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The Double Gamma function and the Weierstrass ¢ function
From E.W. Barnes : The Theory of Double Gamma Function (p.310).

Z) = e~y g, :
o ( ) ’ -t (Z! + o)) npf—l(@] + wﬂ) ’
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Introduction

Let g(u) and o(u) be the Weierstrass functions satisfying

o (1)? =4p(u)® — g p(u) — g3,

o(u) = uexp { (/Ou ./ou (p(u) — %) dudu}, p(u) = —dd—;log o(u).

Then we have ((Hermite and) Frobenius-Stickelberger, 1877)

c(u+v)o(u—ov) . 1 p(u)
c(u)2o(v)? = p(v) — p(u) <— 1 p@)| ]’
L . ., ; g 1 (u®™) f(u®) ... (n—2) (u™)
o (uO 4+ u® 4o ful) Ea(um — u) - Z(um) Z,(u(z)) g("*)(um)
B Myn BRIFE : : 3, :
,Bl‘r(u ) Z 1 ™) ™) ... EH=2)(ym)

These formulae correspond to the canonical involution v — —o.

Today | will talk on an extreme and elaborate generalization of these addition formulae.
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I-1. The most general genus one curve

To step up higher genus cases smoothly, we reformulate the equalities for genus 1 case.
We start with the most general genus one curve €: f(x,y) = 0 (not with g(u)), where

f(xy) = v + (mx +p3)y — (& + p2x® + pax + pe),
wt(x) = =2, wt(y) = =3, wt(y;) = —j,
with the point oo at infinity. Then

{ h(x,y) dx
fy(xy)
xdx

=MM%+QM7;(:me+mMM

1%

HiR (¢1Q[u])

h(x,y) € Q[u] [xry]} / dQ[u][x, y]

(Note that fi(x,y) dx + fy(x,y)dy =0.)
Let x(u) and y(u) be the inverse functions defined by

() (a)
u= / w.

Then
1 1
XW) = ke, Y = —he
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I-2. Sigma function for the most general genus 1 curve

The sigma function o (u) associate to the genus 1 curve is

2T\ V2 -1 1 1
o) = (G7) A7 exp (= Jo'yud) "’m(w’ u, W'le),
where A = the discriminant of %,
’ 4 w w
{w/ wu}: i with =", y=X=
T foq” fﬁln fy fy

and {wq, B1} is a symplectic basis of Hj(¢*",Z).
However, o (u) is modular invariant. Indeed we have more tightly

o(u) =u+ <<%)2 i ]42> lg +--- €Z[u F1{u))  (Hurwitz-integral series ).

We define
dz
p(u) := —ﬁlogv(u).

Then, we have the solution to Jacobi’s Umkehr problem
p(u) =x(u), ' (u)=2y(u)+px(u)+ ps.
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I-3. The reformulated Frobenius-Stickelberger

Then we have

c(@® +u® 4 ... 4 u™) Hg(u(i) —u®) / Hg(u(j))n

i<j i

1 p(u(l)) p'(u(l)) e p(n_z) (u(l))
1 1 p(u(z)) @,(M(Z)) 600 p(n_z) (u(z))
It - : : :
1 p(u(")) p’(u(")) e 60("_2) (u("))
1 x(@®) y@®) 22@®) yx(u®) »*@?)
1 x(u®) yu®) 2@?) yx(u?) »*u®)

1 x(u®) () 22w0) yx(u) Bue)
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Il-1. Sample of the main results [(3,4)-curve, genus g =3

Suppose we have defined the multivariate o (1) = o (us, ua,11).
The n-variable case (Here n > 3 for simplicity) for

¢ ¢y’ — (ps®pex® Fpoxtprz) = 0.
Theorem. [0, 2011] Let [{] be the natural action of { = exp 2. Then

” . p . A\ 2n—1
o (u(l) dbooodk u(ﬂ)) H‘Tl (u(') A [g]u(l)) o1 (u(l) s [g]Zu(/)) /Htfz (u(1)>
i<j j
1 x(m®) y@®) @) yx@®) @) L2@®) yPu®) yrr®)
1 ox(u®) y@®) 2@®) yr(u®) ) P@®) yr®) yr(u®)
1ox@®) y(@®) 2@0) yr®) @) @) yr@) yr)
1 x(u®) 22@®) ... 2 (u®)
1 x(u®) 22u®) ... 2 1(u®)

1 x(u(”)) xz(u(")) 000 xnfl(u(”))
Here u®) = (u®5, uD,, ul)1)’s are variables on the 1st stratum.
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II-2. Another result [(3,4)-curve, g =3

Suppose we have defined the multivariate o (1) = o (us, uz, u1).

We define go-functions by
92 ]
@ij(u) = a a logo-(u) Pl]k(u) a 801](”)/ etc.

Then, we have a beautiful solution (explained later) to Jacobi’s Umkehr Problem, and
pij(u) € r( Jac(%), 6’(29[8—1])>, pij (1) € r( Jac(%), 6’(39[8—1])>, etc.

The case of the (3,4)-curve on the largest stratum in 2 variables :

Theorem. [EEMOP, 2008] For u, v € C? = x~ (W), we have

U(ug-;uzgzggt?j): °) _ —s5(u) + 55(0) — ps2() 921(v) + ©52(v) 21 ()

— 51(1) P22(0) + 951(v) P22(1) — 3 (11(1) Q5111 () — P11(v) Q5111 (1))
+ 371 (52 (1) 11(0) — 52 (0) 11 (1)) + pa (051 (1) 21 (v) — 51 (V) 21 (1) )
— 3(p® — m2) (51 (1) 11 (v) — s51(v) p11(u)) — 318 (11(1) — 11(0)),

where  Qs111 = @511 — 669516011
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I-3. One more example |[(3,4)-curve, g =3

Theorem. [EEMOP] (2008)

c(u+9v)o(u+[f]v) o(u+ [T?]v)

o(u)’o(v)®

= R(u,v) + R(v,u),
where
R(#,v) = —}s1(u) 52-Qs111(v) — 5021 (1) 552(0) — 340555 (1)
+ 10522 (1) 1% (0) — 30220 (1) P (0) + 5 52 Q111 (u) 171 (v)
+ %Wlll(u)P[Zz](v) - %ﬂl@lll(”)P[&](v)
+ Ypeg0s1 () p111(v) — pogon (1) p111(v) — ps2e111(u)
with

e[l = “the determinant of the (4, 7)-(complementary) minor of [(;j]3x3"
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Meta-mathematics on the generalization

In order to generalize the classical Frobenius-Stickelberger formula
there are following three “Linearly Independent Directions” :

(1) Going to higher genus case;

(2) Involving Galois conjugates, especially involving an automorphism;
(3) Changing the strata on which the formula is alive;

There are various “Linear Combinations” of them.

The theory which | will talk about today is special for functions on

Jacobian varieties, but not on Abelian varieties in general.
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[1I-1. Warming up via genus 2
We define the sigma function o (u) for € : y*> = x> + pax® + pex® + psx + po.
dx xdx (3% + pax) dx x%dx
Hig (€1 = st = AERT AT ) e
i (€1QU) = Q[ -+ Q[ £~ + Qi = + 0l
= Q[y] ws + Q[u] w1 + Q[p] 15 + Q] 11

Let w’, w”, i’ and 5" be the period matrices of size 2 X 2 with respect to

the basis w3, w1, 73, 71 and any symplectic basis of H7(¢*",Z).
The sigma function o (u) is defined by

2\ ¥2 %
o(u) = o(us,uq) = (w') A5 exp (— Ltuw' " yu) - 9 (f) (' 'u, w10,
1
which is a modular invariant entire function on C2 and ’
a quite natural generalization of Weierstrass sigma function.
ud 7 9 6
u uzu U usu
o(us, u1) = uz — 2? — 4;147—1’ — 24 st + 64;16 — 8us 371
2,3 3
37U us
— 26—y, +ﬂ6i + oo € Z[p] (us, wa))
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I1-2. Characterization of the o (u) for genus 2
We define R-bilinear form L(, ) : C> x C* — C by
L(u,0) = u'(yv' +1"0"), where v = w'v’ + w"v” with v, v” € R?,

which is C-linear on the 1st space and
the map (£,k) — L(¢,k) — L(k,£) on A X A is 27ri Z-valued,

The function o(u) = o (us,u1) is characterized (up to a multiplicative constant)
by the following properties :
(i) o(u+2)=x()o(u) expL(u+16,0), uc C? LeA,
with x(£) € {£1} satisfying
x(+k) = x(£)x(k) exp 3 [L(£ k) — L(k, £)] ;
(ii) The set of zeroes of u +— o (u) is exactly the canonical image @21
of ¢ = Symz_lcf, which is of order 1.
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I11-3. Frobenius-Stickelberger in genus 2 (1/2)
) (x(a), y(w)
k() —— C? L (xy) —u= (w3, w1) mod A.
A S S e
4 /A for u, v € k71(1(%€)) (The solu. to Jacobi's Umkehr Problem).

Theorem. [0,2012] Let o1(u) = 32-0(us,u1).
Let n>2 and u®, ... u™ be variables on x~1¢(%). Then we have

o@D +u® 4. u™) [T (@® — u) /Hgl(u(i))n
i<j j

1 x(u®) 2@®) y@®) yx®) 2@®)

1 x(u®) 2@®) y@®) yx(u®) 2*u®)

1 x(u®) @) () yr@) Pue)

Proof.
0=0(0) =23~ zor’+++,
o(u+v) = o1(u)v1 + o3(u)vs + o (w) v + - -
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I11-3. Frobenius-Stickelberger in genus 2 (2/2)

Define
2

9
ﬁoij(u) = _auiauj loga'(u).

| realized the last formula from H.F. Baker's formulae :

_o(u+v)o(u—no)

o(u)2 0 (v)? = p33(1) — p33(v) + p13(1) P11(v) — P11 (%) P13(v).
Bringing v — a point € k! (L(‘{)) after multiplying %7;))22,
0-(1:7‘-(114;)2)51((1;)_2 2 —x(v)? + p13(u) — x(v) pu1 ().  (D. Grant)
o (u)?

Bringing u# — a point € x!(1(%)) after multiplying

oc(u+v)o(u—no) — (i) — x(o
0’1(1!)20’1(?))2 - ( ) ( )

o1(u)?’

This is the initial case of the formula in the last page.
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IV-1. Higher genus curves

For coprime positive integers g > d, let € be the curve defined by

f(x,y) =0
with
flx,y) =y — 21+ Y (some coeff.)x'y/, (wt(x) = —d, wt(y) = —q)
i,j:dg>iq+jd
adjoining unique point oo at infinity. Call this (d, q)-curve.
g= (ﬂl—l)z(q—l)_

If € is non-singular, then its genus is given by

For example,

{ f(xy) =y* + (mx+ ps)y — (&% + pox® + pax + pre),
wt(x) = =2, wt(y) = —3, wt(y;) = —j.
{ f(xy) =9 + (mx+ua)y’ + (pax*+psx+ps)y — (x*+usx®+puex®+pox+prz)
wt(x) = =3, wt(y) = —4, wt(y;) = —j.
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IV-2. Weierstrass gaps at oo of the curve €

Let wy, - -+, wy be the Weierstrass gap sequence at oo of
@ . yd+...:xq+....

For example,

(2,3)-curve ............ wy = 1.

(2,2g+1)-curve ... (w1, wy, -+, wg) = (1,3, -+, 2g+1).
(3,4)-curve (w1, wy, w3) = (1, 2, 5).

(3,5)-curve (w1, wy, ws, wy) = (1, 2, 4, 7).

Let us fix a vector w = (wwg, Wapg 17" , Wy, ) consists of the “natural” basis of T'(%, Q')
with wt(ww,) = wj.

Example. For the (2,7)-curve

f(xy) =y + (X + pax® + ps)y
— (&7 + p2x® + pax® + pex® + psx® + p10x* + p1ax + pua) = 0,

xdx x2dx

dx
ey P T Ry T Ry

the vector w consists of ws =
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IV-3. Differentials of the 1st kind and the Abel-Jacobi maps

Example. For the (3,4)-curve
(o y) = v + (mx + pa)y® + (u2x® + psx + ps)y
— (2 4 p3x® + pex® + pox + p12) =0,

dx w — xdx wr — ydx
fry) T fy) T fy(y)

the vector w consists of ws =

Using w= (wwg,wwgfl,- -+, Wy, ), define the period lattice A= { 7{2} C C8.
We define, for each integer k > 0, '
1 : Symk(¢) — C8IA = Jac(¥)

k P, .
(Pl,---,Pk)HZ/]a)modA.
j=1e

We denote the mod A map by x : C& — C8/A.
We denote WKl = ((Sym*(%)). Then Wl =@, Let

e" = [—1w" uw".

19/39



[V-4. The stratification

Summing up, we have the following stratification:

A Ccx Y @) cx(®") c---cx i (@) C k(@) =8

lx lx lx lx lx

0 €@ c 8 c...c 877 c e'=ci
I U U I Il

0 € (%)= w" o w? Covec W& c WY

Tt Tt Tt T T

0o € €=Sym'¢ C Sym*¢ C.--CSymf~l¢ C Sym$¥
We note that Jacobi's theorem implies
0 " — wE

We shall define afterward an important function oy« (u#) (a higher derivative of o (u)),
which is useful on the k-th stratum x—1(@").
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VI-5. de Rham cohomology and its symplectic structure

On the 1st de Rham cohomology

Hip(41Q[]) = {’W h(xy) EQ[#][x,y]} / Q][ yl,
( DI (%, 0 )

we have the following symplectic product *:
For w, n € Hiz(¢/Q[u]).

W= ;ngs <£w) 7(P) (:Il’{zei </:w> q(P)).

There is a “concise” symplectic basis of HJp (¢/Q[u]) :

wwg/ wZUgfll e, Wy, ﬂwgl ﬂwg,y sy Nwyy
where w; stands for the weight (or the negative of weight).
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IV-6. The sigma function for a higher genus curve
The sigma function o (u) for ¢ is defined by using the symplectic basis
{Wagr Wag_yr*+ 1 Wwn } U {wgs uwg_ys*** 1} of Hip(%1Q[u]) and any symplectic basis of
Hy(¢*",Z). Itis an entire function on C8 with g variables 4 = (#,,++ ,#w,), and it is a quite
natural generalization of the Weierstrass sigma function.

Example. If € is (3,4)-curve,then
2, 1 5 1 4 1 3
0'(14) = U(u5,u21u1) = (u5 — wu” + ——uq ) + (—ylul Uy — —p1ily ) + .-
20 12 3
We define R-bilinear form L(, ) : C2x C*2 — C by
L(u,0) =u' (v’ +4"'7"), where v =w'v' 4+ w"v” with v, v” € RS,
which is C-linear on the 1st space and

the map (£,k) — L(¢,k) —L(k,£) on A X A is 27ti Z-valued,

The function o (#) = 0 (#a,, -+ ,4w,) is characterized ( up to non-zero multiplicative constant ) by
(i) o(u+€) =x(€)o(u) expL(u+1€,£) for u € C8, £ € A,

with x(€) € {1} satisfying x (€ + k) = x(£)x (k) exp 2[L(¢,k) — L(k,£)] ;
(ii) The set of zeroes of u — o (u) is exactly on @1 U [—1]0@E~1,

which is of order 1. Here @18~ is the canonical image of Sym$~1¢%.

22/39



V-1. On the largest stratum |(3,4)-curve, g = 3|

We define go-functions by

02 ]
pij(u) := _Wlog o(u), SOijk(M) = aTk@ij(u), etc.
Then i;(u) € T(Jac(%), 0(20871)), () € T(Jac(¥), 0(30871)), etc.

The case of the (3,4)-curve on the largest stratum in 2 variables :

Theorem. [EEMOP] (2008)
For u, v € C* = x~1(WE!), we have

”(”‘T—EJQZEZ; °) —s5(u) + 55(0) — Es2(u) 921(v) + 52(0) P21 (1)

— 51 (1) 922(0) + 051(v) 22 () — 3 (11 (1) Q5111(0) — P11(0) Q5111 (1))
+ 1 (ps2(u) p11(v) — 52(0) 11 (1)) + 111 (g051(1) 21 (v) — 51(0) P21 (1))
— 3 (m® — m2) (51(u) p11(0) — ps1(0) 11 (1)) — 3118 (011(#) — 11 (),

where

Qs111 = 5111 — 64951011-
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V-2. On the largest stratum for the purely trigonal curve

Theorem. [EEMOP] (2008)

For € : f(x,y) = y® — (x* + p3x® + pex® + pox + p12) = 0 with the canonical

automorphism [Z] : (x,y) — (x,ly) of I = exp(27i/3), we have
o(u+v)o(u+[f]o) o(u+ [[]*0)

o(u)’o(v)?

= R(u,v) + R(v,u),
where
R(u,v) = _%@51(1’!) %an(v) = %K»’Zl(u)@ssz('v) _ %Psss(u)
+ %9522(”)9[55] (v) — %80222(”)@[52] () + 35 aBTIQsln(u)sO[ss] (v)
+ Yo (1) (v) — I (u) 1 (v)
+ 36051 (1) 111 (v) — oo (1) 111 (v) — ps20111 (1)
with

@7l = “ the determinant of the (i,7)-(complementary) minor of [Pijlax3"
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VI-1. Higher derivatives of the sigma function

We define, for the multi-index I =" with respect to {wg, -+, w1}
defined in the next page, or for arbitrary multi-index I,

or(u) = (]I;a )(r(u).
Examples. If (d,q) = (3,4) then b =2 = {1} and §f = i1 = {2}, and
oy (u) = o1(u) = aiullf(us,uz,m),
oy(u) = o2(u) = i o (us, uz, u1).

We define oo (%) = 1, a constant function.
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VI-2. Table of g"

(dp) |g| =4 | b= :
23) |1 {} {1} {3 L]
(25) |2 {1} {} {y {1
(27) 3] {3} {1} {y {1
(29) 4] {15} {3} {y {1
(211) |5| {37} | {15} {r i {r{}-
(2,13) | 6| {1,59} | {3,7} {r{r{}-
(2,15) | 7| {3,7,11} | {1,59} {1y {3 {}]:
(34) 3] {2} {1} {y {1
(3,5) |4| {4} {2} {3}
3,7 |6| {16} | {15} {3 {3

7 {1y {}{} -

(3,9)

{4,10}

{27}




VI-3. Table of f"

We explain by an example : (d,9) = (3,7), g=6. Writea ¢ Xg=6X6

table as follows. We first write the Weierstrass gap sequence with respect to

(d,q) on the last column, namely,

11

= N| =] U1 ®
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VI-4. Table of g"

Then, put into other boxes naturally increasing non-negative integers as

follows:

10 |11

(6]
=RE N NN
= | N| Ul oo

SN W OO

Ol Wik
=N |[=| 01| ®
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VI-5. Table of g"

If we wish to get " = B2, extract (§ —n) X (g —n) = 4 X 4 minor on the

lower right corner. and Remove all rows and columns including 0.

678|910 |11
34|56 |7]|8
012345_)2345_)25
0o,1|2 |3 4 1121314 1
0] 12 0/1]2
01 0|1

Finally, by reading the numbers on the off-diagonal, we have

92
2 = 1 = = .
b {15} and op(u) = o15(u) au18u5a(u)
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VI-3. Properties of the satellite sigma functions (The most important page!)
The set of higher derivatives of the o (u)
{x (@) 5 u¥— op(u)|0Sn<g—1}

the satellite sigma functions for 4. They have the following very nice properties:
() o (u+8) = x(6) o () L(u+ 16,6), u € x1(OF), £ € A.
(i) If u € x Y\ (WHINWI=1), then the function x~1(W) 3 v — oy (u+ ) has
a zero at A of order wg_, —g+n+1,
and other ¢ — (wy_, — g+ n+1) zeroes elsewhere mod A.
Moreover, o1 (1 4 0) = Loy (u) v1“s—~8T"+1 4 “higher terms in 1"
The exact places of all zeroes of v +— 0y, (4 + v) := o2 (1 4 v) are known.
oy(u) := oy (u) = £ 048+ -+ - and this has only zero at A.
(iii) The set of zeroes of the function x~Y(WI*1) 3y oyuia(u) is x=1(OM),
which is of order 1.
(iv) For anindex I, if wt(I) < wt(h"), then or(u) =0 on x~1(@M).
(v) If wt(I) = wt("), then the function o7(u) = “an integer" oy (u) on x~1(@M).
Proof : By certain expression of o (u) as the determinant of a matrix of size N X N

(or by precise observation of power series expansions).
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VII-1. Guide Function

We may extend this class of addition formulae by considering more general map
@:¢ — P!

which belongs to Z[p1, 12, -« + , pe] [x (1), y(u)], and of homogeneous weight.

We suppose the coefficient of the lowest weight term w. r. t. x(#) and y(u) is 1.
Let m > 2 be the order of unique pole of @, and u be the analytic variable of ¢
regarding 4 as a complex torus. Then there exist

2 3] m—1
u, u*, u*, u*, -, u* eC

such that these m variables are generically different, vary continuously, and satisfy

m—1
p(u) =) =--- =@ ).
Moreover, we may choose them as
utu -+ ut" =0

Indeed d(u~+u*+---+ u*mil) can be regarded as a holomorphic 1-form on P1.
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VII-2. An example of new addition formula
Example. ([Eilbeck-England-O, 2014]) We take the (2,3)-curve and y(u) as a guide
function. (y(u) = y(u*) =y(@**) ) Let u=u® and v = u® (two variable case).
Then we have the addition formula
o(u+0)o(u+o*)o(u—+ ov*)
- 3 * *k = y('l]) - y(_u)
o(u)?o(v) o (o) o(v**)

=y(u) +y(v) +pax(u) +ps
_ f(x(u),Y) = f(x(u),W) .
b4 Y=y (u), W=y(v)

Proof. Use the following : As a function of u,
y(©) —y(—u) =0 < u=—v, —0*, or —0*;
y(0) —y(—u) =0 <= u=0;
ut+u+u*=0;
oc(u) =0 <= u€A.
Remark. The RHS is defined over Z[u] = Z[u1, p2, p3, pa, pis).-
Remark. There is [Eilbeck-S.Matsutani-O, 2011] for y? + psy = x> + pe.
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VII-3. Second example of new addition formulae

We take the (2,3)-curve and x%(u) as a guide function.
Let u = u® and v = u® (two variable case). Then
Example. We have the addition formula
oc(u+v)o(u+v*)o(u+0**) o(u+ v***)
o(u)to(v) o(v*) o(o**) o (o***)

Remark. The RHS is defined over Z[u] = Z[p1, p2, 13, ta, tis)-

= x*(u) — x*(0).
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VII-4. On the first stratum in two variables [(3,4)-curve, g = 3]

We define the functions «~'(WM) 3 u — x(u), x '(WHM) 3 us y(u) by

() y () o
w.

8= (st W) =

J oo

Let us take x(u) be the guide function.

For a variable v € k= 1(W), let {v,’,9”"} be a complete representative modulo A of the

inverse image of the map v — x(v) such that v’ and v" vary continuously with respect to v

and v/ = v”’ = 0 when v = 0.

Of course, y(v), y(v’), y(v”) are the three roots of f(x(v),Y) =0.

Lemma. [O] (2011) Then, for u, v € k"1 (W), we have
2

oy(u+90) o, (u+9") oy (u+ ") _
oy(u)? oy (v) oy (v’) oy (v”)

1 x(u)
1 x(v)

Here we recall that

oy (u) = ope(u) = 0x(u) = aiuzo'(u), oy(u) = oy (u) = o1 (u) = %ltr(u).
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VII-5. On the first stratum, n variables |[(3,4)-curve, g =3

Theorem. [0] (2011) In n-variable case (Here 1 > 3 for simplicity):

o(u® 4o u@) Hgl(u(i) + 1D oy (1D 4 u )
i<j
HUz(u(i))Zn—2i+102(u(f)')i—l‘rz(u(i)")i—l
i
1 x(u®) y@®) 2@®) yx®) @) L@®) y?@®) yx®)
1 x(@®) y(u®) £@®) yx@®) Pu) 2®) ypd®) yie®)

1 x(u®) y(u®) R@0) yr@®) ) But) ) yix(u)
1 x(u®) 2u®) ... xm1(uo)
1 x(u®) 2u®) .. = (u®)

1 x(u®) 22@®) o 1(y)
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VII-6. Using guide fct. y, on the 1st Stratum |(3,4)-curve, g =3

Theorem. [EEQ] (2014)
On the 1st stratum in 2-variables # and v with guide function y (order 4), we have
o1(u+0)o1(u+ 0*)o1(u + 0**) oy (u + 0***)
o2 ()02 (v) 02 (v*) 02 (v**) 02 (0*4*)
=y()*+y()y(0)+y(v)* + (pax(u)+pa) (y(0) +y(0)) + pox(u)*+ps x(u) +p
f(x(u),Y) — f(x(n), W)

) y-w e A GO R G

Remark. Of course, y(u) = y(u*) = y(u**) = y(u***),
y(') = y(') = y(u') = y(u*),
y('") =y*") = y(u*"’) = y(w>*").
Keys of the proof. For a fixed u € x~1(@[), the map
v+ oy, (u+v)
has a zero at v = 0, #’, 4’ modulo A of order 1, and the map
u— oy(u)
has only zero at u = 0 modulo A of order (g =)3, and no zeroes elsewhere.
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Connection with multiple Gamma functions?

Recall the famous infinite product expression for the Weierstrass sigma:

u u u?
o(u) = uelg\ (1— Z) exp (E + 2£2> .
£2£0
This implies the connection with the double Gamma functions:
o HF -1 2+ w 3 +wo
o (Z) —_— e’-MO”‘V-:E . Z . - 2 ( 1 ——— H‘l"i—-‘ .v) -
(2| + o) I | + w,)

In the higher genus case,

oy(u) = 0y (Uwg,**+ ,w,) on &~'L(€) has zeroes of order g, and no
zeroes elsewhere.

Does it has some infinite product expression?

The speaker has a dream on existence of

(1) an infinite product expression of oy (u) and

(2) an infinite product expression of multivariate multiple T’ functions,

and their connection.
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VIII. Summary and Some Questions

For each curve % and for each the following setting, we have an addition formula of F-S type :
(1) k --- the stratum : on the Ist stratum — by using x(u) and y(u);
on the largest stratum — by using g-functions,
(2) n --- the number of variables,
(3) ¢ - - - the guide function.

Some Questions:
Q1 Is there further natural generalization?
Q2 Why the coefficients of RHS belong to Z[u]? (It is obvious they belong to Q[].)
(If the order of the guide function is small Q2 is OK because the RHS is a determinant, etc. )
Q3 How do these formulae link with other existing mathematical world? Or some applications?
Q4 Can the general RHS be regarded as a sort of higher generalization of

the concept of “determinant’?

Additional reference.

J.C.Eilbeck, V.Z.Enolskii, and E.Previato: On a generalized Frobenius-Stickelberger addition formula,
Letters in Mathematical Physics, 63(2003) 5-17

J.C. Eilbeck, V.Z. Enolskii, S. Matsutani, Y. O, and E. Previato :
Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties,
Crelle J. 619(2008)37-48
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Thank you very much for your attention!
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