + u^{(2)} + \dots + u^{(n)}) \prod_{i < j} \sigma(u^{(i)} - u^{(j)}) / \prod_{j} \sigma(u^{(j)})^{n}$$ $$= \frac{1}{\prod_{j} j!} \begin{vmatrix} 1 & \wp(u^{(1)}) & \wp'(u^{(1)}) & \dots & \wp^{(n-2)}(u^{(1)}) \\ 1 & \wp(u^{(2)}) & \wp'(u^{(2)}) & \dots & \wp^{(n-2)}(u^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \wp(u^{(n)}) & \wp'(u^{(n)}) & \dots & \wp^{(n-2)}(u^{(n)}) \end{vmatrix}$$ $$= \begin{vmatrix} 1 & x(u^{(1)}) & y(u^{(1)}) & x^{2}(u^{(1)}) & yx(u^{(1)}) & x^{3}(u^{(1)}) & \dots \\ 1 & x(u^{(2)}) & y(u^{(2)}) & x^{2}(u^{(2)}) & yx(u^{(2)}) & x^{3}(u^{(2)}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 1 & x(u^{(n)}) & y(u^{(n)}) & x^{2}(u^{(n)}) & yx(u^{(n)}) & x^{3}(u^{(n)}) & \dots \end{vmatrix}$$ ### II-1. Sample of the main results (3,4)-curve, genus g=3 Suppose we have defined the multivariate $\sigma(u) = \sigma(u_5, u_2, u_1)$. The *n*-variable case (Here n > 3 for simplicity) for $$\mathscr{C}: y^3 - (x^4 + \mu_3 x^3 + \mu_6 x^2 + \mu_9 x + \mu_{12}) = 0.$$ Theorem. [Ô, 2011] Let ζ be the natural action of $\zeta = \exp \frac{2\pi i}{3}$. Then $\sigma\left(u^{(1)}+\cdots+u^{(n)}\right)\prod_{i\leq i}\sigma_{\mathbf{1}}\left(u^{(i)}+\left[\zeta\right]u^{(j)}\right)\sigma_{\mathbf{1}}\left(u^{(i)}+\left[\zeta\right]^{2}u^{(j)}\right)\left/\prod_{i}\sigma_{\mathbf{2}}\left(u^{(j)}\right)^{2n-1}\right.$ $= \begin{vmatrix} 1 & x(u^{(1)}) & y(u^{(1)}) & x^2(u^{(1)}) & yx(u^{(1)}) & y^2(u^{(1)}) & x^3(u^{(1)}) & yx^2(u^{(1)}) & y^2x(u^{(1)}) & \cdots \\ 1 & x(u^{(2)}) & y(u^{(2)}) & x^2(u^{(2)}) & yx(u^{(2)}) & y^2(u^{(2)}) & x^3(u^{(2)}) & yx^2(u^{(2)}) & y^2x(u^{(2)}) & \cdots \\ \vdots & \ddots \end{vmatrix}$ $\begin{bmatrix} 1 & x(u^{(n)}) & y(u^{(n)}) & x^2(u^{(n)}) & yx(u^{(n)}) & y^2(u^{(n)}) & x^3(u^{(n)}) & yx^2(u^{(n)}) & y^2x(u^{(n)}) & \cdots \end{bmatrix}$ 1 $x(u^{(1)})$ $x^2(u^{(1)})$ \cdots $x^{n-1}(u^{(1)})$ 1 $x(u^{(n)})$ $x^2(u^{(n)})$... $x^{n-1}(u^{(n)})$ Here $u^{(j)} = (u^{(j)}_{5}, u^{(j)}_{2}, u^{(j)}_{1})$'s are variables on the 1st stratum. II-2. Another result $$(3,4)$$ -curve, $g=3$ $$(3,4)$$ -curve, $g=3$ Suppose we have defined the multivariate $\sigma(u) = \sigma(u_5, u_2, u_1)$. We define \(\rho\)-functions by $$\wp_{ij}(u) := -\frac{\partial^2}{\partial u_i \partial u_j} \log \sigma(u), \quad \wp_{ijk}(u) := \frac{\partial}{\partial u_k} \wp_{ij}(u), \quad \text{etc.}$$ Then, we have a beautiful solution (explained later) to Jacobi's Umkehr Problem, and $\wp_{ij}(u) \in \Gamma\left(\operatorname{Jac}(\mathscr{C}), \mathscr{O}(2\Theta^{[g-1]})\right), \quad \wp_{ijk}(u) \in \Gamma\left(\operatorname{Jac}(\mathscr{C}), \mathscr{O}(3\Theta^{[g-1]})\right), \quad \text{etc.}$ The case of the (3,4)-curve on the largest stratum in 2 variables : Theorem. [EEMÔP, 2008] For $$u, v \in \mathbb{C}^3 = \kappa^{-1}(W^{[3]})$$, we have $$\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2\sigma(v)^2} = -\wp_{55}(u) + \wp_{55}(v) - \wp_{52}(u)\wp_{21}(v) + \wp_{52}(v)\wp_{21}(u) \\ -\wp_{51}(u)\wp_{22}(v) + \wp_{51}(v)\wp_{22}(u) - \frac{1}{3}(\wp_{11}(u) Q_{5111}(v) - \wp_{11}(v) Q_{5111}(u)) \\ + \frac{1}{3}\mu_1(\wp_{52}(u)\wp_{11}(v) - \wp_{52}(v)\wp_{11}(u)) + \mu_1(\wp_{51}(u)\wp_{21}(v) - \wp_{51}(v)\wp_{21}(u)) \\ - \frac{1}{3}(\mu_1^2 - \mu_2)(\wp_{51}(u)\wp_{11}(v) - \wp_{51}(v)\wp_{11}(u)) - \frac{1}{3}\mu_8(\wp_{11}(u) - \wp_{11}(v)),$$ where $Q_{5111} = \wp_{5111} - 6\wp_{51}\wp_{11}.$ Theorem. [EEMÔP] (2008) $$\frac{\sigma(u+v)\,\sigma(u+[\zeta]v)\,\sigma(u+[\zeta^2]v)}{\sigma(u)^3\,\sigma(v)^3}=R(u,v)+R(v,u),$$ where $$\begin{split} R(u,v) &= -\frac{1}{3}\wp_{51}(u)\frac{\partial}{\partial u_1}Q_{5111}(v) - \frac{3}{4}\wp_{21}(u)\wp_{552}(v) - \frac{1}{2}\wp_{555}(u) \\ &+ \frac{1}{4}\wp_{522}(u)\wp^{[55]}(v) - \frac{1}{4}\wp_{222}(u)\wp^{[52]}(v) + \frac{1}{12}\frac{\partial}{\partial u_1}Q_{5111}(u)\wp^{[55]}(v) \\ &+ \frac{1}{2}\wp_{111}(u)\wp^{[22]}(v) - \frac{1}{4}\mu_1\wp_{111}(u)\wp^{[52]}(v) \\ &+ \frac{1}{2}\mu_6\wp_{51}(u)\wp_{111}(v) - \frac{1}{4}\mu_9\wp_{21}(u)\wp_{111}(v) - \frac{1}{2}\mu_{52}\wp_{111}(u) \end{split}$$ with $\wp^{[ij]} =$ "the determinant of the (i,j)-(complementary) minor of $[\wp_{ij}]_{3\times 3}$ ". ## Meta-mathematics on the generalization In order to generalize the classical Frobenius-Stickelberger formula there are following three "Linearly Independent Directions" : - (1) Going to higher genus case; - (2) Involving Galois conjugates, especially involving an automorphism; - (3) Changing the strata on which the formula is alive; There are various "Linear Combinations" of them. The theory which I will talk about today is special for functions on Jacobian varieties, but not on Abelian varieties in general. #### III-1. Warming up via genus 2 We define the sigma function $\sigma(u)$ for $\mathscr{C}: y^2 = x^5 + \mu_4 x^3 + \mu_6 x^2 + \mu_8 x + \mu_{10}$. $$H_{dR}^{1}(\mathscr{C}/Q[\mu]) \cong Q[\mu] \frac{dx}{f_{y}} + Q[\mu] \frac{xdx}{f_{y}} + Q[\mu] \frac{(3x^{3} + \mu_{4}x) dx}{f_{y}} + Q[\mu] \frac{x^{2}dx}{f_{y}}$$ $$= Q[\mu] \omega_{3} + Q[\mu] \omega_{1} + Q[\mu] \eta_{3} + Q[\mu] \eta_{1}.$$ Let ω' , ω'' , η' and η'' be the period matrices of size 2×2 with respect to the basis ω_3 , ω_1 , η_3 , η_1 and any symplectic basis of $H_1(\mathscr{C}^{an}, \mathbb{Z})$. The sigma function $\sigma(u)$ is defined by The sigma function $$\sigma(u)$$ is defined by $$\sigma(u) = \sigma(u_3, u_1) = \left(\frac{2\pi}{\omega'}\right)^{2/2} \Delta^{-\frac{1}{8}} \exp\left(-\frac{1}{2}{}^t u \omega'^{-1} \eta' u\right) \cdot \vartheta \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} (\omega'^{-1} u, \omega'' / \omega'),$$ which is a modular invariant entire function on \mathbb{C}^2 and a quite natural generalization of Weierstrass sigma function. $$\sigma(u_3, u_1) = u_3 - 2\frac{u_1^3}{3!} - 4\mu_4 \frac{u_1^7}{7!} - 2\mu_4 \frac{u_3 u_1^4}{4!} + 64\mu_6 \frac{u_1^9}{9!} - 8\mu_6 \frac{u_3 u_1^6}{6!} - 2\mu_6 \frac{u_3^2 u_1^3}{2!3!} + \mu_6 \frac{u_3^3}{3!} + \dots \in \mathbb{Z}[\mu] \langle \langle u_3, u_1 \rangle \rangle$$ ## III-2. Characterization of the $\sigma(u)$ for genus 2 We define **R**-bilinear form $L(\ ,\): \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}$ by $$L(u,v)=u^t(\eta'v'+\eta''v')$$, where $v=\omega'v'+\omega''v''$ with $v,\ v''\in \mathbb{R}^2$, which is C-linear on the 1st space and the map $(\ell, k) \mapsto L(\ell, k) - L(k, \ell)$ on $\Lambda \times \Lambda$ is $2\pi i Z$ -valued, The function $\sigma(u) = \sigma(u_3, u_1)$ is characterized (up to a multiplicative constant) by the following properties : - (i) $\sigma(u+\ell) = \chi(\ell) \, \sigma(u) \, \exp L(u+\frac{1}{2}\ell,\ell), \ u \in \mathbb{C}^2, \ \ell \in \Lambda,$ with $\chi(\ell) \in \{\pm 1\}$ satisfying $\chi(\ell+k) = \chi(\ell)\chi(k) \exp \frac{1}{2}[L(\ell,k) L(k,\ell)]$; - (ii) The set of zeroes of $u\mapsto \sigma(u)$ is exactly the canonical image $\Theta^{[2-1]}$ of $\mathscr{C}=\operatorname{Sym}^{2-1}\mathscr{C}$, which is of order 1. ## III-3. Frobenius-Stickelberger in genus 2 (1/2) $$\kappa^{-1}\iota(\mathscr{C}) \longrightarrow \mathbf{C}^2 \qquad \iota: (x,y) \longmapsto u = \int_{\infty}^{(x(u),\ y(u))} (\omega_3,\ \omega_1) \ \ \mathsf{mod}\ \Lambda.$$ $$\downarrow \qquad \qquad \downarrow^{\kappa} \qquad \qquad \wp_{11}(u+v) = -x(u) - x(v), \ \wp_{13}(u+v) = x(u)\,x(v)$$ $$\text{for } u,v \in \kappa^{-1}(\iota(\mathscr{C})) \ \ \text{(The solu. to Jacobi's Umkehr Problem)}.$$ Theorem. [Ô, 2012] Let $\sigma_1(u) = \frac{\partial}{\partial u_1} \sigma(u_3, u_1)$. Let $n \geq 2$ and $u^{(1)}, \dots, u^{(n)}$ be variables on $\kappa^{-1}\iota(\mathscr{C})$. Then we have $$\sigma(u^{(1)} + u^{(2)} + \cdots + u^{(n)}) \prod_{i < j} \sigma(u^{(i)} - u^{(j)}) / \prod_{j} \sigma_{1}(u^{(j)})^{n}$$ $$= - \begin{vmatrix} 1 & x(u^{(1)}) & x^{2}(u^{(1)}) & y(u^{(1)}) & yx(u^{(1)}) & x^{3}(u^{(1)}) & \cdots \\ 1 & x(u^{(2)}) & x^{2}(u^{(2)}) & y(u^{(2)}) & yx(u^{(2)}) & x^{3}(u^{(2)}) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 1 & x(u^{(n)}) & x^{2}(u^{(n)}) & y(u^{(n)}) & yx(u^{(n)}) & x^{3}(u^{(n)}) & \cdots \end{vmatrix} .$$ Proof. $$0 = \sigma(v) = v_3 - \frac{1}{3}v_1^3 + \cdots,$$ $$\sigma(u+v) = \sigma_1(u)v_1 + \sigma_3(u)v_3 + \sigma_{11}(u)v_1^2 + \cdots.$$ ## III-3. Frobenius-Stickelberger in genus 2 (2/2) Define $$\wp_{ij}(u) = -\frac{\partial^2}{\partial u_i \partial u_j} \log \sigma(u).$$ I realized the last formula from H.F. Baker's formulae : $$-\frac{\sigma(u+v)\,\sigma(u-v)}{\sigma(u)^2\,\sigma(v)^2} = \wp_{33}(u) - \wp_{33}(v) + \wp_{13}(u)\,\wp_{11}(v) - \wp_{11}(u)\,\wp_{13}(v).$$ Bringing v o a point $\in \kappa^{-1}(\iota(\mathscr{C}))$ after multiplying $\frac{\sigma(v)^2}{\sigma_1(v)^2}$, $$\frac{\sigma(u+v)\,\sigma(u-v)}{\sigma(u)^2\,\sigma_1(v)^2} = -x(v)^2 + \wp_{13}(u) - x(v)\,\wp_{11}(u). \quad (D. Grant)$$ Bringing u o a point $\in \kappa^{-1}(\iota(\mathscr{C}))$ after multiplying $\frac{\sigma(u)^2}{\sigma_1(u)^2}$, $$\frac{\sigma(u+v)\,\sigma(u-v)}{\sigma_1(u)^2\,\sigma_1(v)^2}=x(u)-x(v).$$ This is the initial case of the formula in the last page. #### IV-1. Higher genus curves For coprime positive integers q>d, let $\mathscr C$ be the curve defined by $$f(x,y)=0$$ with $$f(x,y) = y^d - x^q + \sum_{i,j: dq > iq+jd} (\text{some coeff.}) x^i y^j, \quad (\text{wt}(x) = -d, \text{ wt}(y) = -q)$$ adjoining unique point ∞ at infinity. Call this (d,q)-curve. If $\mathscr C$ is non-singular, then its genus is given by $g=\frac{(d-1)(q-1)}{2}$. For example. $$\begin{cases} f(x,y) = y^2 + (\mu_1 x + \mu_3)y - (x^3 + \mu_2 x^2 + \mu_4 x + \mu_6), \\ \text{wt}(x) = -2, \text{ wt}(y) = -3, \text{ wt}(\mu_j) = -j. \end{cases}$$ $$\begin{cases} f(x,y) = y^3 + (\mu_1 x + \mu_4)y^2 + (\mu_2 x^2 + \mu_5 x + \mu_8)y - (x^4 + \mu_3 x^3 + \mu_6 x^2 + \mu_9 x + \mu_{12}) \\ \text{wt}(x) = -3, \text{ wt}(y) = -4, \text{ wt}(\mu_j) = -j. \end{cases}$$ **.** ## IV-2. Weierstrass gaps at ∞ of the curve $\mathscr C$ Let w_1, \cdots, w_g be the Weierstrass gap sequence at ∞ of $$\mathscr{C}: y^d + \cdots = x^q + \cdots.$$ For example, $$(2,3)$$ -curve $w_1=1$. $$(2,2g+1)$$ -curve ... $(w_1, w_2, \cdots, w_g) = (1, 3, \cdots, 2g+1)$. $$(3,4)$$ -curve $(w_1, w_2, w_3) = (1, 2, 5)$. $$(3,5)$$ -curve $(w_1, w_2, w_3, w_4) = (1, 2, 4, 7)$. Let us fix a vector $\overrightarrow{\omega} = (\omega_{w_g}, \omega_{w_{g-1}}, \cdots, \omega_{w_1})$ consists of the "natural" basis of $\Gamma(\mathscr{C}, \Omega^1)$ with $\mathbf{wt}(\omega_{w_i}) = w_i$. Example. For the (2,7)-curve $$f(x,y) = y^2 + (\mu_1 x^3 + \mu_3 x^2 + \mu_5)y$$ $$- (x^7 + \mu_2 x^6 + \mu_4 x^5 + \mu_6 x^4 + \mu_8 x^3 + \mu_{10} x^2 + \mu_{12} x + \mu_{14}) = 0,$$ the vector $$\overrightarrow{\omega}$$ consists of $\omega_5=\frac{dx}{f_y(x,y)}, \ \omega_3=\frac{xdx}{f_y(x,y)}, \ \omega_1=\frac{x^2dx}{f_y(x,y)}.$ #### IV-3. Differentials of the 1st kind and the Abel-Jacobi maps **Example**. For the (3,4)-curve $$f(x,y) = y^3 + (\mu_1 x + \mu_4)y^2 + (\mu_2 x^2 + \mu_5 x + \mu_8)y$$ $$- (x^4 + \mu_3 x^3 + \mu_6 x^2 + \mu_9 x + \mu_{12}) = 0,$$ the vector $\stackrel{\rightharpoonup}{\omega}$ consists of $\omega_5=\frac{dx}{f_y(x,y)}, \;\; \omega_2=\frac{xdx}{f_y(x,y)}, \;\; \omega_1=\frac{ydx}{f_y(x,y)}.$ Using $\overrightarrow{\omega} = (\omega_{w_g}, \omega_{w_{g-1}}, \cdots, \omega_{w_1})$, define the period lattice $\Lambda = \left\{ \oint \overrightarrow{\omega} \right\} \subset \mathbb{C}^g$. We define, for each integer $k \geq 0$, $$\iota: \operatorname{Sym}^k(\mathscr{C}) \to \operatorname{C}^g/\Lambda = \operatorname{Jac}(\mathscr{C})$$ $$(\operatorname{P}_1, \cdots, \operatorname{P}_k) \mapsto \sum_{i=1}^k \int_{\infty}^{\operatorname{P}_j} \overrightarrow{\omega} \bmod \Lambda.$$ We denote the mod Λ map by $\kappa : \mathbb{C}^g \to \mathbb{C}^g/\Lambda$. We denote $W^{[k]} = \iota(\operatorname{Sym}^k(\mathscr{C}))$. Then $W^{[1]} \cong \mathscr{C}$. Let $$\mathbf{\Theta}^{^{[k]}} = [-1]W^{^{[k]}} \cup W^{^{[k]}}.$$ #### IV-4. The stratification Summing up, we have the following stratification: $$\begin{array}{lllll} \Lambda & \subset \kappa^{-1}(\Theta^{[1]}) & \subset \kappa^{-1}(\Theta^{[2]}) & \subset \cdots \subset \kappa^{-1}(\Theta^{[g-1]}) & \subset \kappa^{-1}(\Theta^{[g]}) = \mathbf{C}^g. \\ \downarrow \kappa & \downarrow \kappa \\ 0 & \in \Theta^{[1]} & \subset & \Theta^{[2]} & \subset \cdots \subset & \Theta^{[g-1]} & \subset & \Theta^{[g]} = \mathbf{C}^g/\Lambda \\ \parallel & \cup & \cup & \parallel & \parallel \\ 0 & \in \iota(\mathscr{C}) = W^{[1]} & \subset & W^{[2]} & \subset \cdots \subset & W^{[g-1]} & \subset & W^{[g]} \\ \uparrow \iota & \uparrow \iota & & \uparrow \iota & \uparrow \iota & \uparrow \iota \\ \infty & \in \mathscr{C} = \operatorname{Sym}^1\mathscr{C} & \subset \operatorname{Sym}^2\mathscr{C} & \subset \cdots \subset \operatorname{Sym}^{g-1}\mathscr{C} & \subset \operatorname{Sym}^g\mathscr{C} \end{array}$$ We note that Jacobi's theorem implies $$\Theta^{[g-1]} = W^{[g-1]}.$$ We shall define afterward an important function $\sigma_{\natural^k}(u)$ (a higher derivative of $\sigma(u)$), which is useful on the k-th stratum $\kappa^{-1}(\Theta^{[k]})$. ### VI-5. de Rham cohomology and its symplectic structure On the 1st de Rham cohomology $$H^{1}_{dR}(\mathscr{C}/\mathbb{Q}[\mu]) = \left\{ \frac{h(x,y) dx}{f_{y}(x,y)} \middle| h(x,y) \in \mathbb{Q}[\mu][x,y] \right\} / d\mathbb{Q}[\mu][x,y],$$ $$\left(\supset \Gamma(\mathscr{C},\Omega^{1}) \right)$$ we have the following symplectic product ★: For $$\omega$$, $\eta \in H^1_{\mathrm{dR}}(\mathscr{C}/\mathbb{Q}[\mu])$, $$\boldsymbol{\omega} \star \boldsymbol{\eta} = \sum_{\mathbf{P}} \operatorname{Res}_{\mathbf{P}} \left(\int_{\infty}^{\mathbf{P}} \omega \right) \boldsymbol{\eta}(\mathbf{P}) \quad \left(= \operatorname{Res}_{\mathbf{P} = \infty} \left(\int_{\infty}^{\mathbf{P}} \omega \right) \boldsymbol{\eta}(\mathbf{P}) \right).$$ There is a "concise" symplectic basis of $H^1_{dR}(\mathscr{C}/\mathbb{Q}[\mu])$: $$\omega_{w_g}$$, $\omega_{w_{g-1}}$, \cdots , ω_{w_1} , η_{w_g} , $\eta_{w_{g-1}}$, \cdots , η_{w_1} , where w_i stands for the weight (or the negative of weight). #### IV-6. The sigma function for a higher genus curve The sigma function $\sigma(u)$ for $\mathscr C$ is defined by using the symplectic basis $\{\omega_{w_g}, \omega_{w_{g-1}}, \cdots, \omega_{w_1}\} \cup \{\eta_{w_g}, \eta_{w_{g-1}}, \cdots, \eta_{w_1}\}$ of $H^1_{\mathrm{dR}}(\mathscr C/\mathbb Q[\mu])$ and any symplectic basis of $H_1(\mathscr C^{\mathrm{an}}, \mathbf Z)$. It is an entire function on $\mathbb C^g$ with g variables $u=(u_{w_g}, \cdots, u_{w_1})$, and it is a quite **Example**. If \mathscr{C} is (3,4)-curve, then $$\sigma(u) = \sigma(u_5, u_2, u_1) = \left(u_5 - u_1 u_2^2 + \frac{1}{20} u_1^5\right) + \left(\frac{1}{12} \mu_1 u_1^4 u_2 - \frac{1}{3} \mu_1 u_2^3\right) + \cdots$$ We define R-bilinear form $L(,): \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}$ by natural generalization of the Weierstrass sigma function. $$L(u,v) = u^t(\eta'v' + \eta''v')$$, where $v = \omega'v' + \omega''v''$ with $v, v'' \in \mathbb{R}^g$, which is C-linear on the 1st space and the map $(\ell,k)\mapsto L(\ell,k)-L(k,\ell)$ on $\Lambda imes\Lambda$ is $2\pi i\, {\sf Z}$ -valued, The function $\sigma(u)=\sigma(u_{w_g},\cdots,u_{w_1})$ is characterized (up to non-zero multiplicative constant) by - (i) $\sigma(u+\ell) = \chi(\ell)\sigma(u) \exp L(u+\frac{1}{2}\ell,\ell)$ for $u \in \mathbb{C}^g$, $\ell \in \Lambda$, with $\chi(\ell) \in \{\pm 1\}$ satisfying $\chi(\ell+k) = \chi(\ell)\chi(k) \exp \frac{1}{2}[L(\ell,k) L(k,\ell)]$; - (ii) The set of zeroes of $u\mapsto \sigma(u)$ is exactly on $\Theta^{[g-1]}\cup [-1]\Theta^{[g-1]}$, which is of order 1. Here $\Theta^{[g-1]}$ is the canonical image of $\operatorname{Sym}^{g-1}\mathscr{C}$. V-1. On the largest stratum $$(3,4)$$ -curve, $g=3$ We define p-functions by $$\wp_{ij}(u) := -\frac{\partial^2}{\partial u_i \partial u_j} \log \sigma(u), \quad \wp_{ijk}(u) := \frac{\partial}{\partial u_k} \wp_{ij}(u), \quad \text{etc.}$$ Then $$\wp_{ij}(u) \in \Gamma(\operatorname{Jac}(\mathscr{C}), \mathscr{O}(2\Theta^{[g-1]}))$$, $\wp_{ijk}(u) \in \Gamma(\operatorname{Jac}(\mathscr{C}), \mathscr{O}(3\Theta^{[g-1]}))$, etc. The case of the (3,4)-curve on the largest stratum in 2 variables : Theorem. [EEMÔP] (2008) $$\begin{aligned} &\text{For } u,v \in \mathbf{C}^3 = \kappa^{-1}(W^{[3]}), \text{ we have} \\ &\frac{\sigma(u+v)\,\sigma(u-v)}{\sigma(u)^2\,\sigma(v)^2} = -\wp_{55}(u) + \wp_{55}(v) - \wp_{52}(u)\wp_{21}(v) + \wp_{52}(v)\wp_{21}(u) \\ &-\wp_{51}(u)\wp_{22}(v) + \wp_{51}(v)\wp_{22}(u) - \frac{1}{3}(\wp_{11}(u)\,Q_{5111}(v) - \wp_{11}(v)\,Q_{5111}(u)) \\ &+ \frac{1}{3}\mu_1\,(\wp_{52}(u)\wp_{11}(v) - \wp_{52}(v)\wp_{11}(u)) + \mu_1\,(\wp_{51}(u)\wp_{21}(v) - \wp_{51}(v)\wp_{21}(u)) \\ &- \frac{1}{3}\,(\mu_1^2 - \mu_2)\,(\wp_{51}(u)\wp_{11}(v) - \wp_{51}(v)\wp_{11}(u)) - \frac{1}{3}\mu_8\,(\wp_{11}(u) - \wp_{11}(v))\,, \end{aligned}$$ where $$Q_{5111} = \wp_{5111} - 6\wp_{51}\wp_{11}.$$ ## V-2. On the largest stratum for the purely trigonal curve Theorem. [EEMÔP] (2008) For $\mathscr{C}: f(x,y)=y^3-(x^4+\mu_3x^3+\mu_6x^2+\mu_9x+\mu_{12})=0$ with the canonical automorphism $[\zeta]: (x,y)\mapsto (x,\zeta y)$ of $\zeta=\exp(2\pi i/3)$, we have $$\frac{\sigma(u+v)\,\sigma(u+[\zeta]v)\,\sigma(u+[\zeta]^2v)}{\sigma(u)^3\,\sigma(v)^3}=R(u,v)+R(v,u),$$ where $$\begin{split} R(u,v) &= -\frac{1}{3}\wp_{51}(u)\frac{\partial}{\partial u_{1}}Q_{5111}(v) - \frac{3}{4}\wp_{21}(u)\wp_{552}(v) - \frac{1}{2}\wp_{555}(u) \\ &+ \frac{1}{4}\wp_{522}(u)\wp^{[55]}(v) - \frac{1}{4}\wp_{222}(u)\wp^{[52]}(v) + \frac{1}{12}\frac{\partial}{\partial u_{1}}Q_{5111}(u)\wp^{[55]}(v) \\ &+ \frac{1}{2}\wp_{111}(u)\wp^{[22]}(v) - \frac{1}{4}\mu_{1}\wp_{111}(u)\wp^{[52]}(v) \\ &+ \frac{1}{2}\mu_{6}\wp_{51}(u)\wp_{111}(v) - \frac{1}{4}\mu_{9}\wp_{21}(u)\wp_{111}(v) - \frac{1}{2}\mu_{52}\wp_{111}(u) \end{split}$$ with $\wp^{[ij]}=$ "the determinant of the (i,j)-(complementary) minor of $[\wp_{ij}]_{3 imes 3}$ ". ## VI-1. Higher derivatives of the sigma function We define, for the multi-index $I= atural^n$ with respect to $\{w_g, \cdots, w_1\}$ defined in the next page, or for arbitrary multi-index I, $$\sigma_I(u) = \left(\prod_{j \in I} \frac{\partial}{\partial u_j}\right) \sigma(u).$$ Examples. If $$(d,q)=(3,4)$$ then $\flat= atural^2=\{1\}$ and $\sharp= atural^1=\{2\}$, and $\sigma_{\flat}(u)=\sigma_1(u)= rac{\partial}{\partial u_1}\sigma(u_5,u_2,u_1),$ $\sigma_{\sharp}(u)=\sigma_2(u)= rac{\partial}{\partial u_2}\sigma(u_5,u_2,u_1).$ We define $\sigma_{b^0}(u) = 1$, a constant function. VI-2. Table of $\ \ \ \ ^n$ | | _ | | | | | | | | | | |---------|---|--------------------|----------------------|------------|----------|---------|-----------------------|----------------|-----|-------| | (d,p) | g | $\sharp= atural^1$ | $\flat = \natural^2$ | □ 3 | ¤⁴ | | å ⁶ | □ □ □ □ | ₽8 | ••• | | (2,3) | 1 | { } | { } | { } | { } | { } | { } | { } | { } | ••• | | (2,5) | 2 | {1} | { } | { } | { } | { } | { } | { } | { } | | | (2,7) | 3 | {3} | {1} | { } | { } | { } | { } | { } | { } | | | (2,9) | 4 | { 1, 5 } | {3} | {1} | { } | { } | { } | { } | { } | | | (2, 11) | 5 | { 3, 7 } | {1,5} | {3} | {1} | { } | { } | { } | { } | | | (2, 13) | 6 | { 1, 5, 9 } | {3,7} | {1,5} | {3} | {1} | { } | { } | { } | | | (2, 15) | 7 | {3,7,11} | { 1, 5, 9 } | {3,7} | { 1, 5 } | {3} | {1} | { } | { } | • • • | | i : | : | : | : | : | ÷ | : | : | | : | · | | (3,4) | 3 | {2} | {1} | { } | { } | { } | { } | { } | { } | ••• | | (3,5) | 4 | {4} | {2} | {1} | { } | { } | { } | { } | { } | | | (3,7) | 6 | { 1, 6 } | {1,5} | {4} | {2} | {1} | { } | { } | { } | | | (3,9) | 7 | { 4, 10 } | { 2,7 } | {1,5} | { 4 } | {2} | {1} | { } | { } | • • • | | : | : | : | : | : | : | : | : | : | : | ٠ | ## We explain by an example : (d,q)=(3,7), g=6. Write a $g\times g=6\times 6$ table as follows. We first write the Weierstrass gap sequence with respect to (d,q) on the last column, namely, | | | 11 | |--|--|----| | | | 8 | | | | 5 | | | | 4 | | | | 2 | | | | 1 | Then, put into other boxes naturally increasing non-negative integers as follows: | 6 | 7 | 8 | 9 | 10 | 11 | | |---|---|---|---|----|----|--| | 3 | 4 | 5 | 6 | 7 | 8 | | | 0 | 1 | 2 | 3 | 4 | 5 | | | | 0 | 1 | 2 | 3 | 4 | | | | | | 0 | 1 | 2 | | | | | | | 0 | 1 | | ## VI-5. Table of $abla^n$ If we wish to get $\natural^n = \natural^2$, extract $(g-n) \times (g-n) = 4 \times 4$ minor on the lower right corner. and Remove all rows and columns including 0. | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | | |---|---|---|---|----|----|---|---|---|---|---|---| | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 5 | | | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 4 | | | | | 0 | 1 | 2 | | 0 | 1 | 2 | | | | | | | | 0 | 1 | | | 0 | 1 | | | Finally, by reading the numbers on the off-diagonal, we have $$\sharp^2 = \{\,1,5\,\} \quad \text{and} \quad \sigma_{\sharp^2}(u) = \sigma_{1,5}(u) = \frac{\partial^2}{\partial u_1 \partial u_5} \sigma(u).$$ ## VI-3. Properties of the satellite sigma functions (The most important page!) The set of higher derivatives of the $\sigma(u)$ $$\{ \kappa^{-1}(\Theta^{[n]}) \ni u \mapsto \sigma_{ atural}^n(u) \mid 0 \le n \le g-1 \}$$ the satellite sigma functions for \(\mathbb{C} \). They have the following very nice properties: - (i) $\sigma_{\natural^n}(u+\ell) = \chi(\ell) \, \sigma_{\natural^n}(u) \, L(u+\frac{1}{2}\ell,\ell), \ u \in \kappa^{-1}(\Theta^{[n]}), \ \ell \in \Lambda.$ - (ii) If $u \in \kappa^{-1}(W^{[n]} \setminus W^{[n-1]})$, then the function $\kappa^{-1}(W^{[1]}) \ni v \mapsto \sigma_{\natural^{n+1}}(u+v)$ has a zero at Λ of order $w_{g-n}-g+n+1$, and other $g - (w_{g-n} - g + n + 1)$ zeroes elsewhere mod Λ . Moreover, $\sigma_{\mathbb{H}^{n+1}}(u+v) = \pm \sigma_{\mathbb{H}^n}(u) v_1^{w_{g-n}-g+n+1} + \text{"higher terms in } v_1$ ". The exact places of all zeroes of $\,v\mapsto\sigma_{\flat}(u+v):=\sigma_{\natural^2}(u+v)\,$ are known. - $\sigma_{\sharp}(u) := \sigma_{\sharp^1}(u) = \pm v_1{}^g + \cdots$ and this has only zero at Λ . - (iii) The set of zeroes of the function $\kappa^{-1}(W^{[n+1]}) \ni u \mapsto \sigma_{\natural^{n+1}}(u)$ is $\kappa^{-1}(\Theta^{[n]})$, which is of order 1. - (iv) For an index I, if $\operatorname{wt}(I) < \operatorname{wt}(abla^n)$, then $\sigma_I(u) = 0$ on $\kappa^{-1}(\Theta^{[n]})$. - (v) If $\operatorname{wt}(I) = \operatorname{wt}(\natural^n)$, then the function $\sigma_I(u) =$ "an integer" $\sigma_{\natural^n}(u)$ on $\kappa^{-1}(\Theta^{[n]})$. Proof : By certain expression of $\sigma(u)$ as the determinant of a matrix of size $N \times N$ (or by precise observation of power series expansions). #### VII-1. Guide Function We may extend this class of addition formulae by considering more general map $$\varphi:\mathscr{C}\longrightarrow \mathbf{P}^1$$ which belongs to $\mathbf{Z}[\mu_1, \mu_2, \cdots, \mu_6][x(u), y(u)]$, and of homogeneous weight. We suppose the coefficient of the lowest weight term w. r. t. x(u) and y(u) is 1. Let $m \geq 2$ be the order of unique pole of φ , and u be the analytic variable of φ regarding $\mathscr C$ as a complex torus. Then there exist $$u, u^*, u^{*^2}, u^{*^3}, \cdots, u^{*^{m-1}} \in C$$ such that these $\ m$ variables are generically different, vary continuously, and satisfy $$\varphi(u) = \varphi(u^*) = \cdots = \varphi(u^{*^{m-1}}).$$ Moreover, we may choose them as $$u+u^{\star}+\cdots+u^{\star^{m-1}}=0.$$ Indeed $d(u+u^{\star}+\cdots+u^{\star^{m-1}})$ can be regarded as a holomorphic 1-form on P^1 . ### VII-2. An example of new addition formula **Example**. ([Eilbeck-England- \hat{O} , 2014]) We take the (2,3)-curve and y(u) as a guide function. ($y(u) = y(u^*) = y(u^{**})$) Let $u = u^{(1)}$ and $v = u^{(2)}$ (two variable case). Then we have the addition formula $$-\frac{\sigma(u+v)\,\sigma(u+v^{\star})\,\sigma(u+v^{\star\star})}{\sigma(u)^3\,\sigma(v)\,\sigma(v^{\star})\,\sigma(v^{\star\star})} = y(v) - y(-u)$$ $$= y(u) + y(v) + \mu_1 x(u) + \mu_3$$ $$= \frac{f(x(u),Y) - f(x(u),W)}{Y - W}\Big|_{Y = y(u),W = y(v)}.$$ **Proof**. Use the following: As a function of u, $$y(v)-y(-u)=0 \iff u=-v, -v^{\star}, \text{ or } -v^{\star\star};$$ $y(v)-y(-u)=\infty \iff u=0;$ $u+u^{\star}+u^{\star\star}=0;$ $\sigma(u)=0 \iff u\in\Lambda.$ **Remark**. The RHS is defined over $\mathbf{Z}[\mu] = \mathbf{Z}[\mu_1, \mu_2, \mu_3, \mu_4, \mu_6]$. **Remark**. There is [Eilbeck-S.Matsutani-Ô, 2011] for $y^2 + \mu_3 y = x^3 + \mu_6$. ### VII-3. Second example of new addition formulae We take the (2,3)-curve and $x^2(u)$ as a guide function. Let $u=u^{(1)}$ and $v=u^{(2)}$ (two variable case). Then **Example**. We have the addition formula $$\frac{\sigma(u+v)\,\sigma(u+v^{\star})\,\sigma(u+v^{\star\star})\,\sigma(u+v^{\star\star\star})}{\sigma(u)^4\,\sigma(v)\,\sigma(v^{\star})\,\sigma(v^{\star\star})\,\sigma(v^{\star\star\star})}=x^2(u)-x^2(v).$$ **Remark**. The RHS is defined over $Z[\mu] = Z[\mu_1, \mu_2, \mu_3, \mu_4, \mu_6]$. ### VII-4. On the first stratum in two variables (3,4)-curve, g=3 $$(3,4)$$ -curve, $g=3$ We define the functions $\kappa^{-1}(W^{[1]}) \ni u \mapsto x(u), \quad \kappa^{-1}(W^{[1]}) \ni u \mapsto y(u)$ by $$u=(u_{w_g},\cdots,u_{w_1})=\int_{\infty}^{(x(u),y(u))}\overrightarrow{\omega}.$$ Let us take x(u) be the guide function. For a variable $v \in \kappa^{-1}(W^{[1]})$, let $\{v,v',v''\}$ be a complete representative modulo Λ of the inverse image of the map $v \mapsto x(v)$ such that v' and v'' vary continuously with respect to vand v' = v'' = 0 when v = 0. Of course, y(v), y(v'), y(v'') are the three roots of f(x(v), Y) = 0. Lemma. [\hat{O}] (2011) Then, for $u, v \in \kappa^{-1}(W^{[1]})$, we have $$\frac{\sigma_{\flat}(u+v)\,\sigma_{\flat}(u+v')\,\sigma_{\flat}(u+v'')}{\sigma_{\sharp}(u)^3\,\sigma_{\sharp}(v)\,\sigma_{\sharp}(v')\,\sigma_{\sharp}(v'')} = \begin{vmatrix} 1 & x(u) \\ 1 & x(v) \end{vmatrix}^2.$$ Here we recall that $$\sigma_{\flat}(u)=\sigma_{ atural}^2(u)=\sigma_2(u)= rac{\partial}{\partial u_2}\sigma(u), \quad \sigma_{\sharp}(u)=\sigma_{ atural}^1(u)=\sigma_1(u)= rac{\partial}{\partial u_1}\sigma(u).$$ Theorem. [\hat{O}] (2011) In *n*-variable case (Here $n \geq 3$ for simplicity): Theorem. [EEO] (2014) On the 1st stratum in 2-variables u and v with guide function y (order 4), we have $$\begin{split} &\frac{\sigma_{1}(u+v)\sigma_{1}(u+v^{\star})\sigma_{1}(u+v^{\star\star})\sigma_{1}(u+v^{\star\star\star})}{\sigma_{2}(u)^{4}\sigma_{2}(v)\sigma_{2}(v^{\star})\sigma_{2}(v^{\star\star})\sigma_{2}(v^{\star\star\star})} \\ &= y(u)^{2} + y(u)y(v) + y(v)^{2} + \left(\mu_{1}x(u) + \mu_{4}\right)\left(y(u) + y(v)\right) + \mu_{2}x(u)^{2} + \mu_{5}x(u) + \mu_{8} \\ &= \frac{f(x(u),Y) - f(x(u),W)}{Y - W}\Big|_{Y = y(u),W = y(v)} = \left(y(v) - y(u')\right)\left(y(v) - y(u'')\right). \end{split}$$ **Remark.** Of course, $$y(u) = y(u^{\star}) = y(u^{\star \star}) = y(u^{\star \star \star})$$, $y(u') = y(u^{\star \prime}) = y(u^{\star \star \prime}) = y(u^{\star \star \star \prime})$, $y(u'') = y(u^{\star \prime \prime}) = y(u^{\star \star \star \prime \prime})$. Keys of the proof. For a fixed $u \in \kappa^{-1}(\Theta^{[1]})$, the map $$v \mapsto \sigma_{\flat}(u+v)$$ has a zero at v=0, u', u'' modulo Λ of order 1, and the map $u \mapsto \sigma_{t}(u)$ has only zero at u=0 modulo Λ of order (g=)3, and no zeroes elsewhere. # Connection with multiple Gamma functions? Recall the famous infinite product expression for the Weierstrass sigma: $$\sigma(u) = u \prod_{\substack{\ell \in \Lambda \\ \ell \neq 0}} \left(1 - \frac{u}{\ell}\right) \exp\left(\frac{u}{\ell} + \frac{u^2}{2\ell^2}\right).$$ This implies the connection with the double Gamma functions: $$\sigma(z) = e^{-\mu z - \nu \frac{z^2}{2}} \cdot z \cdot \frac{\prod \Gamma_2^{-1}(z \mid \pm \omega_1, \pm \omega_2)}{\prod \Gamma_1^{-1}(z \mid \pm \omega_1) \prod \Gamma_1^{-1}(z \mid \pm \omega_2)},$$ In the higher genus case, $\sigma_\sharp(u)=\sigma_\sharp(u_{w_g},\cdots,u_{w_1})$ on $\kappa^{-1}\iota(\mathscr C)$ has zeroes of order g, and no zeroes elsewhere. Does it has some infinite product expression? The speaker has a dream on existence of - (1) an infinite product expression of $\sigma_{tt}(u)$ and - (2) an infinite product expression of multivariate multiple Γ functions, and their connection. ## VIII. Summary and Some Questions For each curve $\,\mathscr{C}\,$ and $\,$ for each the following setting, we have an addition formula of F-S type : - (1) $k \cdots$ the stratum : on the 1st stratum \rightarrow by using x(u) and y(u); on the largest stratum \rightarrow by using \wp -functions, - (2) $n \cdots$ the number of variables, - (3) $\varphi \cdots$ the guide function. #### Some Questions: - Q1 Is there further natural generalization? - Q2 Why the coefficients of RHS belong to $Z[\mu]$? (It is obvious they belong to $Q[\mu]$.) (If the order of the guide function is small Q2 is OK because the RHS is a determinant, etc.) - Q3 How do these formulae link with other existing mathematical world? Or some applications? - Q4 Can the general RHS be regarded as a sort of higher generalization of the concept of "determinant"? #### Additional reference. - J.C.Eilbeck, V.Z.Enolskii, and E.Previato: On a generalized Frobenius-Stickelberger addition formula, Letters in Mathematical Physics, 63(2003) 5-17 - J.C. Eilbeck, V.Z. Enolskii, S. Matsutani, Y. Ô, and E. Previato: Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties, Crelle J. 619(2008)37-48 # Bibliography Please check http://www2.meijo-u.ac.jp/~yonishi/ Thank you very much for your attention!