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Abstract

The three fundamental properties of the Bernoulli numbers, namely, the theorem

of von Staudt-Clausen, von Staudt’s second theorem, and Kummer’s original con-

gruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz

numbers. These are coefficients of power series expansion of a higher genus alge-

braic function with respect to suitable variable. Our generalization strongly con-

trasts with the previous works. Indeed, the order of the power of the modulus prime

in our Kummer-type congruences is exactly the same as in trigonometric function

case, namely, Kummer’s own congruence for the original Bernoulli numbers, and

as in elliptic function case, namely, H. Lang’s extension to the Hurwitz numbers.

However, in the other past results on higher genus algebraic functions, the modulus

was at most half of these classical cases. This contrast is clarified by investigating

the analog of the three properties above for the universal Bernoulli numbers.

(Accepted and Corrected Version : June 5, 2012)

Introduction

In order to recall material on the Bernoulli and Hurwitz numbers, and to explain our new

numbers, we consider a curve C of genus g = 0 defined by

y2 = x2g+1 − 1, or y2 = x2g+1 − x.(0.1)

Here we assume C is proper by adding in a natural way a point ∞ at infinity. The integral

u =

∫ (x,y)

∞

xg−1dx

2y
(0.2)
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takes finite values for all (x, y) ∈ C and has a zero of order 1 at ∞. By regarding (0.2)

as an equation in u and x, we consider a function x 7→ u on a neighbourhood of ∞. If

g = 1, namely if C is an elliptic curve, the inverse function u 7→ x extends to the whole

of the complex plane and is just the elliptic function ℘(u) of Weierstrass.

If g = 2, the inverse function above does not extend globally, so we should consider

inverse functions of a system of summations

(u1, u2, · · · , ug) =
g∑

j=1

∫ (xj ,yj)

∞

(dx
2y
,
xdx

2y
, · · · , x

g−1dx

2y

)
(0.3)

of g integrals to g points (x1, y1)，(x2, y2)，· · ·，(xg, yg) of a natural base of holomorphic

1-forms. This is the classical theory of Abelian functions ever since Jacobi.

Now we back to (0.2) for g = 0 for the curve in the first part of (0.1). The function

u 7→ x is just 1/ sin2(u), and its Laurent coefficients are the Bernoulli numbers B2n:

1

sin2(u)
=

−1

u2
+

∞∑
n=1

(−1)n
22nB2n

2n

u2n−2

(2n− 2)!
.(0.4)

Moreover if g = 1 and C is defined by y2 = x3 − x, the Hurwitz numbers E4n, important

analogs of the Bernoulli numbers, are defined as Laurent coefficients of x(u) = ℘(u):

℘(u) =
1

u2
+

∞∑
n=1

24nE4n

4n

u4n−2

(4n− 2)!
.(0.5)

It seems extremely difficult, at least to the author, to find a generalization of these numbers

for the case g = 2 in the case of (0.3) involving several variables.

However, the Laurent development of the inverse function u 7→ x near u = 0 for several

cases of g = 2 has a surprising property of the coefficients, namely, a higher genus analog

of some of the famous properties of the Bernoulli numbers ([Clau], [vS1], [vS2], [Ku]) and

for Hurwitz numbers ([Hu1], [Hu2], [L]). They are formulated as our main theorems 6.1,

6.3, 7.1, and 7.5.

Here we explain the situation and results more explicitly. We suppose g = 1. We recall

that the values u = (u1, u2, · · · , ug) of (0.3) for variable g points (x1, y1), (x2, y2), · · · ,
(xg, yg) on C and for all g paths of integrals from ∞ to (xj, yj) fill the whole g-dimensional

linear space over the complex numbers C. We denote the space by Cg. The periods of

(0.3), namely, the values of u = (u1, u2, · · · , ug) for all closed g paths give a lattice, say

Λ, in Cg. Then Cg/Λ is Jacobian variety of C . We denote by ι the canonical embedding

(x, y) 7→ u of C into Cg/Λ defined by

u =

∫ (x,y)

∞

(dx
2y
,
xdx

2y
, · · · , x

g−1dx

2y

)
(0.6)
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modulo Λ. Our situation is summarized as follows:

κ−1ι(C ) // //
� _

��

C
� _

ι

��
Cg κ // // Cg/Λ

where κ is the map given by modulo Λ. The object κ−1ι(C ) is a universal Abelian covering

of C and is denoted by C̃ in this paper. If g = 1, then the vertical map of the left hand

side is an epimorphism.

If u varies along C̃ , u determines uniquely a point (x, y) on C by (0.6). We denote

the coordinates by

x(u) and y(u).

We can take the g-th coordinate ug as a local parameter on C̃ near the point 0 =

(0, 0, · · · , 0) as explained in Section 4.2. So we have Laurent development of x(u) and

y(u) by ug. Their Laurent coefficients, which we call generalized Bernoulli-Hurwitz num-

bers, surprisingly resemble the classical Bernoulli and Hurwitz numbers, especially, they

satisfy quite natural generalizations of von Staudt-Clausen’s theorem([vS1] and [Clau]),

von Staudt’s second theorem([Ku]), and Kummer’s original congruence([vS2]).

The properties discussed above of the generalized Bernoulli-Hurwitz numbers were

known from computer calculations at the beginning of this work. Then the author arrived

the universal Bernoulli numbers after thinking about proofs concerning the generalized

Bernoulli-Hurwitz numbers.

Although there exist many researches generalizing those properties, for example, [Ca4],

[Ka2], [RS], [Sn1], [Sn2], [Sn3], [Sn4], [Sn5], [Sn6], [V], and etcetera, it should be noticed

that, in those works generalizing Kummer’s congruence, the order of the power of respect-

ing prime p are less than the half of the modulus of Kummer’s original congruence. To

the best knowledge of the author, Carlitz is the first who tried to find a generalization

of the Hurwitz numbers to hyperelliptic functions, as is seen by his papers [Ca1] and

[Ca4]. He did not consider our functions x(u) and y(u) and incompletely succeeded.

Contrasting with this, our generalization of Kummer’s original-type congruence for the

generalized Bernoulli-Hurwitz numbers in this paper is a congruence modulo the same

power of the respecting prime with the case of g = 0 ([Ku]) that is the classical congru-

ence of Kummer himself for the Bernoulli numbers, and with the case of g = 1 ([L]) that

is the Kummer-type congruence given by H. Lang for Hurwitz numbers.

The most remarkable thing is that the order of power of the modulus in our Kummer

congruence (Theorem 3.1) for the universal Bernoulli numbers, which is best possible as is

explained in 3.2(2), is also less than half of the order in the cases of the classical Bernoulli

numbers and our generalized Bernoulli-Huriwitz numbers.

As the classical Bernoulli numbers are associated with the formal group law such that

its formal logarithm is t 7→ log(1 + t), the universal Bernoulli numbers are associated to
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the universal formal group law that is a commutative formal group law of one variable

and given over a ring known as the Lazard ring (see §1.5 of [Ha]). These numbers are

used in stable homotopy theory rather than number theory (see §31.1 of [Ha]).

The generalized Bernoulli-Hurwitz numbers are associated with certain commutative

formal group laws of one variable, as explained in Section 13.1. Similarly, the numbers

which Carlitz et al. studied also are associated with commutative formal group laws.

Since any commutative formal group law of one variable is obtained from the universal

formal group law by specializing it, because of universality, any properties of the universal

Bernoulli numbers are inherited not only by the generalized Bernoulli-Hurwitz numbers

but also by Carlitz’s generalizations, etc.

After all, the Kummer congruence for the universal Bernoulli numbers can not be used

to prove such a congruence for the generalized Bernoulli-Hurwitz numbers, because the

best possible order of power of the former is less than the half of the expected order of

the later.

The result in the Section 2, namely, Clarke’s theorem, which is the nice generalization

and unification of the von Staudt-Clausen theorem and von Staudt’s 2nd theorem, is used

in the proof of such theorems for the generalized Bernoulli-Hurwitz numbers. On the

other hand, the Kummer congruence for the universal Bernoulli numbers is proved in

Section 3 and it is not used later. So, if the reader is interested only in the generalized

Bernoulli-Hurwitz numbers, he/she could skip the whole of the Section 3.

Since writing the proof in the most general setting is so complicated, we prove the

properties of the generalized Bernoulli-Hurwitz numbers only for the hyperelliptic curve

of genus two defined by

y2 = x5 − 1.

The endomorphism ring of the Jacobian of this curve contains the 10th roots of unity.

Then, for instance, a type of our numbers denoted by C10n is defined by

x(u) =
1

u22
+

∞∑
n=0

C10n

10n

u2
10n−2

(10n− 2)!
.(0.7)

Our results also hold for non-hyperelliptic curves of type described in the Section 14.1

(curves of cyclotomic type). The author think that it is not so difficult for the reader

to give the proof of the properties of the numbers for such general curves. On the other

hand our method gives a new proof of the three properties for Bernoulli numbers, and for

Hurwitz numbers.

The author expect similar numbers might be obtained from more general curve such

that the formal completion of its Jacobian variety over suitable local ring has a 1 dimen-

sional factor of formal groups.

The proof of the von Staudt-Clause type theorem of ours strongly depends on nice

paper by L.Carlitz [Ca1]. For the case g = 2, it seems to difficult to use the classical
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algebraic addition formula and multiplication formulae to prove the theorems. In his

paper above Carlitz gave an interesting proof avoiding the addition and multiplication

formulae of elliptic functions. Roughly speaking, his method is technical extension of

Lagrange inversion theorem(see [WW], pp.131-133)1. However the divisor (in the sense of

algebraic geometry) of n-th power of a given function is just the n-multiplication of the

divisor of the function. We should think that the proof of Carlitz’s and our proofs use

multiplication formulae on Jacobian varieties2.
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Convention and notations

(1) For a rational number α, we denote by ⌊α⌋ the largest integer which does not exceed

α, and by ⌈α⌉ the smallest integer not smaller than α.

(2) We use the notation

(z)n = z(z − 1) · · · (z − n+ 1)

for an integer n = 0. Here the range of z is determined by each context. The binomial

coefficient is written by this as (
z

n

)
=

(z)n
n!

.

(3) Generalizing the factorial symbol, we denote by n!! the product

n(n− 2)(n− 4) · · ·

of the sequence with step −2 from n to 1 or 2. Similarly n!!! means the product of the

sequence of positive integers from n with step −3. Moreover, for instance, we denote

n!!!!! = n!(5). For example, 12!(5) = 12 · 7 · 2.

(4) If p is a prime and the p-part of given rational number r is pe, then we write e = ordpr.

If τ is a polynomial (possibly in several variables) with rational coefficients, then we denote

by ordpτ the least number of ordpr for all the coefficients r of τ .

(5) For a prime number p and an integer a, we denote by a|p the remainder of the p-part

of a, namely a|p = a/pordpa.

(6) If F (z) is a formal power series with respect to z, we denote by [zn]F (z) its coefficient

of zn. We use also [ z
n

n!
]F (z) := n![zn]F (z) or [ z

n
]F (z) := n[zn]F (z).

(7) For a formal power series φ(z) with respect to z (permitting negative-power terms),

we call [ z
n

n!
]φ(z) (n = 0) the Hurwitz coefficient for φ(z) of zn. We say [ z

n
]φ(z) is its

Carlitz coefficient.

(8) Let R be a commutative ring. We denoted by R⟨⟨v⟩⟩ the ring of the formal power

series with respect to z consisting of only terms of non-negative order such that all the

corresponding Hurwitz coefficients belong to R.

(9) In an expression of a power series with respect to z, the symbol (d◦(z) = m) stands

for its part of the terms of degree at least m. When m is obvious, we simply denote them

as usual by + · · ·.
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1 Preliminaries from Combinatorics

1.1 Fundamentals on factorial operation

The following properties on the factorial operation are frequently used in this paper. Let

n and k be non-negative integers, and let p be a prime number. If n = kp + a with

0 5 a < p, then

(1.1) ordp(n!) = ordp((kp)!) = ordp(k!) + k.

We denote by Sp(n) the sum of the digits with respect to the base p expression of n. Then

(1.2) ordp(n!) =
n− Sp(n)

p− 1
.

1.2 Lagrange inversion formula

For a power series F (z) of z, we denote by [zn]F (z) the coefficient of zn. The following

formula is called the Lagrange inversion formula.

Proposition 1.3. Let φ(u) = u + · · · be a power series of u having only terms of

positive degree such that its coefficient of degree one term is 1. Let ψ(t) = φ−1(t) be its

formal inverse series, namely, the power series with respect to t such that φ(ψ(t)) = t.

Then

[un]
( u

φ(u)

)ℓ
=

ℓ

ℓ− n
[tn]
(ψ(t)

t

)ℓ−n

.

A proof of this is found in [Co], pp.148-153, for instance. See also [WW], pp.128-133

(Lagrange-Bürmann theorem).

1.3 Fundamentals on binomial coefficients

The following Lemma is used in 10.1.

Lemma 1.4. Let n = 0, q > 0, r be three integers. Then

(qn− r)!(q)

(qn)!(q)
∈ Z

[
1

q

]
.

Proof. The number in the statement is the coefficient [un+1]
(
− (1 − u)r/q

)
. Let

t = q{(1 − u)1/q − 1}, so that u = 1 − (1 + 1
q
t)q. By applying the Lagrange inversion

formula (1.3) for ℓ = −1, we have

[un]

(
q{(1− u)1/q − 1}

u

)
= [un]

(
u

q{(1− u)1/q − 1}

)−1

= [tn]

(
1− (1 + 1

q
t)q

t

)−1−n

.

Since the right hand side belongs to Z[1
q
], the left hand side does also. Hence [un]

(
(1 −

u)1/q
)
∈ Z[1

q
]. So that [un]

(
(1− u)r/q

)
∈ Z[1

q
] for all n.
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Here, we give another another proof of this.

Lemma 1.5. Let p be a prime number, n = 0 be an integer, and z ∈ Z(p). Then(
z

n

)
∈ Z(p).

Proof. For a given integer n = 0, the function z 7→ n is a continuous map from Zp

to Qp. Since Z is dense in Zp and
(
z
n

)
∈ Z for z ∈ Z, the statement follows.

Although 1.5 is weaker than 1.4, 1.4 implies 1.4 by varying p because of the equality

(1.6)

(
r
q
− 1

n

)
=
r − q

q
· r − 2q

q
· · · · · r − nq

q

/
n! = (−1)n

(qn− r)!(q)

(qn)!(q)
.

2 Clarke’s theorem

2.1 Definition of the universal Bernoulli numbers

Let f1, f2, · · · be infinitely many indeterminates. We consider the power series

(2.1) u = u(t) = t+
∞∑
n=1

fn
tn+1

n+ 1
,

and its formal inverse series

(2.2) t = t(u) = u− f1
u2

2!
+ (3f1

2 − 2f2)
u3

3!
+ · · · ,

namely, the series such that u(t(u)) = u. Then we define B̂n ∈ Q[f1, f2, · · · ] by

(2.3)
u

t(u)
=

∞∑
n=0

B̂n
un

n!

and call them the universal Bernoulli numbers (of order 1). If we specialize as fn = (−1)n,

then u(t) = log(1+ t) and t(u) = eu − 1. Then B̂n is specialized to the classical Bernoulli

number Bn.

2.2 An expansion of the universal Bernoulli numbers

For a finite sequence U = (U1, U2, · · · ) of non-negative integers, we denote w(U) =
∑

j jUj,

and call it the weight of U . The number d(U) =
∑

j Uj is called the degree of U . We can

regard U as a partition of w(U). For simplicity, we write

(2.4) U ! = U1!U2! · · · ,
(
d

U

)
=
d!

U !
.
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Using the notations ΛU = 2U13U24U3 · · · and fU = f1
U1f2

U2f3
U3 · · ·, we define

(2.5) γU = ΛUU !.

If we set h(t) = (u(t)/t)− 1, then

(2.6)
(u(t)

t

)s
=
(
1 + h(t)

)s
=

∞∑
d=0

(
s

d

)
hd(t), hd(t) =

∑
d(U)=d

(
d

U

)
fU

ΛU
tw(U).

Hence, by writing

(2.7) τU = (−1)d(U)−1 (w(U) + d(U)− 2)!

γU

and using 1.3 for ℓ = 1, we have the following expression for B̂n.

Proposition 2.8. We have

B̂n

n
=
∑

w(U)=n

τUf
U .

2.3 Clarke’s theorem

Now, we describe Clarke’s theorem on the universal Bernoulli numbers. For a prime

number p and an integer a, we denote by a|p the remainder of the p-part of a, namely

a|p = a/pordpa.

Proposition 2.9. One has

B̂1 =
1

2
f1,

B̂2

2
= −1

4
f1

2 +
1

3
f2,

B̂n

n
≡



∑
n=a(p−1)
p:prime

a|p−1 mod p1+ordpa

p1+ordpa
fp−1

a ( if n ≡ 0 mod 4 )

f1
n−6f3

2

2
− nf1

n

8
+
∑

n=a(p−1)
p: odd prime

a|p−1 mod p1+ordpa

p1+ordpa
fp−1

a

( if n ̸= 2 and n ≡ 2 mod 4 )

f1
n + f1

n−3f3
2

( if n ̸= 1 and n ≡ 1, 3 mod 4 )

mod “ the set of weight n polynomials in Z[f1, f2, · · · ]”.

The proof is refered to [Clar], which is done by a quite involved use of 2.8.
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Remark 2.10. (1) Of coarse, we have a congruence on B̂n itself. For example, if n ≡ 0

mod 4, this proposition shows that

(2.11) B̂n ≡ −
∑

p:prime
p−1|n

fp−1
n/(p−1)

p
mod Z[f1, f2, · · · ].

Indeed, for a prime p, if n = a(p− 1) and ordpa = ν, then

n ·
(
a|p−1 mod p1+ν

)
p1+ν

≡ 1− 1

p
≡ −1

p
mod Z.

Hence we have (2.11). If we suppose additional condition p− 1̸ |n, then we see easily

(2.12) B̂n/n ∈ Z(p)[f1, f2, · · · ].

The property (2.11) is an analog of the von Staudt-Clausen theorem for the classical

Bernoulli numbers, and (2.12) is an analog of the von Staudt second theorem. Clarke’s

theorem is a beautiful unification of the analogs of these two theorems.

(2) Although the modulus is whole the ring Z[f1, f2, · · · ] in [Clar], we obviously see that

it may be replaced as above because of 2.8.

3 Universal Kummer-type congruences

3.1 Main theorem

The universal Bernoulli numbers satisfy the congruence relation of Kummer’s original

type modulo p⌊a/2⌋.

Theorem 3.1. Let p be a prime, a and n be positive integers. Assume that n > a and

n ̸≡ 0 mod (p− 1). Then

a∑
r=0

(
a

r

)
(−fp−1)

a−r B̂n+r(p−1)

n+ r(p− 1)
≡ 0 mod p⌊a/2⌋Z(p)[f1, f2, · · · ].

Remark 3.2. (1) If a = 1 and n > a = 1 with n ̸≡ 0, 1 mod (p − 1), then the

congruence above holds modulo p. This fact appeared in [Ad1], Theorem 3.2 for the first

time. A shorter proof and an extension to the case when n ≡ 1 mod (p− 1) are given in

[Ad2], Theorem 1.

(2) For an odd prime p = 7, let us consider U such that U1 = p, U2p−1 = (p − 3)/2, and

the other entries are Uj = 0. Then w(U) = p+ (p− 5)(2p− 1)/2 ≡ −1 mod (p− 1). For

this U , we can easily show that

ordp(τU) = (p− 5)/2(= ⌊(p− 4)/2⌋).

12



Note that we have n > a for a = p − 4 and n = w(U). Looking at (3.13) below, we

understand that the estimate 3.1 is best possible.

(3) In the example above for p = 5, we have ord5(τU) = 0. Then n = w(U) = 5 ≡ 1 mod

(5 − 1) and this is one of the excluded case in [Ad1], Theorem 3.2. Keeping this case in

mind and slightly modifying the proof of 3.11 below, we can show that the congruence in

3.1 holds modulo p for a = 1 provided the additional condition n ̸≡ 1 mod (p− 1).

In 3.5, we give a new proof of the following congruence of Adelberg ([Ad3], (i) of the

Theorem) directly from 3.1 and the Remark 3.2(1).

Corollary 3.3. (Adelberg’s congruence) If n ̸≡ 0, 1 mod (p− 1) and n > a, then

fp−1
pa−1·

B̂n

n
≡

B̂n+pa−1(p−1)

n+ pa−1(p− 1)
mod paZ(p)[f1, f2, · · · ].

Theorem 3.1 gives more complicated but similar congruence to Corollary 3.3 if n ≡ 1

mod (p− 1). This is (ii) of the Theorem in [Ad3].

3.2 The first tool for the proof

We need two Propositions for the proof of 3.1. The following is the first one.

Proposition 3.4. Let p be a prime, and a, n be non-negative integers. Let

M =

ordp(n!) ( if n = ap ),

a− ⌊n/p⌋+ ordp(n!)− ⌊(a− ⌊n/p⌋)/p⌋ ( if n < ap ).

Then we have the following congruences.

(1) If q is a non-negative integer, then

a∑
r=0

((r + q)p+ n)!

(r + q)!pr+q

(
a

r

)
≡ 0 mod pM ;

(2) If r0 is an integer such that 0 < r0 5 a and n = r0p is an integer, then

a∑
r=r0

((r − r0)p+ n)!

(r − r0)!pr−r0

(
a

r

)
≡ 0 mod pM .

We define, for two real numbers α > 0 and β,

(3.5) Zp⟨⟨v⟩⟩(α),β =
{
φ ∈ Qp[[v]]

∣∣∣ ( d
dv

)pa
φ ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩ for all a = 0

}
.

Remark 3.6. (1) The reader may find it easier to understand the proof by regarding

Zp⟨⟨v⟩⟩(α),β as “pαβZp⟨⟨pα/pv⟩⟩”.
(2) We only use the case of α = 1− 1

p
for the proof of 3.4
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Lemma 3.7. (1) Zp⟨⟨v⟩⟩(α),β is a Zp-submodule in Qp[[v]].

(2) Zp⟨⟨v⟩⟩(α),β ⊂ p⌈αβ⌉Zp⟨⟨v⟩⟩, Especially, if β = 0 then Zp⟨⟨v⟩⟩(α),β ⊂ Zp⟨⟨v⟩⟩.

(3) For f(v)=
∞∑
n=0

anv
n ∈ Qp[[v]], f(v) ∈ Zp⟨⟨v⟩⟩(α),β if and only if

m∑
n=0

anv
n ∈ Zp⟨⟨v⟩⟩(α),β

for all m = 0.

(4) If α1 = α2 > 0 then Zp⟨⟨v⟩⟩(α1),β ⊂ Zp⟨⟨v⟩⟩(α2),β.

(5) If β1 = β2 then Zp⟨⟨v⟩⟩(α),β1 ⊂ Zp⟨⟨v⟩⟩(α),β2.

(6) If n ∈ Z (possibly negative) then pnZp⟨⟨v⟩⟩(α),β ⊂ Zp⟨⟨v⟩⟩(α),β+
n
α .

(7) If φ ∈ Zp⟨⟨v⟩⟩(α),β then d
dv
φ ∈ Zp⟨⟨v⟩⟩(α),β.

(8) If φ ∈ Zp⟨⟨v⟩⟩(α),β then
(

d
dv

)p
φ ∈ Zp⟨⟨v⟩⟩(α),β+1.

(9) Let m = 0 and b ∈ Qp. bv
m/m! ∈ Zp⟨⟨v⟩⟩(α),β if and only if ordp(b) = α

(
⌊m

p
⌋+ β

)
.

Proof. (1) For φ1, φ2 ∈ Zp⟨⟨v⟩⟩(α),β, obviously φ1+φ2 ∈ Zp⟨⟨v⟩⟩(α),β. For φZp⟨⟨v⟩⟩(α),β

and a ∈ Zp, obviously aφ ∈ Zp⟨⟨v⟩⟩(α),β.
(2) If φ ∈ Zp⟨⟨v⟩⟩(α),β, then

(
d
dv

)pa
φ ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩ by the definition. If we set a = 0,

then we obtain just the statement.

(3) For the f(v) ∈ Qp[[v]], write down the definition of Zp⟨⟨v⟩⟩(α),β. Then we see that

f(v) ∈ Zp⟨⟨v⟩⟩(α),β if and only if anv
n ∈ Zp⟨⟨v⟩⟩(α),β for all n = 0.

(4) This follows from the inequality ⌈α1(a+ β)⌉ = ⌈α2(a+ β)⌉ for all a = 0.

(5) It suffice from (the proof of) (3) to show that anv
n ∈ Zp⟨⟨v⟩⟩(α),β1 implies anv

n ∈
Zp⟨⟨v⟩⟩(α),β2 . This is obvious from the definition of Zp⟨⟨v⟩⟩(α),β.
(6) This follow from ⌈α(a+ β + n

α
)⌉ = ⌈α(a+ β)⌉+ n.

(7) If
(

d
dv

)pa
anv

n ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩, then
(

d
dv

)pa
nanv

n−1 ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩. Thus the

statement follows from (the proof of) (3).

(8) Suppose φ ∈ Zp⟨⟨v⟩⟩(α),β. Then
(

d
dv

)pa
φ ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩ by the definition. By

replacing a by a+ 1, we have(
d
dv

)pa( d
dv

)p
φ =

(
d
dv

)p(a+1)
φ ∈ p⌈α((a+1)+β)⌉Zp⟨⟨v⟩⟩ = p⌈α(a+(β+1))⌉Zp⟨⟨v⟩⟩,

and the statement.

(9) For φ = bvm/m!, the property(
d
dv

)pa
φ ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩ for all a = 0

is equivalent to (
d
dv

)pa
φ ∈ p⌈α(a+β)⌉Zp⟨⟨v⟩⟩ for all ⌊m

p
⌋ = a = 0

(because of (d/dv)(m+1)vm = 0), and is also equivalent to

bvm−pa/(m− pa)! ∈ p⌈α(a+β)⌉Zpv
m−pa/(m− pa)! for all ⌊m

p
⌋ = a = 0.

Since the last one is equivalent to

b ∈ p⌈α(a+β)⌉Zp for all ⌊m
p
⌋ = a = 0,

we have the statement immediately.
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Corollary 3.8. If 0 < α 5 1, φ ∈ Zp⟨⟨v⟩⟩(α),β then(( d
dv

− 1
)p

+ 1
)
φ ∈ Zp⟨⟨v⟩⟩(α),β+1.

Proof. For our purpose it suffices only to prove the case p ̸= 2. The Leibniz rule

shows (( d
dv

− 1
)p

+ 1
)
φ =

( d
dv

)p
φ+

p−1∑
j=1

(−1)j
(
p

j

)( d
dv

)j
φ.

This belongs to Zp⟨⟨v⟩⟩(α),β+1+pZp⟨⟨v⟩⟩(α),β Therefore the statement follows from 3.7 (6),

(5) and the assumption for α.

Lemma 3.9. Let 0 < α 5 1.

(1) Zp[[v]] ⊂ Zp⟨⟨v⟩⟩(α),0.
(2) If φ1 ∈ Zp⟨⟨v⟩⟩(α),β1 and φ2 ∈ Zp⟨⟨v⟩⟩(α),β2, then φ1φ2 ∈ Zp⟨⟨v⟩⟩(α),β1+β2.

Particularly, if 0 < α 5 1, then Zp⟨⟨v⟩⟩(α),0 is a sub Zp-algebra in Zp⟨⟨v⟩⟩, and Zp⟨⟨v⟩⟩(α),β

is a Zp⟨⟨v⟩⟩(α),0-module.

Proof. (1) Suppose φ ∈ Zp[[v]]. Since
1

(pa)!

(
d
dv

)pa
φ ∈ Zp[[v]] ⊂ Zp⟨⟨v⟩⟩ for arbitrary

a = 0, we have ( d
dv

)pa
φ ∈ (pa)!Zp⟨⟨v⟩⟩ = paa!Zp⟨⟨v⟩⟩ ⊂ paZp⟨⟨v⟩⟩.

Because α 5 1, this is contained in p⌈αa⌉Zp⟨⟨v⟩⟩. Hence φ ∈ Zp⟨⟨v⟩⟩(α),0.
(2) By the Leibniz rule, we see( d

dv

)pa
(φψ) =

pa∑
j=0

(
pa

j

)(( d
dv

)j
φ
)(( d

dv

)pa−j

ψ
)

=
a∑

j=0

(
pa

pj

)(( d
dx

)pj
φ
)(( d

dv

)pa−pj

ψ
)

+
∑

05j5pa,p̸|j

(
pa

j

)(( d
dv

)j
φ
)(( d

dv

)pa−j

ψ
)
.

If p ̸ | j then p
∣∣(pa

j

)
. The definition (3.5) and 3.7 (7) imply( d

dv

)pa
(φψ) ∈

a∑
j=0

p⌈α(j+β1)⌉p⌈α(a−j+β2)⌉Zp⟨⟨v⟩⟩

+
∑

05j5pa, p̸|j

pp⌈α(⌊
j
p
⌋+β1)⌉p⌈α(⌊

pa−j
p

⌋+β2)⌉Zp⟨⟨v⟩⟩

⊂ p⌈α(a+β1+β2)⌉Zp⟨⟨v⟩⟩+ pp⌈α(a−1+β1+β2)⌉Zp⟨⟨v⟩⟩.

By α 5 1, this is contained in p⌈α(a+β1+β2)⌉Zp⟨⟨v⟩⟩, and we have shown that

φψ ∈ Zp⟨⟨v⟩⟩(α),β1+β2

as desired.
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Lemma 3.10. We have

exp
(
v +

vp

p

)
∈ Zp⟨⟨v⟩⟩(1−

1
p
),0.

Proof. Thanks to 3.9 (2) and (3), it suffices to show

(1) exp
(∑∞

n=0
vp

n

pn

)
∈ Zp[[v]].

(2) exp
(
− vp

n

pn

)
∈ Zp⟨⟨v⟩⟩(1−

1
p
),0 for all n = 2.

Since the property (1) is well-known and proved in [Ho], p.238, 5.4 and [R], p.388, Theo-

rem, we show only (2). To do so, by 3.7 (3), it suffices to show

(2)′ 1
m!

(
vp

n

pn

)m ∈ Zp⟨⟨v⟩⟩(1−
1
p
),0 for all n = 2 and m = 0.

This (2)′ is equivalent to

(2)′′ ordp

( (pnm)!
m!pmn

)
= (1− 1

p
)pn−1m for all n = 2 and m = 0,

because of 3.7(9). As

ordp

((pnm)!

m!

)
=

n−1∑
j=0

pjm = pn−1m+m,

to show (2)′′ it suffices to check

pn−1m+m−mn =
(
1− 1

p

)
pn−1m,

namely, m(pn−2 − n+ 1) = 0. This is easily checked.

Proof. (of 3.4) Let n = 0 and m = −⌈n
p
⌉. By 3.7(9), we see

vn

n!
∈ Zp⟨⟨v⟩⟩(1−

1
p
),m ∩ Zp⟨⟨v⟩⟩.

By 3.10 and 3.9(2) we have vn

n!
exp

(
v+ vp

p

)
∈ Zp⟨⟨v⟩⟩(1−

1
p
),m ∩Zp⟨⟨v⟩⟩; and by 3.8 we have(( d

dv
− 1
)p

+ 1
)a(vn

n!
exp

(
v +

vp

p

))
∈ Zp⟨⟨v⟩⟩(1−

1
p
),m+a ∩ Zp⟨⟨v⟩⟩

for all a = 0. This is contained in p⌈(1−
1
p
)(m+a)⌉Zp⟨⟨v⟩⟩ ∩ Zp⟨⟨v⟩⟩ by the property 3.7(2).

Since (( d
dv

− 1
)p

+ 1
)a(vn

n!
exp

(
v +

vp

p

))
= exp(v)

(( d
dv

)p
+ 1
)a(vn

n!
exp

(vp
p

))
,

and exp(v) is a unit in Zp⟨⟨v⟩⟩, we see(( d
dv

)p
+ 1
)a(vn

n!
exp

(vp
p

))
∈ p⌈(1−

1
p
)(m+a)⌉Zp⟨⟨v⟩⟩ ∩ Zp⟨⟨v⟩⟩.

Substituting m = −⌊n
p
⌋, we have finally

(( d
dv

)p
+ 1
)a(vn

n!
exp

(vp
p

))
∈

Zp⟨⟨v⟩⟩ ( if pa < n ),

pa−⌊n
p
⌋−⌊(a−⌊n

p
⌋)/p⌋Zp⟨⟨v⟩⟩ ( if pa = n ).

Looking at the coefficients of vn+qp/(n + qp)! or vn−r0p/(n − r0p)! of the above after

multiplying it by n!, we get the desired congruences.
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3.3 The second tool for the proof

We show the second Proposition that is used in the proof of 3.1.

Proposition 3.11. Let p be an odd prime and U is a partition with Up−1 = 0,

d(U) ̸= 0. Then τU defined by (2.2.4) satisfies

ordp(τU) =
⌊
w(U) + d(U)− 2

2p

⌋
.

Remark 3.12. As we mentioned in 3.2(2), we have ordp(τU) = (p−5)/2 for any prime

p = 5 and any partition U such that U1 = p, U2p−1 = (p− 5)/2, with the others Uj = 0.

For this U , since w(U) = p+ (2p−1)(p−5)
2

, d(U) = p+ p−5
2
, and ⌊(w(U)+ d(U)− 2)/(2p)⌋ =⌊

(p2 − 3p− 2)/(2p)
⌋
= ⌊p−5

2
+ p−1

p
⌋ = (p− 5)/2, the estimate above is best possible.

Proof. As d(U) ̸= 0, we have w(U) + d(U) − 2 > 0. We show the estimate under

the condition U2p−1 ̸= 0 as follows:

ordp(τU) = ordp((n+ d− 2)!)− ordp(γU)

= ordp

((
− 2 +

∑
j ̸=p−1

(j + 1)Uj

)
!

)
−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 −
∑

j ̸=p−1

ordp(Uj!)

( In the bellow ϵ runs through the positive integers coprime to p. )

= ordp

((
− 2 +

∑
j ̸=p−1, 2p−1

jUj + 2pU2p−1

)
!

)
−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 − ordp(U2p−1!)

= ordp

((
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)
!

)
−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 − ordp(U2p−1!)

=
∞∑
ν=1

⌊
1

pν

(
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k) ̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)⌋

−
∑

(ϵ,k) ̸=(1,1)

kUϵpk−1 − ordp(U2p−1!) ( because ordp(N !) =
∞∑
ν=1

⌊
N
pν

⌋
)

=

⌊
1

p

(
− 2 +

∑
p ̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)⌋

+
∞∑
ν=2

⌊
1

pν

(
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)⌋
−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 − ordp(U2p−1!)

=
⌊
1

p

(
− 2 +

∑
p ̸ |j+1

jUj +
∑

(ϵ,k) ̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)⌋
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+
∞∑
ν=2

⌊
−2 + 2pU2p−1

pν

⌋
−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 − ordp(U2p−1!)

=

⌊
1

p

(
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − 1)Uϵpk−1 + 2pU2p−1

)⌋

−
∑

(ϵ,k)̸=(1,1)

kUϵpk−1 +
∞∑
ν=2

⌊
−2 + 2pU2p−1

pν

⌋
− ordp(U2p−1!)

=

⌊
1

p

(
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − kp− 1)Uϵpk−1 + 2pU2p−1

)⌋

− U2p−1 +
∞∑
ν=2

⌊
−2 + 2pU2p−1

pν

⌋
− ordp(U2p−1!)

=

⌊
1

p

(
− 2 +

∑
p̸ |j+1

jUj +
∑

(ϵ,k)̸=(1,1), (2,1)

(ϵpk − kp− 1)Uϵpk−1 + 2pU2p−1

)⌋

− U2p−1 + ordp((−2 + 2pU2p−1)!)−
⌊
−2 + 2pU2p−1

p

⌋
− ordp(U2p−1!).

Here we can replace the first term −2
p
by −1

p
, because if in the first bracket ⌊ ⌋ the sum

of the other terms is an integer then both of −2
p
and −1

p
contribute as −1, and if the

sum is not an integer its fractional part is larger than or equals to 1
p
. Moreover, since

j 5 (j + 1)/2 about the term jUj in the second term sum, and ϵpk − kp − 1 > ϵpk/2 if

(ϵ, k) ̸= (1, 1), (2, 1) for the third term sum, we see, by using 1.1, that

=
⌊
1

2p

(
− 2 +

∑
p ̸ |j+1

(j + 1)Uj +
∑

(ϵ,k)̸=(1,1), (2,1)

ϵpkUϵpk−1 + 2pU2p−1

)
+ U2p−1

⌋

− U2p−1 + ordp((−2 + 2pU2p−1)!)−
⌊
−2 + 2pU2p−1

p

⌋
− ordp(U2p−1!)

=

⌊
−2 + w(U) + d(U)

2p

⌋
+ ordp

(
(2U2p−1)!

)
+ 2U2p−1 − ordp(2pU2p−1)

−
⌊
−2 + 2pU2p−1

p

⌋
− ordp(U2p−1!)

=

⌊
−2 + w(U) + d(U)

2p

⌋
+ ordp

(
(2U2p−1)!

)
+ 2U2p−1 − ordp(2U2p−1)− 1

− (−1 + 2U2p−1)− ordp(U2p−1!)

=
⌊
−2 + w(U) + d(U)

2p

⌋
+ ordp

(
(2U2p−1 − 1)!

U2p−1!

)
.

Hence, our proof has been completed for the case U2p−1 ̸= 0. If U2p−1 = 0, by substituting

this at the beginning of this calculation, we can more easily prove the desired estimate.
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3.4 Proof of Kummer-type congruence relations

Let us finalize the proof of 3.1. By 2.8, (−1)a times the left hand side of the congruence

in 3.1 is rewitten as

(3.13)
a∑

r=0

(
a

r

)
(−f)rfp−1

a−r
∑

w(U)=n+r(p−1)

τUf
U ,

where τU is defined by (2.7). By picking up fp−1
r or fp−1

r−r0 from fU , we know that

(3.13) is equal to

(3.14)

a∑
r=0

(
a

r

)
(−1)rfp−1

a−r

{ ∑
w(U)=n

τU [r]f
Ufp−1

r

+
r∑

r0=1

( ∑
w(U)=n+r0(p−1)

Up−1=0

τU [r−r0]f
Ufp−1

r−r0

)}
,

where U [r] means to increase r the (p−1)-st entry of U . After exchanging the sums about

r and about U , by writing down τU [r] and τU [r−r0], we see that (3.14) is equal to

(3.15)

∑
w(U)=n

fUfp−1
a

γU |p−1

a∑
r=0

(
a

r

)
(−1)d(U [r])+r−1{w(U [r]) + d(U [r])− 2}!

pr+Up−1(r + Up−1)!

+
a∑

r0=1

∑
w(U)=n+r0(p−1)

Up−1=0

fUfp−1
a−r0

γU

{
a∑

r=r0

(
a

r

)
(−1)d(U [r−r0])+r−1

· {w(U [r − r0]) + d(U [r − r0])− 2}!
pr−r0(r − r0)!

}
.

Here U |p−1 means the one which is obtained by replacing the (p−1)-st entry of U by 0, so

that γU |p−1 in the former sum means the one which is obtained by omitting the (p− 1)-st

part pUp−1Up−1! of γU . Note that, for each r,

(3.16)
γU [r]|p−1 = γU |p−1 ,

γU [r]|p−1p
r+Up−1(r + Up−1)! = γU [r],

and that, in the later sum,

(3.17) γU =
(
2U1 · · · (p− 1)Up−2(p+ 1)Up · · ·

)
· (U1! · · ·Up−2!Up! · · · )

does not contain (p− 1)-st part. We denote the first and second sum of (3.15) by
∑

1 and∑
2, respectively, and denote

(3.18) =
∑

1
+
∑

2
=

∑
w(U)=n

S1(U) +
a∑

r0=1

∑
w(U)=n+r0(p−1)

Up−1=0

S2(U).
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Then for S1(U) of U with n = w(U), we have

(3.19)

w(U [r]) + d(U [r])− 2 = n+ (p− 1)r + d(U) + r − 2

= n+ pr + d− 2

= (r + Up−1)p+ n− pUp−1 + d(U)− 2.

Here we note that

(3.20)
n− pUp−1 + d(U)− 2 =

(
n− (p− 1)Up−1

)
+ (d(U)− Up−1)− 2

= w(U |p−1) + d(U |p−1)− 2.

For S2(U) of U with w(U) = n+ r0(p− 1), we see

(3.21)

w(U [r − r0]) + d(U [r − r0])− 2

= n+ r0(p− 1) + (p− 1)(r − r0) + d(U) + (r − r0)− 2

= (r − r0)p+ n+ r0p+ d(U)− r0 − 2.

We divide
∑

1 (resp.
∑

2) into two parts according to n − pUp−1 + d(U) − 2 in (3.20)

(resp. n+ r0p+d(U)− r0− 2 in (3.21)) is = ap or < ap, and denote the sum as
∑′

1+
∑′′

1

(resp.
∑′

2+
∑′′

2). Here we pay attention in (3.20) that n− pUp−1+ d(U)− 2 > 0 because

of n ̸≡ 0 mod (p− 1).

(a) For the sum
∑′

1, since n− pUp−1 + d(U)− 2 = ap, we have

(3.22)

ordp(S1(U)) = −ordp(γU |p−1) + ordp((n− pUp−1 + d− 2)!)

=
⌊
n− pUp−1 + d(U)− 2

2p

⌋
=
⌊
ap

2p

⌋
=
⌊a
2

⌋
by 3.4(1) and 3.11.

(b) For the sum
∑′′

1, we let N = n− pUp−1 + d(U)− 2 and N = pb+ e (0 5 e < p). Then

we see b < a because 0 < n− pUp−1 + d(U)− 2 < ap. Therefore, by 3.11, we have

(3.23)

ordp(N !)− ordp(γU |p−1)

= ordp((w(U |p−1) + d(U |p−1)− 2)!)− ordp(γU |p−1)

= ordp(τU |p−1)

= ⌊N/(2p)⌋.
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This and 3.4(1) give

(3.24)

ordp(S1(U)) = a−
⌊N
p

⌋
+ ordp(N !)−

⌊a− ⌊N/p⌋
p

⌋
− ordp(γU |p−1)

=

⌊
N

2p

⌋
+ a−

⌊N
p

⌋
−
⌊a− ⌊N/p⌋

p

⌋
=
⌊ b
2

⌋
+ a− b−

⌊a− b

p

⌋
>
( b
2
− 1
)
− b+ a− a− b

p

= −1 +
a

2
− (a− b)(p− 2)

2p

= −1 +
a

2
.

As the initial side is an integer, it must be = ⌊a/2⌋. Hence ordp(
∑

1) = ⌊a/2⌋. We can

prove ordp(
∑

2) = ⌊a/2⌋ by using 3.4(2) instead of 3.4(1). About such the proof, we

should keep in mind that, for the case n + r0p + d(U) − r0 − 2 < ap in (3.21), in order

to use 3.4(2), it must be n + r0p + d(U) − r0 − 2 = r0p. However, since d(U) = 1, this

condition is satisfied if n + r0p + 1 − r0 − 2 = r0p, namely, n − r0 − 1 = 0. The latest

condition is valid for all r0 = 1, · · ·, a because of our assumption n > a.

Remark 3.25. If we replace the condition a < n in 3.1 by a = n, the Kummer-

type congruence relation for the generalized Bernoulli-Hurwitz numbers described later

holds only modulo pn−1. We can see by numerical computation that the modulus of such

congruence is best possible. This means that the condition a < n in 3.1 is essential

because the generalized Bernoulli-Hurwitz numbers are given by a specialization of the

universal Bernoulli numbers.

3.5 The Kummer-Adelberg congruence relation

We prove the congruence relation 3.3 of Adelberg by using 3.1 and 3.2(1).

Proof. (of 3.3) We note that if p = 3, the condition n ̸= 0, 1 mod (p− 1) is always

false and the statement of 3.3 is vacuous. So that, we may suppose p = 5. We prove the

congruence relation by induction on a. As we already mentioned the case a = 1 in 3.2(1),

we assume a > 1. By taking pa−1 as a in 3.1, we see

(3.26)

pa−1∑
r=0

(−1)r
(
pa−1

r

)
fp−1

pa−1−r B̂n+r(p−1)

n+ r(p− 1)
≡ 0 mod p⌊p

a−1/2⌋.

Here, we have ⌊pa−1/2⌋ > a since a = 2 and p = 5. If r ̸= 0 and r ̸= pa−1, then

(3.27)

ordp

(
pa−1

r

)
=
Sp(p

a−1 − r) + Sp(r)− Sp(p
a−1)

p− 1

=
Sp(p

a−1 − r) + Sp(r)− 1

p− 1
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by (1.2). We denote ν = ordpr. Let

pa−1 − r = da−2p
a−2 + da−3p

a−3 + · · ·+ d1p+ d0 (0 5 dj 5 p− 1),

r = ha−2p
a−2 + ha−3p

a−3 + · · ·+ h1p+ h0 (0 5 hj 5 p− 1)

be their p-base digit expressions. Then, obviously,

(3.28) dj + hj =


p− 1, (a− 2 = j = ν + 1),

p, (j = ν),

0, (ν − 1 = j = 0).

Namely, Sp(p
a−1 − r) + Sp(r) = (p − 1)(a − 2 − ν) + p. Thus ordp

(
pa−1

r

)
= a − 1 − ν.

Keeping in mind that p is an odd number, and consider the sum

(3.29)

Dr = (−1)r
(
pa−1

r

)
fp−1

pa−1−r B̂n+r(p−1)

n+ r(p− 1)

+ (−1)p
a−1−r

(
pa−1

pa−1 − r

)
fp−1

r B̂n+(pa−1−r)(p−1)

n+ (pa−1 − r)(p− 1)

for 0 < r 5 (pa−1− 1)/2. Summing up consideration above, we see that Dr is divisible by

pa by using the assumption of induction on ν = ordpr = ordp(p
a−1 − r)(< a). Since

fp−1
pa−1·

B̂n

n
−

B̂n+pa−1(p−1)

n+ pa−1(p− 1)

is difference of the left hand side of (3.26) and

pa−1−1∑
r=1

Dr.

Hence 3.3.

4 Hyperelliptic functions

4.1 Fundamentals on hyperelliptic functions

We consider a hyperellptic curve C of genus g that is defined by y2 = f(x), where

f(x) = λ0x
2g+1 + λ1x

2g + · · ·+ λ2g+1

is a polynomial of x over C , and f(x) = 0 has no multiple roots. We set λ0 = 1 for our

convenience. The curve C is regarded as a non-singular algebraic curve with unique point

∞ at infinity. As is well-known, the set of

(4.1)
xj−1dx

2y
(j = 1, . . . , g)
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forms a basis of the differential forms of the first kind on C . Let [ω′ ω′′] be the period

matrix defined by taking a suitable set of generators of the fundamental group of C , and

let

Λ := ω′t
[
Z Z · · · Z

]
+ ω′′t

[
Z Z · · · Z

]
(⊂ Cg)

be the lattice in Cg with respect to the differentials (4.1). We denote by J the jacobian

variety of C , and by Symg(C ) the symmetric product of g copies of C . Then we have a

birational map

Symg(C ) → Pic◦(C ) = J

(P1, . . . , Pg) 7→ the class of P1 + · · ·+ Pg − g · ∞.

We identify J as analytic manifolds with Cg/Λ. We denote the natural map Cg 7→
Cg/Λ = J by κ. The map

ι : Q 7→ Q−∞

is an embedding of C into J . The pull-back κ−1ι(C ) of ι with respect to κ is a universal

Abelian covering of the curve C . The birational map above sends the each element

(P1, · · · , Pg) ∈ Symg(C ) to the point u mod Λ ∈ Cg/Λ, where

(4.2) u = (u1, . . . , ug) =

(∫ P1

∞
+ · · ·+

∫ Pg

∞

)
(ω1, . . . , ωg).

The following notational convention is important.

Convention : In this paper, we denote ug simply by u.

4.2 The hyperelliptic functions and their variable

In this paper, for each point u ∈ κ−1ι(C ), we denote by

(x(u), y(u))

the coordinate (x, y) of C such that κ(u) = ι (x(u), y(u)). We call a rational expression

in terms of x(u) and y(u) hyperelliptic function, and is regarded also as a function on

κ−1ι(C ). We confirm the following fundamental fact.

Lemma 4.3. The lowest degree terms of the Laurent developments of x(u) and y(u)

at u = (0, · · · , 0) with respect to u = ug is given by

x(u) =
1

u2
+ (d◦(u) = 0), y(u) = − 1

u2g+1
+ (d◦(u) = −2g + 1).

Proof. We take t =
1√
x

as a local parameter at ∞. Here we consider the brunch

such that t > 0 for x > 0. We suppose that u ∈ κ−1ι(C ) is sufficiently near to (0, 0, . . . , 0),
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and that the three kinds of coordinates t, u = (u1, . . . , ug), (x, y) correspond to the same

point of C . Then

u = ug =

∫ (x,y)

∞

xg−1dx

2y
=

∫ (x,y)

∞

x−3/2dx

2
√

1 + λ1
1
x
+ · · ·+ λ2g+1

1
x2g+1

=

∫ t

0

t3 ·
(
− 2

t3

)
dt

2 + (d◦ = 1)
= −t+ (d◦(t) = 2).

Thus x(u) = 1
u2 + (d◦(u) = −1). The similar fact is shown for y(u). By the definition,

we see x(−u) = x(u), y(−u) = −y(u) The proof have been completed.

The following properties are shown by the similar argument and omit their proofs.

Lemma 4.4. Let u = (u1, u2, . . . , ug) be a variable on κ−1ι(C ). Then

u1 =
1

2g−1
ug

2g−1 + (d◦(ug) = 2g),

u2 =
1

2g−3
ug

2g−3 + (d◦(ug) = 2g − 2),

· · · · · · · · ·
ug−1 =

1
3
ug

3 + (d◦(ug) = 4).

These facts suggest that it is natural to take u = ug as the variable for the hyperelliptic

functions in a vicinity of the point u = (0, · · · , 0).

5 Differential equations

5.1 General setting

For the hyperelliptic curve y(u)2 = f
(
x(u)

)
(f is a separable polynomial of degree 2g+1),

the definition of u = ug gives

(5.1)
du

dx
(u) =

xg−1

2y
(u).

After squaring this, substituting the defining equation above of C into it, we have
(
du
dx

)2
=

x2g−2

4f
. Namely,

(5.2) x(u)2g−2x′(u)2 = 4f
(
x(u)

)
( ′ means d

du
).

This (5.2) is just the analogy of ℘′(u)2 = 4℘(u)3 − g2℘(u) − g3 in our theory3. Now we

define the numbers Cn by the Laurent development of x(u) with respect to u:

(5.3) x(u) =
1

u2
+
c−1

u
+

∞∑
n=2

Cn

n

un−2

(n− 2)!

3Carlitz studied in [Ca4] about the solution of the differential equation
(
dx
du (u)

)2
= “a degree six

polynomial of x(u)” (u ∈ C) instead of ℘′(u)2 = 4℘(u)3 − g2℘(u)− g3.
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These Cn are analogy of Bernoulli and Hurwitz numbers. Though the definition of

Bernoulli and Hurwitz numbers are based on the determination of their 2-parts, such

the property is a problem in the future for our theory. Of course, the recursion relation

for Cn is obtained from (5.1.2). For the function y(u), we define also the numbers Dn by

its Laurent expansion at u = 0 of y(u) with respect to u:

(5.4) y(u) =
−1

u2g+1
+
d−2g

u2g
+ · · ·+ d−1

u
+

∞∑
n=2g+1

Dn

n

un−2g−1

(n− 2g − 1)!
.

Since the differential equation for y(u) is given by du = xg−1dx/2y, we also have the

recursion relation for Dn. We shall call Cns and Dns it generalized Bernoulli-Hurwitz

numbers.

5.2 The case of y(u)2 = x(u)2g+1 − 1

In this case (5.2) is

(5.5) x(u)2g−2x′(u)2 = 4x2g+1(u)− 4 ( ′ means d
du

).

This is a generalization of ℘′(u)2 = 4℘(u)3 − 1. Here, we describe automorphisms of this

curve C : y2 = x2g+1 − 1 and its Jacobian variety J . Let ζ = e2π
√
−1/(2g+1), Then C has

automorphisms

±⌈ζj⌉ : C → C , (x, y) 7→ (ζjx,±y) (j = 0, · · · , 2g)

They induce automorphisms of Pic◦(C ) by

±⌈ζj⌉ : P1 + · · ·+ Pg − g∞ 7→ (±⌈ζj⌉)P1 + · · ·+ (±⌈ζj⌉)Pg − g∞

where P1, · · ·, Pg ∈ C ; and also give automorphisms of J . From (4.1) and (4.2), we see

−⌈ζ⌉(u1, u2, · · · , ug) = (−ζu1,−ζ2u2, · · · ,−ζgug).

Namely,

(5.6) x(−⌈ζ⌉u) = ζx(u), y(−⌈ζ⌉u) = −y(u)

Therefore, if n is not divisible by 2(2g + 1), then Cn = Dn = 0.

5.3 The case of y(u)2 = x(u)2g+1 − x(u)

In this case, (5.2) is

(5.7) x(u)2g−2x′(u)2 = 4x2g+1(u)− 4x(u) ( ′ means d
du

).
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This is a generalization of ℘′(u)2 = 4℘(u)3 − 4℘(u). We describe automorphisms of

this curve C : y2 = x2g+1 − x and its Jacobian J . Let ζ = e2π
√
−1/(2g). Then C has

sutomorphisms

⌈ζj⌉ : C → C , (x, y) 7→ (ζ2jx, ζjy) (j = 0, · · · , 2g).

They induce automorphisms of Pic◦(C ) by

±⌈ζj⌉ : P1 + · · ·+ Pg − g∞ 7→ (±⌈ζj⌉)P1 + · · ·+ (±⌈ζj⌉)Pg − g∞

where P1, · · ·, Pg ∈ C ; and also give automorphisms of J . From (4.1) and (4.2), we see

⌈ζ⌉(u1, u2, · · · , ug) = (ζu1, ζ
3u2, · · · , ζ2g−1ug).

Namely,

(5.8) x(⌈ζ⌉u) = ζ2x(u), y(⌈ζ⌉u) = ζy(u).

Therefore, if n is coprime to 4g, then Cn = Dn = 0.

6 von Staudt theorems in algebraic functions

6.1 The case of y(u)2 = x(u)2g+1 − 1

In this case Clarke type theorems for C(4g+2)n and D(4g+2)n are stated as follows:

Theorem 6.1. For each numbers C(4g+2)n and D(4g+2)n defined in (5.3) and (5.4),

respectively, for the curve y2 = x2g+1 − 1, we have

C(4g+2)n

(4g + 2)n
≡ −

∑
p≡1 mod (2g+1)
(4g+2)n=a(p−1)

a|p−1 mod p1+ordpa

p1+ordpa
Ap

a mod Z,

D(4g+2)n

(4g + 2)n
≡ −

∑
p≡1 mod (2g+1)
(4g+2)n=a(p−1)

((2g)!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a mod Z,

where Ap = (−1)(p−1)/(4g+2) ·
(

(p− 1)/2

(p− 1)/(4g + 2)

)
.

Obviously, these results show the following extensions of von Staudt-Clausen theorem

and von Staudt second theorem for C(4g+2)n and D(4g+2)n.

Corollary 6.2. (1) For each numbers C(4g+2)n and D(4g+2)n, there are rational

integers G(4g+2)n and H(4g+2)n such that

C(4g+2)n =
∑

p≡1 mod (2g+1)
p−1|(4g+2)n

Ap
(4g+2)n/(p−1)

p
+ G(4g+2)n,
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D(4g+2)n =
∑

p≡1 mod (2g+1)
p−1|(4g+2)n

((2g)!−1 mod p) Ap
(4g+2)n/(p−1)

p
+ H(4g+2)n,

where Ap is the same one defined in 6.1.

(2) If (p− 1) ̸ | (4g+2)n, then C(4g+2)n/((4g+2)n) and D(4g+2)n/((4g+2)n) belong to Zp.

Proof. Let p ≡ 1 mod (2g + 1), (4g + 2)m = a(p− 1), and ordpa = ν. Then

(4g + 2)m ·
(
a|p−1 mod p1+ν

)
p1+ν

≡ 1− 1

p
≡ −1

p
mod Z.

This yields the results.

6.2 The case of y(u)2 = x(u)2g+1 − x(u)

In this case, Clarke type theorem for C4gn and D4gn are stated as follows:

Theorem 6.3. For each numbers C4gn and D4gn defined in (5.3) and (5.4), respec-

tively, for the curve y2 = x2g+1 − x, we have

C4gn

4gn
≡ −

∑
p≡1 mod 4g
4gn=a(p−1)

a|p−1 mod p1+ordpa

p1+ordpa
Ap

a mod Z,

D4gn

4gn
≡ −

∑
p≡1 mod 4g
4gn=a(p−1)

((2g)!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a mod Z,

where Ap = (−1)(p−1)/(4g) ·
(

(p− 1)/2

(p− 1)/(4g)

)
.

These results also show the following extensions of von Staudt-Clausen theorem and

von Staudt second theorem for C4gn and D4gn.

Corollary 6.4. (1) For each numbers C4gn and D4gn, there are integers G4gn and

H4gn such that

C4gn =
∑

p≡1 mod 4g
p−1|4gn

Ap
4gn/(p−1)

p
+ G4gn,

D4gn =
∑

p≡1 mod 4g
p−1|4gn

((2g)!−1 mod p) Ap
4gn/(p−1)

p
+ H4gn,

where Ap is the same one defined in 6.3.

(2) If (p− 1) ̸ | 4gn, then C4gn/(4gn) and D4gn/(4gn) belong to Zp.

Proof. Similar to 6.2.
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6.3 A remark on Ap

Let p be a prime number such that p ≡ 1 mod (2g + 1) or p ≡ 1 mod 4g according to

that C is defined by y2 = x2g+1 − 1 or y2 = x2g+1 − x.

We take the set of (4.1), namely( 1

2y
,
x

2y
, · · · , x

g−1

2y

)
as the basis of the differential forms of the first kind on C mod p. Then the Hasse-Witt

matrix (g× g matrix) with respect to this basis is a diagonal matrix ([Yu], p.381), and its

(g, g)-entry is just the number Ap. Katz pointed out in the case of Hurwitz numbers that

Ap is equal to the Hasse invariant (the unique entry of the Hasse-Witt matrix!) [Ka1],

p.2. Our results are quite natural extension of that fact.

7 Kummer congruences in algebraic functions

7.1 The case of y(u)2 = x(u)2g+1 − 1

In this case, Kummer’s original type congruence relations for C(4g+2)n and D(4g+2)n are

stated as follows:

Theorem 7.1. Let C(4g+2)n and D(4g+2)n be the numbers defined in (5.3) and (5.4),

respectively, for the curve y2 = x2g+1 − 1. For a prime p ≡ 1 mod (2g + 1) and positive

integers a and n such that (4g + 2)n− 2 = a, if (p− 1) ̸ | (4g + 2)n, then we have

a∑
r=0

(
a

r

)
(−Ap)

a−r ·
C(4g+2)n+r(p−1)

(4g + 2)n+ r(p− 1)
≡ 0 mod paZ(p),(7.2)

a∑
r=0

(
a

r

)
(−Ap)

a−r ·
D(4g+2)n+r(p−1)

(4g + 2)n+ r(p− 1)
≡ 0 mod paZ(p),(7.3)

where

Ap = (−1)(p−1)/(4g+2) ·
(

(p− 1)/2

(p− 1)/(4g + 2)

)
.

These congruence relations are just the same form as in Kummer’s original paper [Ku]

and in the case of Hurwitz numbers [L], p.193, (26).

Remark 7.4. (1) Under the facts (10.1), (10.2), and (10.3) proved later, we under-

stand that 7.1 is satisfied modulo p⌊a/2⌋.

(2) If we replace the condition (4g+2)n−2 = a in 7.1 by (4g+2)n−2 < a the congruence

relation seems to stand up modulo pn−1 and this modulus is best possible.
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7.2 The case of y(u)2 = x(u)2g+1 − x(u)

In this case, the Kummer’s original type congruence relations for C4gn and D4gn are stated

as follows:

Theorem 7.5. Let C4gn and D4gn be the numbers defined in (5.3) and (5.4), respec-

tively, for the curve y2 = x2g+1 − x. For a prime p ≡ 1 mod 4g and positive integers a

and n satisfying 4gn− 2 = a, if (p− 1) ̸ | 4gn, then we have

a∑
r=0

(
a

r

)
(−Ap)

a−r ·
C4gn+r(p−1)

4gn+ r(p− 1)
≡ 0 mod paZ(p),

a∑
r=0

(
a

r

)
(−Ap)

a−r ·
D4gn+r(p−1)

4gn+ r(p− 1)
≡ 0 mod paZ(p),

where

Ap = (−1)(p−1)/(4g) ·
(

(p− 1)/2

(p− 1)/(4g)

)
.

These relations are also the same form as in the original [Ku] for the Bernoulli numbers

and [L], p.193, (23) for the Hurwitz numbers.

Remark 7.6. By the easily shown simple facts (11.1), (11.2), (11.3) proved later, we

see that 7.5 is satisfied modulo p⌊a/2⌋.

8 Hurwitz-integral series

8.1 Definition and basic properties

We describe here the notion of Hurwitz integrality and its properties. In this subsection

the letter R always means a subring of the field Qp of the p-adic numbers for a fixed

prime p. In our practice, R will be Z[1
q
] with non-zero integer q, the localization Z(p) of

the integer ring Z at p, or its p-adic completion Zp.

Definition 8.1. Let z be an indeterminate or a variable. Let

h(z) =
∞∑
n=0

hn
zn

n!
( hn ∈ Qp )

be a power series with respect to z. If all the coefficients hn belong to R, then we say

h(z) is of Hurwitz integral over R. The ring consists of the Hurwitz-integral series over

R with respect to z is denoted by R⟨⟨z⟩⟩.

The ring R⟨⟨z⟩⟩ is an integral domain, and is closed under the operations d/dz and∫ z

0
· dz. A series h(z) ∈ R⟨⟨z⟩⟩ is a unit in R⟨⟨z⟩⟩ if and only if its constant term is a unit

in R. Moreover the following properties are easily shown (see [Hu2], Section 1).
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Proposition 8.2. Let

h(z) =
∞∑
n=0

hn
zn

n!
( hn ∈ Qp ).

(1) If the first n coefficients h0, · · ·, hn−1 belong to R, and there is a polynomial F of n

variables over R such that there exists a relation

h(n)(z) = F (h(z), h′(z), · · · , h(n−1)(z))

on derivatives of h(z), then h(z) ∈ R⟨⟨z⟩⟩.
(2) If h(z) ∈ R⟨⟨z⟩⟩, h0 = 0, and h1 = 1, then the formal inverse series

z = h−1(w) = w + · · ·

of w = h(z) also belongs to R⟨⟨z⟩⟩.
(3) If h(z) ∈ R⟨⟨z⟩⟩, h0 = 0, and h1 = 1, then for any positive integer m,

h(z)m

m!

also belongs to R⟨⟨z⟩⟩.

8.2 Hurwitz-integrality of x(u)1/2

Here, we check the following fact.

Proposition 8.3. On the curve y2 = x2g+1 − 1 or y2 = x2g+1 − x, we have

t := −1/x(u)1/2 ( = u+ · · · ) ∈ Z⟨⟨u⟩⟩.

Proof. For simplicity, we restrict the argument within only the curve y2 = x5 − 1.

We denote simply t′ = dt/du, t′′ = d2t/du2, · · ·. By (5.5), we see

(8.4) (t′)2 = 1− t10.

After differentiating this by u, dividing by 2t′, we have

(8.5) t′′ = −5t9.

Since t(0) = t′(0) = 0, 8.2(1) yields that

(8.6) 1/x1/2(u) = −u+ 5 · 9! u
11

11!
+ · · · ∈ Z⟨⟨u⟩⟩

for the curve y2 = x5 − 1.
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8.3 Hurwitz-integrality of 1/y1/5(u)

We show the following fact.

Proposition 8.7. On the curve y2 = x2g+1 − 1 or y2 = x2g+1 − x, we have

s := −1/y(u)1/(2g+1)(= u+ · · · ) ∈ Z⟨⟨u⟩⟩.

Proof. We restrict again the argument within only the curve y2 = x5− 1. By (5.1),

we see that

(8.8) du =
xdx

2y
=
xdx

dy
dy

2y
=

xdy

2y dy
dx

=
xdy

5x4
=

dy

5x3
=

dy

5(y2 + 1)3/5
,

and

(8.9)
dy

du
= 5(y2 + 1)3/5.

Writing simply s′ = ds/du, s′′ = d2s/du2, · · ·, we have dy/du = −5s−6ds/du. Hence

(8.10) s′ = −(1 + s10)3/5.

This formula gives the following equation by induction: For each integer n = 1, the n-th

derivative of s is written as a finite sum of the form

(8.11) s(n) =
∑
j

(1 + s10)Lnj/5Pnj(s, s
′, s′′, · · · , s(n−1)),

where each Pnj means a polynomial of n variables over Z, and Lnj is an integer. Summing

up this and s(0) = 0, we see that s′(0), s′′(0), s(3)(0), · · · are all integers. Therefore we

conclude that

(8.12) 1/y(u)1/5 = −u− 48 · 9! u11

11!
+ · · · ∈ Z⟨⟨u⟩⟩

for the curve y2 = x5 − 1.

9 Outline of the proof

We sketch the proofs of 6.1 and 7.1 (also of 6.3 and 7.5) by taking the case of the curve

y2 = x5− 1 as an example. Recall our convention that, for a given power series φ(z) with

respect to z, each coefficient
[
zn

n!

]
φ(z) ( n = 0 ) is called a Hurwitz coefficient of it. In the

following, any Hurwitz coefficients are those of developments with respect to u.
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9.1 The von Staudt theorems in algebraic functions

The proof of Theorem 6.1 is divided into the following three steps:

1. To prove the Clarke type theorem for the Hurwitz coefficients Cn/n of x(u) over Z[1
2
].

2. To prove the Clarke type theorem for the Hurwitz coefficients Dn/n of y(u) over Z[1
5
].

3. To make a connection of the results above. By using simple formulae concerning D =

d/du among the functions x(u), x2(u), y(u), we can connect the Hurwitz coefficients

of these functions, and show both results in Steps 1 and 2 are valid over Z = Z[1
2
] ∩

Z[1
5
].

More detailed outline is as follows.

Step 1: We prove the Clarke style theorem (10.7) for the Hurwitz coefficients C
(1)
10m/(10m)

of x1/2(u) over Z[1
2
]. In the next stage, we show relations between the Hurwitz coefficients

of x(u) and x1/2(u), x3/2(u) and x(u), and x2(u) and x3/2(u). These are (10.11)

for k = 1, 2, 3. These relations yield the Clarke style theorems for these Hurwitz

coefficients over Z[1
2
] by using the integrality property (10.3) of the Carlitz coefficients

(see the Convention) of the formal inverse series u with respect to t = x−1/2(u).

The Clarke style theorem above for the Hurwitz coefficients of x2(u) =
(
x1/2(u)

)4
(namely, (10.15)) is important in Step 3.

Step 2: In 11.1, we prove the Clarke style theorem (11.7) for the Hurwitz numbers

D
(1)
10m/(10m)4 of y1/5(u) by using the integrality (11.3) of the Carlitz coefficients of the

formal inverse series u with respect to s = y−1/5(u). On the other hand, we show that the

relation (11.11) for k = 1, 2, 3, 4, namely, the relations between the Hurwitz coefficients

of y(k+1)/5(u) and those of yk/5(u), for k = 1, 2, 3, 4. They are (11.11).

Summing up these, we can connect the Hurwitz coefficients D10m/(10m) of y(u) =(
y1/5(u)

)5
to D

(1)
10m/(10m) (see (11.12) and (11.13)). Therefore we have the relation

(11.14) for D10m/(10m) over Z[1
5
], and finish the Step 2.

Step 3: Let D = d/du. We can show by using

(Dx2)(u) = 4y(u)

that D10m and C
(4)
10m are essentially the same numbers. Since D10m/(10m) ∈ Z(2), the

denominator of C
(4)
10m/(10m)4 contains neither a power of 2 nor of 5. Hence, we have the

relation (12.4) for D10m/(10m) over Z, namely the second formula in 6.1. Finally, the

formula

D2x(u) = 6x2(u) +
4

x3(u)

with D = d/du = (2y/x)d/dx, and the Hurwitz-integrality (8.6) of 1/x3(u) connect

C
(4)
10m/(10m)4 with C10m/(10m). So that we have the desired theorem for C10m/(10m)

which is a specialization of Clarke’s theorem 2.9.
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There is also a congruence in [Ad1], Theorem 3.4 connecting various order universal

Bernoulli numbers, the universal case of Hurwitz coefficients of various powers of 1/t(u)

with respect to u. While the author believe it would closely relate to our method, he

could not use it.

9.2 The Kummer congruences in algebraic functions

Let p ≡ 1 mod 5 be a fixed prime number. Although we describe only about C10m, the

theorem for D10m is proved similarly. The outline of the proof is as follows.

Step 1: We show that the formal inverse series u(t) ∈ Zp⟨⟨t⟩⟩ of u 7→ t = x(u)−1/2

satisfies the Honda’s criterion that is Lemma 13.10. This fact implies the formal group

law F whose formal logarithm is u(t), namely

F (t1, t2) := u−1(u(t1) + u(t2))

is defined over Zp (see 13.1).

Step 2: By using Hochshild’s formula and Honda’s property (13.10), we see that

(9.1)
((

d
du

)p − Ap
d
du

)
t(u) ∈ pZp[[t(u)]]

for t = t(u) = x(u)−1/2 ∈ Zp⟨⟨u⟩⟩, in 13.2.

Step 3: Let ξ ∈ Zp be a primitive (p−1)-st root of 1. The multiplication by ξ

Fξ(t) := u−1
(
ξu(t)

)
= ξ + · · · .

determined from F belongs to ξt+ t2Zp[[t]] by the results in the Step 1. Now we use the

notation x⟨u⟩ = x(u) ∈ 1
u2 +Qp[[u]] in order to avoid confusion. Thanks to existence of

such Fξ(t), we can easily show that

(9.2) x⟨u(t)⟩ − ξ2x⟨ξu(t)⟩ ∈ Zp[[t]].

Adding (9.1) to (9.2), we have, for any integer a > 0, that

(9.3)
((

d
du

)p − Ap
d
du

)a(
x⟨u(t)⟩ − ξ2x⟨ξu(t)⟩

)
∈ paZp[[t]] ⊂ paZp⟨⟨u⟩⟩.

The coefficient of u10n−a−2/(10n− a− 2)! is just the left hand side of the first formula in

7.1, and the poof has been completed.

We mention here that Kummer type congruence relations for C
(ν)
10m and D

(ν)
10m without

division by 10m are proved in 14.1.

10 The Clarke theorem on x(u) over Z[12]

We deal with only the curve y2 = x5 − 1 in this Chapter.
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10.1 The Clarke theorem on x(u)1/2

Let us consider the formal inverse series of u 7→
√
x(u), namely, the power series u with

respect to

t =
−1

x1/2(u)
.

That is

u =

∫ x

∞

xdx

2y

=

∫ −t

0

1
t2
·
(
−2dt

t3

)
2
√

1
t10

− 1

= −
∫ −t

0

1√
1− t10

dt

= −
∫ −t

0

(
1 +

∞∑
m=1

(−1)m
(
−1

2

m

)
t10m

)
dt

= t+
∞∑

m=1

(−1)m
(
−1

2

m

)
t10m+1

10m+ 1
.

For convenience of reference, we write again this;

(10.1) u = t+
∞∑

m=1

(−1)m
(
−1

2

m

)
t10m+1

10m+ 1
.

We denote the Carlitz coefficients by

(10.2) f10m = (−1)m
(
−1

2

m

)
.

This notation corresponds to that in the definition of the universal Bernoulli numbers.

By 1.4 and (1.6), we see that

(10.3) f10m ∈ Z[1
2
].

The other coefficients fn are 0. Then the divided universal Bernoulli number B̂10m/(10m)

is specialized to C
(1)
10m/(10m), and the expression of 2.8 yields that

(10.4)
C

(1)
10m

10m
∈ 3!Z[1

2
]

as follows. To prove this, we apply 3.11 for p = 2 and p = 3. Since f2−1 = 0 and f3−1 = 0

in this case, we may consider only the partitions U such that U2−1 = U3−1 = 0. Here, as

w(U) = 10m = 10, d(U) = 1

we see

ord2(τU) = ⌊10+1−2
4

⌋ = 2, ord3(τU) = ⌊10+1−2
6

⌋ = 1.
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Hence, in the expression of 2.8 for C
(1)
10m/(10m), all its coefficients are divisible by 3!.

Adding this to (10.3), we conclude (10.4).

If p = 10m+1 is a prime number, then the coefficient fp−1 of t
10m+1/(10m+1) modulo

p coincides with (2, 2)-entry of the Hasse-Witt matrix with respect to our canonical base

of the differential of the first kind on the curve C of reduction modulo p, namely,

(10.5) fp−1 = (−1)(p−1)/10

(−1
2

p−1
10

)
≡ Ap mod p.

For this, see 18.1.

Under the consideration above, we apply Clarke’s theorem 2.9 for the function u 7→
x(u)1/2. Let

(10.6)
1

t
=

∞∑
m=0

C
(1)
10m

10m

u2
10m−1

(10m− 1)!

Proposition 2.9 and (10.4) deduce that

(10.7)
1

3!

C
(1)
10m

10m
∈
∑

p≡1 mod 5
10m=a(p−1)

(3!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a + Z[1
2
].

10.2 Congruence between x(u)k/2 and x(u)(k+1)/2

Throughout this Section, we assume k = 1, 2, or 3. For the curve y2 = x5 − 1 and

t =
−1

x(u)1/2
(= u+ · · · ),

we let

(10.8)
1

tj
= x(u) =

1

uj
+

∞∑
m=1

C
(j)
10m

(10m)j

u10m−j

(10m− j)!
(C

(j)
0 = 1)

for j = 1, 2, 3, and 4. Then

(10.9)

∫ u

0

(
1

tk+1
− 1

uk+1

)
du =

∫ u

0

(
∞∑

m=1

C
(k+1)
10m

(10m)k+1

u10m−(k+1)

(10m− k)!

)
du

=
∞∑

m=1

C
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!
.

On the other hand, after differentiating (10.1) with respect to u, dividing by tk+1, we have

(10.10)
1

tk+1
=

1

tk+1

dt

du
+

∞∑
m=1

(−1)m
(
−1

2

m

)
t10m−(k+1) dt

du
.
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Therefore,∫ u

0

(
1

tk+1
− 1

uk+1

)
du2 =

(
−1

k

1

tk
+

∞∑
m=1

(−1)m
(
−1

2

m

)
t10m−k

10m− k

)
+

1

k

1

uk
.

By equating this with (10.9) and by using (10.6), we see that

∞∑
m=1

C
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!

=

(
−

∞∑
m=0

C
(k)
10m

(10m)k

u10m−k

(10m− k)!
+

∞∑
m=1

(−1)m
(
−1

2

m

)
t10m−k

10m− k

)
+

1

k

1

uk
.

Since C
(k)
0 = 1, we can remove the terms of negative degree, and we have

∞∑
m=1

C
(k)
10m

(10m)k

u10m−k

(10m− k)!
+

∞∑
m=1

C
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!

=
∞∑

m=1

(−1)m
(
−1

2

m

)
t10m−k

10m− k
.

The right hand side of this belongs to Z[1
2
]⟨⟨u⟩⟩ because of 1.4, 8.2(3), and (8.6). Adding

this to (10.3), we see that

(10.11)
C

(k)
10m

(10m)k
+ k

C
(k+1)
10m

(10m)k+1

∈ (10 ·1− (k + 1))!Z[1
2
] ⊂ 3!Z[1

2
].

At this stage, as C10m/(10m) = C
(2)
10m/(10m)2 by the definition, we have

(10.12)
C10m

10m
∈ −C

(1)
10m

10m
+ 3!Z[1

2
]

from (10.11) for k = 1.

We remark that we can conclude the Clarke theorem for C10m over Z[1
2
] by (10.12)

above and (10.7). We need, however, in order to prove the Clarke theorem over Z to take

a rather long way mentioned in 9.1.

10.3 The Clarke theorem on x(u)2 over Z[12 ]

We summarize the results which obtained in this Section. The results (10.11) for k = 1,

2, 3 show that

(10.13)
C

(1)
10m

10m
+ 3!

C
(4)
10m

(10m)4
∈ 3!Z[1

2
].

So that

(10.14)
1

3!

C
(1)
10m

10m
+

C
(4)
10m

(10m)4
∈ Z[1

2
].
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This and 10.7 yield that

(10.15)
C

(4)
10m

(10m)4
∈ −

∑
p≡1 mod 5
10m=a(p−1)

((3!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a + Z[1
2
].

Especially, we see that

(10.16)
C

(4)
10m

(10m)4
∈ Z(5).

11 The Clarke theorem on y(u) over Z[15]

We deal with only the curve y2 = x5 − 1 in this section too.

11.1 The Clarke theorem on y1/5(u)

Being parallel to the Chapter 10, we consider the formal inverse series of u 7→ y(u)1/5.

Let

y(u) = −1/s5.

Then

u =

∫ x

∞

xdx

2y
=

∫ y

∞

x

2y

dx

dy
dy =

∫ y

∞

x

5x4
dy =

∫ y

∞

1

5x3
dy

=

∫ y

∞

1

5(y2 + 1)3/5
dy =

∫ s

0

5ds
s6

5( 1
s10

+ 1)3/5

=

∫ s

0

1

(1 + s10)3/5
ds

=

∫ s

0

(
1− 1

1!

3

5
s10 +

1

2!

3

5

8

5
s20 − 1

3!

3

5

8

5

13

5
s30 + · · ·

)
ds

=

∫ s

0

(
1 +

∞∑
m=1

(
−3

5

m

)
s10m

)
ds

= s+
∞∑

m=1

(
−3

5

m

)
s10m+1

10m+ 1
.

For convenience of quotation, we rewrite this:

(11.1) u = s+
∞∑

m=1

(
−3

5

m

)
s10m+1

10m+ 1
.

We denote each the Carlitz coefficient of this by

(11.2) f10m =

(
−3

5

m

)
.

37



By 1.4 and (1.6), we see that

(11.3) f10m ∈ Z[1
5
].

The other coefficients fn are 0. Here we are regarding each the coefficient as a specializa-

tion of fj of the Subsection 2.1. Then the divided universal Bernoulli number B̂10m/(10m)

is specialized to D
(1)
10m/(10m). We claim that

(11.4)
D

(1)
10m

10m
∈ 4!Z[1

5
].

To prove this, we apply 3.11 for p = 2 and p = 3. In this case, as f2−1 = 0 and f3−1 = 0,

we may consider only the partitions U such that U2−1 = U3−1 = 0. If m = 1, then

D
(1)
10 /10 = (3/5)(9!/11) = 27357/11 is divisible by 4!. If m = 2, then because of

w(U) = 10m = 20, d(U) = 1

we have

ord2(τU) = ⌊20+1−2
4

⌋ = 4, ord3(τU) = ⌊20+1−2
6

⌋ = 3.

Hence, thanks to the expression in 2.8, all the coefficients D
(1)
10m/(10m) are divisible by 4!.

This and (11.3) yield (11.4).

If p = 10m+1 is a prime number, then the coefficient fp−1 coincides with (2, 2)-entry

of the Hasse-Witt matrix with respect to the natural basis of the differential forms of the

first kind on C of reduction modulo p:

(11.5) fp−1 = −
(−3

5
p−1
10

)
≡ Ap mod p.

See also 18.1.

Under the consideration above, by applying Clarke’s theorem 2.9 to the Laurent de-

velopment of the function u 7→ −y(u)1/5 at u = 0, namely to

(11.6)
1

s
=

∞∑
m=0

D
(1)
10m

u10m−1

(10m)!
,

we have

(11.7)
1

4!

D
(1)
10m

10m
∈ −

∑
p≡1 mod 5
10m=a(p−1)

(4!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a + Z[1
5
].

11.2 Congruence between y(u)k/5 and y(u)(k+1)/5

Throughout this Section, we assume k = 1, 2, 3, or 4. We prove here a congruence relation

between the Hurwitz coefficients of y(k+1)/5(u) and of y(u)k/5 for y2 = x5 − 1.

s =
−1

y(u)1/5
(= u+ · · · ),
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we let

(11.8)
1

sj
= y(u)j/5 =

1

uj
+

∞∑
m=1

D
(j)
10m

(10m)j

u10m−j

(10m− j)!
(D

(2)
0 = 1)

for j = 1, 2, 3, 4, and 5. Then

(11.9)

∫ u

0

( 1

sk+1
− 1

uk+1

)
du

=

∫ u

0

(
∞∑

m=1

D
(k+1)
10m

(10m)k+1

u10m−(k+1)

(10m− (k + 1))!

)
du

=
∞∑

m=1

D
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!
.

On the other hand, after differentiating (11.1) with respect to u, dividing by sk+1, we

have

(11.10)
1

sk+1
=

1

sk+1

ds

du
+

∞∑
m=1

(
−3

5

m

)
s10m−(k+1) ds

du
.

Therefore, ∫ u

0

(
1

sk+1
− 1

uk+1

)
du =

(
−1

k

1

sk
+

∞∑
m=1

(
−3

5

m

)
s10m−k

10m− k

)
+

1

k

1

uk
.

By equating this with (11.9), and by using (11.6), we see that

∞∑
m=1

D
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!

=

(
−

∞∑
m=0

D
(k)
10m

(10m)k

u10m−k

(10m− k)!
+

∞∑
m=1

(
−3

5

m

)
s10m−k

10m− k

)
+

1

k

1

uk
.

Since D
(1)
0 = 1, we can remove the terms of negative degree, and we have

∞∑
m=1

D
(k)
10m

(10m)k

u10m−k

(10m− k)!
+

∞∑
m=1

D
(k+1)
10m

(10m)k+1

u10m−k

(10m− k)!
=

∞∑
m=1

(
−3

5

m

)
s10m−k

10m− k
.

The right hand side belongs to Z[1
5
]⟨⟨u⟩⟩ because of 8.2(3) and (8.12). Adding this with

(11.3), we conclude that

(11.11)
D

(k)
10m

(10m)k
+

D
(k+1)
10m

(10m)k+1

∈ (10 ·1−2)!Z[1
5
] ⊂ 4!Z[1

5
].
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11.3 The Clarke theorem on y(u) over Z[15 ]

The results we have obtained (11.11) for k = 1, 2, 3, 4 are

D
(4)
10m

(10m)4
+ 4

D
(5)
10m

(10m)5
∈ 4!Z[1

5
],

D
(3)
10m

(10m)3
+ 3

D
(4)
10m

(10m)4
∈ 4!Z[1

5
],

D
(2)
10m

(10m)2
+ 2

D
(3)
10m

(10m)3
∈ 4!Z[1

5
],

D
(1)
10m

10m
+

D
(2)
10m

(10m)2
∈ 4!Z[1

5
].

Summing up these results, we have

(11.12)
D

(1)
10m

10m
− 4!

D
(5)
10m

(10m)5
∈ 4!Z[1

5
].

Hence
1

4!

D
(1)
10m

10m
− D

(5)
10m

(10m)5
∈ Z[1

5
].

Since y(u) = −1/s(u)5 we see

(11.13)
D10m

10m
=

D
(5)
10m

(10m)5
.

This and 11.7 show that the aimed result of this section, that is

(11.14)
D10m

(10m)
∈ −

∑
p≡1 mod 5
10m=a(p−1)

(4!a|p)−1mod p1+ordpa

p1+ordpa
Ap

a + Z[1
5
].

12 The Clarke theorem on x(u) and y(u) over Z

We still deal with only the curve y2 = x5 − 1 in this section.

12.1 Congruence between y(u) and x2(u)

Let

(12.1) x2(u) =
1

t4
=

∞∑
m=0

C
(4)
10m

(10m)4

u10m−4

(10m− 4)!
.

If D = d/du = (2y/x)d/dx, then

(12.2) D(x2) = 2xDx = 2x2y
x
= 4y.
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Hence

(12.3)
C

(4)
10m

(10m)4
= 4

D10m

10m
.

Therefore, (10.15) and (11.14) show that the denominator of C
(4)
10m/(10m)4 does not con-

tain any power of 2, and that C
(4)
10m/(10m)4 has the property that

(12.4)
C

(4)
10m

(10m)4
∈ −

∑
p≡1 mod 5
10m=a(p−1)

(3!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a + Z.

Furthermore, since 1
4

C
(4)
10m

(10m)4
= D10m

10m
by (12.3), we see that

D10m

10m
∈ Z

[1
5
,
1

p
; p ≡ 1 mod 5, p− 1|10m

]
⊂ Z(2),

and that the denominator of D10m/(10m) does not contain any power of 2. Thus the

numerator of C
(4)
10m/(10m)4 is divisible by 4. This consideration and (11.14) give rise to

(12.5)
D10m

10m
∈ −

∑
p≡1 mod 5
10m=a(p−1)

(4!a)|p−1 mod p1+ordpa

p1+ordpa
Ap

a + Z.

This is the second formula in 6.1.

12.2 From x2(u) to x(u)

Finally, we use

(12.6) D2x = D
2y

x
= 6x2 +

4

x3
( D = d

du
= 2y

x
d
dx

).

Operating D to the differential equation (5.5), we have

(12.7) D2
(1
x

)
= 3

1

x

(
D
1

x

)2
− 10.

Therefore 1/x(u) ∈ Z⟨⟨u⟩⟩ by 8.2(1), and also 1/x3 ∈ Z⟨⟨u⟩⟩. These facts were proved

also by 8.3 and 8.2(3). Thus, we see that

(12.8)
C10m

10m
= 6 · C

(4)
10m

(10m)4
+ “an integer”.

Because of (12.4), we conclude that

(12.9)

C10m

10m
= 3!

C
(4)
10m

(10m)4
+ “an integer”

= G10m −
∑

p≡1 mod 5
10m=a(p−1)

a|p−1 mod p1+ordpa

p1+ordpa
Ap

a

with a suitable G10m ∈ Z. This is the desired first formula in 6.1.
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13 Proof of the Kummer-type congruences

13.1 Honda’s theorem and formal groups.

Now we start to prove 7.1 (and 7.5). We show that there exists formal group over Z such

that its formal logarithm is (10.1) (or (11.1)).

Proposition 13.1. Suppose p be a fixed prime number. Let t be an indeterminate

and let u(t) ∈ Qp[[t]]. If there exists β ∈ Zp such that

(13.2) pu(t)− βu(tp) ∈ pZp[[t]]

then the formal group law F given by

(13.3) F (t1, t2) := u−1(u(t1) + u(t2))

is defined over Zp (i.e. ∈ Zp[[t1, t2]]). Here u
−1(t) ∈ Qp[[t]] means the unique power series

such that u−1(u(t)) = t. In particular, if α ∈ Zp, then we have

(13.4) F (αt) = u−1(αu(t)) ∈ αt+ t2Zp[[t]].

This is obtained by applying Honda’s theorem [Ho], p.223, Theorem 2 as n = 1, q = p,

P = 1, u = p − βT , f = u(t). We can apply this theorem to t 7→ u = ug of (10.1) and

s 7→ u of (11.1). To do so, we introduce the p-adic Γ -function

(13.5) Γp : Zp → Z×
p .

This function satisfies, for any positive integer n, that

(13.6) Γp(n) = (−1)n
∏

15j<n
p̸ |j

j.

The most important properties are that

(13.7) Γp(z + 1) =

−zΓp(z) (z ̸∈ pZp)

−Γp(z) (z ∈ pZp)

and that, for any positive integer ν,

(13.8) z ≡ w mod pνZp implies Γp(z) ≡ Γp(w) mod pνZp.

For the details, see [Mo] or [R].

Denoting by u(t) the power series development of

u(= ug) =

∫ (x,y)

∞

xg−1dx

2y

with respect to t = −x− 1
2 we claim that

42



Lemma 13.9. For the curve y2 = x2g+1 − 1 (resp. y2 = x2g+1 − x ) and a prime p ≡ 1

mod 2g + 1 (resp. p ≡ 1 mod 4g ),

βp = −(−1)(p−1)/(4g+2) Γp(
1
2
)

Γp(
4g+1
4g+2

)Γp(
2g+2
4g+2

)
( ∈ Zp

× ).(
resp. βp = −(−1)(p−1)/(4g) Γp(

1
2
)

Γp(
4g−1
4g

)Γp(
2g+1
4g

)
( ∈ Zp

× ).

)
Then the series satisfies

(13.10) pu(t)− βpu(t
p) ∈ pZp[[t]].

This property is satisfied by the power series development s = −y−
1

2g+1 with respect to u

also.

Proof. For simplicity, we prove the statement only for the curve y2 = x5−1 (g = 2).

Let f10n/(10n+1) = [t10n+1]u(t). Then, as is stated in (10.2), f10n = (−1)n
(− 1

2
n

)
. It suffice

for us to prove that, if p(10m+ 1) = 10n+ 1, then

p
f10n

10n+ 1
− βp

f10m
10m+ 1

∈ pZp.

We notice that
⌊
n
p

⌋
=
⌊
m+ 1

10
− 1

10p

⌋
= m. This and

p(2
⌊
n
p

⌋
− 1) 5 2n− 1 5 p

(
2(
⌊
n
p

⌋
+ 1)− 1

)
show that the largest odd integer divisible by p not exceed 2n− 1 is p(2m− 1). Hence

p
f10n

10n+ 1
− βp

f10m
10m+ 1

= p(−1)n
(
−1

2

n

)
1

10n+ 1
− βp · (−1)m

(
−1

2

m

)
1

10m+ 1

=
1

10m+ 1

{
(−1)pm+ p−1

10

∏n
j=1

(
− 2j−1

2

)
n!

− βp · (−1)m
∏m

j=1

(
− 2j−1

2

)
m!

}

=
(−1)m+ p−1

10

10m+ 1

{∏n
j=1, p̸ |2j−1

(
− 2j−1

2

) ∏m
k=1

(
− p(2k−1)

2

)(∏n
j=1, p̸|j j

)(∏m
k=1 pk

)
− (−1)

p−1
10 βp

∏m
j=1

(
− 2j−1

2

)
m!

}
.

By using (13.7) repeatedly, we have

=
(−1)m+ p−1

10

10m+ 1

{ (−1)nΓp(− 1
2
+1)

Γp(− 2n−1
2

)
pm
∏m

k=1

(
− 2k−1

2

)
(−1)n+1Γp(n+ 1) pmm!

− (−1)
p−1
10 βp

∏m
j=1

(
− 2j−1

2

)
m!

}

=
(−1)m+ p−1

10

10m+ 1

{
−

Γp(
1
2
)

Γp(n+ 1)Γp(−n+ 1
2
)

∏m
k=1

(
− 2k−1

2

)
m!
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+
Γp(

1
2
)

Γp(
9
10
)Γp(

6
10
)

∏m
j=1

(
− 2j−1

2

)
m!

}

=
(−1)m+ p−1

10

10m+ 1

(
−1

2

m

){
−

Γp(
1
2
)

Γp(
1
10
p(10m+ 1) + 9

10
)Γp(− 1

10
p(10m+ 1) + 6

10
)

+
Γp(

1
2
)

Γp(
9
10
)Γp(

6
10
)

}
.

Let ν be the integer such that ordp(10m+ 1) = ν. Then (13.7) and (13.8) show

Γp(
1
2
)

Γp(
1
10
p(10m+ 1) + 9

10
)Γp(− 1

10
p(10m+ 1) + 6

10
)

≡
Γp(

1
2
)

Γp(
9
10
)Γp(

6
10
)

mod pν+1Zp.

It follows from 1.5 that (
−1

2

m

)
∈ Zp.

Therefore

p
f10n

10n+ 1
− βp

f10m
10m+ 1

∈ pZp.

and the proof has completed.

Remark 13.11. (1) Regarding the map ι : C → J to be defined over Zp, we denote

its formal completion at ∞ 7→ ”the origin of J” by ι̂ : Ĉ → Ĵ . Because of the action

(5.6) (resp. (5.8)), Ĵ is decomposed into a product of 1-dimensional formal groups. The

composite map π̂ ◦ ι̂ : Ĉ → G of ι̂ with the projection π : Ĵ → G, where G is a certain

factor of the product, would be an isomorphism of formal groups.

(2) The height of the formal group F over Zp associated to u(t) above is 1, namely, there

exists b ∈ Z×
p such that u−1(pu(t)) ≡ btp mod pZp[[t]]. This is a consequence from

pu(t) = p
(
t+ · · ·+ fp−1

tp

p
+ · · ·

)
and that fp−1 ∈ Z×

p which follows from (10.5). The same fact is seen for the formal group

associated to the series development of s 7→ u.

13.2 Hochschild’s formula and Honda’s theorem

We recall the following Proposition called Hochschild’s formula in order to show 13.13

below. Let R be a commutative ring. A derivation D of R is a map form R to itself such

that

D(a+ b) = Da+Db, D(ab) = (Da)b+ aDb

for a, b ∈ R.
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Proposition 13.12. Let p be a prime, Let R be a commutative ring and D be a

derivation of R. Let M be (Z-)submodule in R such that DM is in a subring A ⊂ R in

which pA is a prime ideal with satisfying DA ⊂ A. So that, A/pA is a Fp-algebra. Then,

for b ∈ A, we have

(bD)pM ≡
(
bpDp + ((bD)p−1(b))·D

)
M mod pA.

Proof. This is a slight modification of Theorem 25.5 in [Ma], p.197, and is proved

exactly in the same way. So, we omit it.

While the following general equality is proved by using the formula above, rather weak

version for the case of g = 1 is described in [G] by a different way.

Proposition 13.13. For the curve y2 = x2g+1−1 (resp. y2 = x2g+1−x ), let t = t(u)

and s = s(u) be the power series of 8.3 and of 8.7, respectively. Let p ≡ 1 (mod (2g+1))

(resp. (mod 4g)) be a prime. If φ ∈ Z(p)[[t]] or φ ∈ Z(p)[[s]] then(( d
du

)p
− Ap

d

du

)
φ ∈ pZ(p)[[t]] or ∈ pZ(p)[[s]].

Proof. We apply 13.12 by taking R = Q[[t]], M =
∫ t

0
Z(p)[[t]]dt, A = Z(p)[[t]], and

D = d
dt
. Then A/pA = Fp[[t]]. In the sequel of this proof, the symbol “=” means the

equality in Fp[[t]]. First of all, we pay attention to the fact

(13.14)

du

dt
= 1 +

∞∑
n=1

(−1)n
(
−1

2

n

)
t(2g+2)n ∈ 1 + tZ[1

2
][[t]],

dt

du
∈ 1 + tZ[1

2
][[t]]

given by (10.1) and (10.3). By using 13.12 for this b := dt
du

and D above, we see that

0 =
( d
du

)p
u = (bD)pu

=
(
bpDp + ((bD)p−1(b)) ·D

)
u

=
( dt
du

)pdpu
dtp

+
{( dt

du

d

dt

)p−1 dt

du

}du
dt

=
( dt
du

)pdpu
dtp

+
{( d

du

)p−1 dt

du

}du
dt

=
( dt
du

)pdpu
dtp

+
dpt

dup
du

dt
.

Hence

(13.15)
dpt

dup
= −

(du
dt

)−p−1dpu

dtp
.

By using 13.12 again for φ, D, and b, we have( d
du

)p
φ = (bD)pφ
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=
(
bpDp +

(
(bD)p−1(b)

)
·D
)
φ

=
( dt
du

)p( d
dt

)p
φ+

(( dt
du

d

dt

)p−1 dt

du

) d
dt
φ

=
(du
dt

)−p dp

dtp
φ+

dpt

dup
du

dt

d

du
φ

=
dpt

dup
du

dt

d

du
φ.

Here we have used the assumption φ ∈ Zp[[t]]. By substituting (13.15) into the last

formula, we obtain

(13.16)
( d
du

)p
φ = −

(du
dt

)−pdpu

dtp
· d
du
φ.

Since ( d
dt
)pZ(p)[[t]] ∈ pZ(p)[t]], by applying ( d

dt
)p to (13.10), we have

dpu

dtp
=
( d
dt

)p−1(
βpt

p−1u′(tp)
)
= (p− 1)! βp u

′(tp) = −βpu′(t)p.

The properties (13.6) and (13.8) imply

Ap = (−1)(p−1)/(4g+2)

( p−1
2

p−1
4g+2

)
= (−1)(p−1)/(4g+2)(−1)

Γp(
p−1
2

+ 1)

Γp(
p−1
4g+2

+ 1)Γp(
p−1
2

− p−1
4g+2

+ 1)

= −(−1)(p−1)/(4g+2) Γp(
p+1
2
)

Γp(
p+4g+1
4g+2

)Γp(
2gp+2g+2

4g+2
)

≡ −(−1)(p−1)/(4g+2) Γp(
1
2
)

Γp(
4g+1
4g+2

)Γp(
2g+2
4g+2

)
mod p

= βp.

So that
dpu

dtp
= −Ap

(du
dt

)p
.

To Substitute this into (13.16) shows( d
du

)p
φ = Ap

d

du
φ

as desired. The statement for s = s(u) is proved similarly.

13.3 Proof of the congruence relations

The tools for the proof of 7.1 (and 7.5) have been completely prepared. Here we demon-

strate the proof for the curve y2 = x5 − 1. To avoid confusion, if we regard

x(u) =
1

u2
+

∞∑
n=2

C10n

10n

u10n−2

(10n− 2)!
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to be an element in Qp[[u]], we denote this by

x⟨u⟩ = x(u)

Let ξ ∈ Zp be a primitive (p−1)-st root of 1. Then, as

(13.17) x⟨u⟩ − ξ2x⟨ξu⟩ =
∞∑
n=1

p−1̸ |10n

(1− ξ10n)C10n

10n

u10n−2

(10n− 2)!

it suffice to prove for any positive integer a and D = d/du that

(13.18) (Dp − ApD)a(x⟨u⟩ − ξ2x⟨ξu⟩) ∈ paZp⟨⟨u⟩⟩.

Indeed, if 10n = a+ 2 and (p− 1) ̸ | 10n, then the coefficient of u10n−a−2/(10n− a− 2)! is

(1− ξ10n)
a∑

r=0

(
r

a

)
(−Ap)

a−r C10n+r(p−1)

10n+ r(p− 1)

and 1− ξ10n ̸∈ pZp. Thanks to 13.13, it suffice for proving (13.18) to prove

(13.19) x⟨u(t)⟩ − ξ2x⟨ξu(t)⟩ ∈ Zp[[t]].

If we set

(13.20)

Fξ(t) = u−1(ξu(t)) (u−1 is the formal inverse series of t 7→ u)

= t(ξu(t))

= ξ t+ ξ11−ξ
22

t11 + · · · ,

then 13.1 and 13.9 yield that

x⟨u(t)⟩ − ξ2x⟨ξu(t)⟩ = 1

t2
− ξ2

t(ξu(t))2
=

1

t2
− ξ2

(ξt+ ξ11−ξ
22

t11 + · · · )2
∈ Zp[[t]]

because Fξ(t) ∈ ξt+ t2Zp[[t]]. Hence, 7.1 has been proved.

14 Other congruence relations

In this Section we do not restrict to the curve y2 = x5 − 1, and describe hyperelliptic

curves defined by either equation of

y2 = x2g+1 − 1, y2 = x2g+1 − x.

47



14.1 Generalized Bernoulli-Hurwitz numbers of higher order

Let t = −1/x(u)1/2 and s = −1/y(u)1/5 as usual. We prove the Kummer congruence

relations for the Hurwitz coefficients of t−ν (1 5 ν 5 4g + 2) generalizing the congruence

for t−2 = x(u) proved in the Section 13.

The case of y(u)2 = x(u)2g+1−1. For the curve y2 = x2g+1−1, we recall the numbers

C
(ν)
(4g+2)n (defined in the Section 10) and D

(ν)
(4g+2)n (defined in the Section 11). Namely, for

ν = 1, 2, · · ·, we let

(14.1)

1

tν
=

1

uν
+

∞∑
n=1

C
(ν)
(4g+2)n

((4g + 2)n)ν

u(4g+2)n−ν

((4g + 2)n− ν)!
,

1

sν
=

1

uν
+

∞∑
n=1

D
(ν)
(4g+2)n

((4g + 2)n)ν

u(4g+2)n−ν

((4g + 2)n− ν)!
.

Of course, if (4g + 2) ̸ |n then we assume C
(ν)
n = D

(ν)
n = 0.

Let p ≡ 1 (mod (4g+2)) be a prime number, and ξ ∈ Zp be a primitive (p−1)-st root

of 1. By using

(14.2)
1

t(u)ν
− ξν

1

t(ξu)ν
=

∞∑
n=1

p−1̸ |(4g+2)n

(1− ξ(4g+2)n)C
(ν)
(4g+2)n

((4g + 2)n)ν

u(4g+2)n−ν

((4g + 2)n− ν)!

instead of (13.17), we have the following.

Theorem 14.3. Let p ≡ 1 mod (2g+1) be a prime number, a be a positive integer. Let

ν be an integer such that 1 5 ν 5 4g+2. Assume (4g+2)n = a+ ν and p− 1 ̸ | (4g+2)n.

Then we have

a∑
r=0

(
r

a

)
(−Ap)

a−r
C

(ν)
(4g+2)n+r(p−1)

((4g + 2)n+ r(p− 1))ν
≡ 0 mod pa,

a∑
r=0

(
r

a

)
(−Ap)

a−r
D

(ν)
(4g+2)n+r(p−1)

((4g + 2)n+ r(p− 1))ν
≡ 0 mod pa.

The case of y(u)2 = x(u)2g+1 − x(u). For the curve y2 = x2g+1 − x and ν = 1, 2, · · ·,
we define C

(ν)
4gn and D

(ν)
4gn by

(14.4)

1

tν
=

1

uν
+

∞∑
n=1

C
(ν)
4gn

(4gn)ν

u4gn−ν

(4gn− ν)!
,

1

sν
=

1

uν
+

∞∑
n=1

D
(ν)
4gn

(4gn)ν

u4gn−ν

(4gn− ν)!
.

We also assume that, if (4g + 2) ̸ |n then C
(ν)
n = D

(ν)
n = 0.
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Let p ≡ 1 (mod 4g) be a prime, and ξ ∈ Zp be a primitive (p−1)-st root of 1. By

using

(14.5)
1

t(u)ν
− ξν

1

t(ξu)ν
=

∞∑
n=1

p−1̸ |4gn

(1− ξ4gn)C
(ν)
4gn

(4gn)ν

u4gn−ν

(4gn− ν)!

instead of (13.17), we have

Theorem 14.6. Let p ≡ 1 (mod 4g) be a prime number, a be a positive integer. Let

ν be an integer such that 1 5 ν 5 4g + 2. Assume 4gn = a+ ν and p− 1 ̸ | 4gn. Then we

have

a∑
r=0

(
r

a

)
(−Ap)

a−r
C

(ν)
4gn+r(p−1)

(4gn+ r(p− 1))ν
≡ 0 mod pa,

a∑
r=0

(
r

a

)
(−Ap)

a−r
D

(ν)
4gn+r(p−1)

(4gn+ r(p− 1))ν
≡ 0 mod pa.

14.2 Hurwitz coefficients of t(ug) and of s(ug)

We consider now the Hurwitz coefficients c
(h)
m , d

(h)
m of powers of t = t(u) in 8.3 and s = s(t)

in 8.7, namely, those of

(14.7)
t(u)h

h!
=

∞∑
m=h

c(h)m

um

m!
∈ Zp⟨⟨u⟩⟩.,

s(u)h

h!
=

∞∑
m=h

d(h)m

um

m!
∈ Zp⟨⟨u⟩⟩.

Here, obviously c
(h)
h = d

(h)
h = 1. The results are as follows.

Lemma 14.8. If ν > 0 and m = a+ 1, then

(14.9)

a∑
r=0

(
a

r

)
(−Ap)

a−rc
(h)
m+r(p−1) ≡ 0 mod pa,

a∑
r=0

(
a

r

)
(−Ap)

a−rd
(h)
m+r(p−1) ≡ 0 mod pa.

Proof. By 8.2(2), (3), and 8.3, we have

(14.10) Zp⟨⟨u⟩⟩ = Zp⟨⟨t⟩⟩.

For D = d/du and any integer h = 1, we show that

(14.11) (Dp − ApD)
( th
h!

)
∈ b+ pZp⟨⟨u⟩⟩, (b ∈ Zp)
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by induction. If h = 1, this is checked by 13.13 and (14.10). Since

D(Dp − ApD)
( th+1

(h+ 1)!

)
= (Dp − ApD)

( th
h!

dt

du

)
=
(
Dp t

h

h!

) dt
du

+

p−1∑
j=1

(
p

j

)(
Dp−j t

h

h!

)(
Dj dt

du

)
+
th

h!

(
Dp dt

du

)
− ApD

( th
h!

) dt
du

− Ap
th

h!

(
D
dt

du

)
∈
{
(Dp − ApD)

uh

h!

} dt
du

+
th

h!

{
(Dp − ApD)

dt

du

}
+ pZp⟨⟨u⟩⟩

by using the hypothesis of induction, (13.15), and 13.13, we see that this belongs to

pZp⟨⟨u⟩⟩. Hence, we have

(Dp − ApD)
( th+1

(h+ 1)!

)
∈ b+ pZp⟨⟨u⟩⟩ (b ∈ Zp).

Thus, we have concluded (14.11). Using (14.11) repeatedly, we have, for a > 0, that

(14.12) (Dp − ApD)a
( th
h!

)
∈ b+ paZp⟨⟨u⟩⟩ (b ∈ Zp).

Because of

(Dp − ApD)a
( th
h!

)
=

∞∑
m=h

{ a∑
r=0

(
a

r

)
(−Ap)

a−rc
(h)
m+r(p−1)

}
Dau

m

m!
,

we obtain the first formula. The second one is proved similarly.

14.3 Generalization of the Vandiver-Carlitz congruence

In this subsection, we prove the congruence relation of Vandiver-Carlitz style. Vandiver

gave in [V] such the congruence for Bernoulli numbers, and Carlitz investigated in [Ca4]

for Hurwitz numbers.

Proposition 14.13. Let a > 0 and ν > 0 are integers. Let n = a + 1. For the

numbers {C(ν)
n } and {D(ν)

n } defined in (14.1) or (14.4), we have

a∑
r=0

(
a

r

)
(−Ap)

a−rC
(ν)
n+r(p−1) ≡ 0 mod pa−ν ,

a∑
r=0

(
a

r

)
(−Ap)

a−rD
(ν)
n+r(p−1) ≡ 0 mod pa−ν .

Remark 14.14. These congruence relations need not the condition (p− 1)̸ |n in con-

trary to 7.1, 7.5, 14.3, 14.6. However, since 14.13 can be proved without (13.10) and 13.1,

it would be not so deep results.
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Proof. As in 10.1, we let [tn+1/(n + 1)]u(t) = fn. Here we use still the notation

u = ug, D = d/du. Since

∞∑
m=0

C(1)
m

um

m!
=

u

t(u)
=

1

t

∞∑
m=ν

fh
th+1

h+ 1

=
∞∑
h=0

fhh!

h+ 1

∞∑
m=h

c(h)m

um

m!
=

∞∑
m=0

( m∑
h=0

fhh!

h+ 1
c(h)m

)
um

m!

we have

(14.15) C(1)
m =

m∑
h=0

fhh!

h+ 1
c(h)m .

Therefore,

a∑
r=0

(
a

r

)
(−Ap)

a−rC
(1)
m+r(p−1) =

a∑
r=0

(
a

r

)
(−Ap)

a−r

m+r(p−1)∑
h=0

fhh!

h+ 1
c
(h)
m+r(p−1)

=

m+r(p−1)∑
h=0

fhh!

h+ 1

a∑
m=0

(
a

r

)
(−Ap)

a−rc
(h)
m+r(p−1).

If m = a+1, then the inner sum is divisible by pa because of (14.8). If pw||(h+1) (w = 1),

then pw − 1 5 h, and ordp(p
w − 1)! 5 ordph!. By (1.2), we see that

ordp(p
w − 1)! =

(pw − 1)− (p− 1)w

p− 1
= pw−1 + pw−2 + · · ·+ p+ 1− w.

In our situation, we may assume p 5 3. Hence, the above is = w if w = 2. The worst

case is when w = 1, so that

(14.16) w 5 ordph! + 1, (w = 1).

Therefore

(14.17)
a∑

r=0

(
a

r

)
(−Ap)

a−rC
(1)
m+r(p−1) ∈ pa−1Z(p) (m = a+ 1).

This is just the case of ν = 1 of the first formula in Theorem 14.3. The general case is

proved similarly as follows. Since u =
∑∞

h=0 fh
th+1

h+1
, we see

uν =
∞∑
h=0

∑
h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
th+ν .

Hence (u
t

)ν
=

∞∑
h=0

∑
h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
th
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=
∞∑
h=0

∑
h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
h!

∞∑
m=h

c(h)m

um

m!

=
∞∑

m=0

(
m∑

h=0

h!
∑

h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
c(h)m

)
um

m!
,

and that

1

tν
=

∞∑
m=0

1

(m)ν

(
m∑

h=0

h!
∑

h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
c(h)m

)
um−ν

(m− ν)!
.

This development yields that

(14.18) C(ν)
m =

m∑
h=0

h!
∑

h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1
c(h)m .

and that

(14.19)

a∑
r=0

(
a

r

)
(−Ap)

a−rC
(ν)
n+r(p−1) =

m∑
h=0

(
h!
∑

h1+h2+···
+hν=h

fh1

h1 + 1

fh2

h2 + 1
· · · fhν

hν + 1

)

·
{ a∑

r=0

(
a

r

)
(−Ap)

a−rc
(h)
n+r(p−1)

}
.

If we assume pwj ||(hj + 1), then, as in (14.16), we conclude

w1 + · · ·+ wν 5 ordp(h1!h2! · · ·hν !) + ν 5 ordp(h!) + ν

because wj 5 ordphj! + 1. This shows that the right hand side of (14.19) is divisible by

pa−ν . Thus, we have proved the first congruence in (14.13). The second one is proved

similarly.
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15 Numerical examples on classical numbers

15.1 Bernoulli numbers

First several values of C2n = (−1)n−122nB2n (B2n is the 2n-th Bernoulli number) of the

curve y2 = x− 1 (g = 0) are as follows:

22B2 =
1

3
· 2, −24B4 =

1

3 · 5
· 23, 26B6 =

1

3 · 7
· 25,

−28B8 =
1

3 · 5
· 27, 210B10 =

1

3 · 11
· 29 · 5,

−212B12 =
1

3 · 5 · 7 · 13
· 211 · 691, 214B14 =

1

3
· 215 · 7,

−216B16 =
1

3 · 5 · 17
· 215 · 3617, 218B18 =

1

3 · 5 · 19
· 217 · 43867,

−220B20 =
1

3 · 5 · 11
· 219 · 283 · 617,

222B22 =
1

3 · 23
· 221 · 11 · 131 · 593,

−224B24 =
1

3 · 5 · 7 · 13
· 223 · 103 · 2294797,

226B26 =
1

3
· 225 · 13 · 657931,

−228B28 =
1

3 · 5 · 29
· 227 · 7 · 9349 · 362903,

230B30 =
1

3 · 7 · 11 · 31
· 229 · 5 · 1721 · 1001259881,

−232B32 =
1

3 · 5 · 17
· 231 · 37 · 683 · 305065927,

234B34 =
1

3
· 233 · 233 · 17 · 151628697551,

−236B36 =
1

3 · 5 · 7 · 13 · 19 · 37
· 235 · 26315271553053477373,

238B38 =
1

3
· 237 · 19 · 154210205991661,

−240B40 =
1

3 · 5 · 11 · 41
· 239 · 137616929 · 1897170067619,

242B42 =
1

3 · 7 · 43
· 241 · 1520097643918070802691,

−244B44 =
1

3 · 5 · 23
· 243 · 11 · 59 · 8089 · 2947939 · 1798482437,

246B46 =
1

3 · 47
· 245 · 23 · 383799511 · 67568238839737,

−248B48 =
1

3 · 5 · 7 · 13 · 17
· 247 · 653 · 56039 · 153289748932447906241,

250B50 =
1

3 · 11
· 249 · 52 · 417202699 · 47464429777438199.
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15.2 Hurwitz numbers for the curve y2 = x3 − 1

First several values of C6n for the curve y2 = x3 − 1 (g = 1) are as follows:

C6 =
1

7
· 24 · 32, C12 =

−1

7 · 13
· 210 · 35 · 52,

C18 =
1

7 · 19
· 216 · 38 · 53 · 11, C24 =

−1

7 · 13
· 222 · 311 · 53 · 112 · 17,

C30 =
1

7 · 31
· 228 · 314 · 56 · 112 · 17 · 23,

C36 =
−1

7 · 13 · 19 · 37
· 234 · 317 · 57 · 113 · 172 · 23 · 29 · 43,

C42 =
1

7 · 43
· 240 · 320 · 58 · 113 · 172 · 23 · 29 · 431,

C48 =
−1

7 · 13
· 246 · 323 · 58 · 114 · 172 · 232 · 29 · 41 · 313,

C54 =
1

7 · 19
· 252 · 326 · 510 · 114 · 173 · 232 · 29 · 41 · 47 · 1201,

C60 =
−1

7 · 13 · 31 · 61
· 258 · 329 · 513 · 115 · 173 · 232 · 292 · 412 · 47 · 53 · 1823,

C66 =
1

7 · 67
· 264 · 332 · 513 · 116 · 173 · 232 · 292 · 41 · 47 · 53 · 59 · 79 · 733,

C72 =
−1

7 · 13 · 19 · 37 · 73
· 270 · 335 · 513 · 116 · 174 · 233 · 292 · 41 · 47 · 53 · 59

· 1153 · 13963 · 29059,

C78 =
1

7 · 79
· 276 · 338 · 515 · 117 · 13 · 174 · 233 · 292 · 41 · 43 · 47 · 53 · 59 · 71

· 2647111,

C84 =
−1

7 · 13 · 43
· 282 · 341 · 517 · 117 · 174 · 233 · 292 · 412 · 47 · 53 · 59 · 71

· 8431097574437,

C90 =
1

7 · 19 · 31
· 288 · 344 · 519 · 118 · 175 · 233 · 293 · 412 · 47 · 53 · 59 · 71

· 83 · 998039409083,

C96 =
−1

7 · 13 · 97
· 294 · 347 · 518 · 118 · 175 · 234 · 293 · 412 · 472 · 53 · 59 · 71

· 83 · 89 · 253013 · 826151671,

C102 =
1

7 · 103
· 2100 · 350 · 520 · 119 · 176 · 234 · 294 · 412 · 472 · 53 · 59 · 71

· 83 · 89 · 433 · 1493 · 532620611,

C108 =
−1

7 · 13 · 19 · 37 · 109
· 2106 · 353 · 522 · 119 · 176 · 234 · 293 · 412 · 472 · 532

· 59 · 71 · 83 · 89 · 101 · 38543 · 72745827951021097.
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15.3 Hurwitz numbers for the curve y2 = x3 − x

First several values of C4n = 24nE4n (E4n is the 4n-th original Hurwitz number) for the

curve y2 = x3 − x (g = 1) are as follows:

24E4 =
1

5
· 23 · 3, 28E8 =

1

5
· 27 · 3, 212E12 =

1

5 · 13
· 211 · 34 · 7,

216E16 =
1

5 · 17
· 215 · 34 · 72 · 11, 220E20 =

1

5
· 219 · 36 · 72 · 11,

224E24 =
1

5 · 13
· 223 · 37 · 73 · 112 · 19,

228E28 =
1

5 · 29
· 227 · 39 · 74 · 112 · 19 · 23,

232E32 =
1

5 · 17
· 231 · 310 · 74 · 112 · 19 · 23 · 223,

236E36 =
1

5 · 13 · 37
· 235 · 314 · 75 · 113 · 19 · 23 · 31 · 61,

240E40 =
1

5 · 41
· 239 · 313 · 75 · 113 · 192 · 23 · 31 · 2381,

244E44 =
1

5
· 243 · 315 · 76 · 114 · 194 · 23 · 31,

248E48 =
1

5 · 13 · 17
· 247 · 316 · 75 · 114 · 192 · 232 · 31 · 43 · 1162253,

252E52 =
1

5 · 53
· 251 · 318 · 77 · 114 · 13 · 192 · 232 · 31 · 43 · 47 · 8887,

256E56 =
1

5 · 29
· 255 · 319 · 78 · 115 · 192 · 232 · 31 · 43 · 47 · 61 · 52289,

260E60 =
1

5 · 13 · 61
· 259 · 322 · 78 · 115 · 193 · 232 · 31 · 43 · 47 · 2630966033,

264E64 =
1

5 · 17
· 263 · 322 · 79 · 115 · 193 · 232 · 312 · 43 · 47 · 59 · 109 · 814903,

268E68 =
1

5
· 267 · 324 · 79 · 116 · 17 · 19 · 232 · 312 · 43 · 47 · 59 · 80232721,

272E72 =
1

5 · 13 · 37 · 73
· 271 · 325 · 710 · 116 · 193 · 233 · 312 · 43 · 47 · 59 · 67

· 48316510111193,

276E76 =
1

5
· 275 · 327 · 710 · 116 · 194 · 233 · 312 · 43 · 47 · 59 · 67 · 71 · 3469

· 1330177.
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16 Numerical examples for new numbers

16.1 x(u) of the curve y2 = x5 − 1

First several values of C10n for the curve y2 = x5−1 (g = 2) are computed. The following

is a progrm for pari/GP written by Naruoa Kano which gives the series expansion of

x⟨u⟩ with respect to u.

/*

Formal expansion of x(u) for the curve y^2 = x^5 - 1 (by N. Kanou)

*/

\ps190;allocatemem(10^10);

serintgl(f,v=x)={

sum(n=0,poldegree(Pol(f)),polcoeff(Pol(f),n)*v^(n+1)/(n+1))+f-f};

x_of_u=1/subst(serreverse(-serintgl(1/sqrt(1-x^10)))^2,x,u);

print("x(u)=",x_of_u);

end;

Using this, we have the following numbers:

C10 =
1

11
· 28 · 32 · 52 · 7,

C20 =
−1

11
· 218 · 39 · 54 · 7 · 13 · 17,

C30 =
1

11 · 31
· 228 · 314 · 57 · 73 · 132 · 17 · 19 · 232,

C40 =
−1

11 · 41
· 238 · 317 · 59 · 73 · 132 · 172 · 192 · 23 · 29 · 37 · 31991,

C50 =
1

11
· 247 · 323 · 512 · 76 · 133 · 17 · 192 · 232 · 29 · 37 · 43 · 47 · 4999,

C60 =
−1

11 · 31 · 61
· 259 · 328 · 515 · 76 · 134 · 172 · 193 · 232 · 292 · 37 · 43

· 47 · 53 · 351453077,

C70 =
1

11 · 71
· 272 · 331 · 516 · 79 · 135 · 173 · 193 · 232 · 292 · 37 · 43

· 47 · 53 · 59 · 67 · 6740734411,

C80 =
−1

11 · 41
· 278 · 334 · 519 · 78 · 136 · 173 · 194 · 233 · 292 · 372 · 43

· 47 · 53 · 59 · 67 · 73 · 109 · 460903 · 121384433,

C90 =
1

11 · 31
· 287 · 342 · 521 · 710 · 136 · 174 · 194 · 233 · 293 · 372 · 432

· 47 · 53 · 59 · 672 · 73 · 79 · 83 · 131 · 881 · 2799606697,

C100 =
−1

11 · 101
· 297 · 347 · 524 · 711 · 137 · 173 · 195 · 234 · 293 · 372 · 432
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· 472 · 53 · 59 · 67 · 73 · 79 · 83 · 89 · 97 · 10343 · 1938718187373563,

C110 =
1

11
· 2107 · 351 · 527 · 713 · 138 · 174 · 195 · 234 · 293 · 37 · 432

· 472 · 532 · 59 · 67 · 73 · 79 · 83 · 89 · 97 · 103 · 107
· 3019729 · 865724129494813,

C120 =
−1

11·31·41·61
· 2119 · 356 · 529 · 713 · 139 · 175 · 196 · 235 · 294 · 372 · 432

· 472 · 532 · 592 · 67 · 73 · 79 · 83 · 89 · 97 · 103 · 107 · 109 · 113
· 863833294249 · 7389430581319,

C130 =
1

11 · 131
· 2128 · 361 · 532 · 715 · 1311 · 175 · 196 · 235 · 294 · 372 · 432

· 472 · 532 · 592 · 67 · 73 · 79 · 83 · 89 · 97 · 103 · 107 · 109 · 113 · 127
· 5303 · 97785319 · 175363749323953511,

C140 =
−1

11 · 71
· 2139 · 365 · 534 · 715 · 1310 · 176 · 197 · 236 · 294 · 372 · 433

· 47 · 532 · 592 · 672 · 73 · 79 · 83 · 89 · 97 · 103 · 107 · 109 · 113 · 127
· 137 · 3191 · 79927801 · 2927519326077590415331021,

C150 =
1

11 · 31 · 151
· 2150 · 370 · 537 · 717 · 1312 · 175 · 197 · 236 · 295 · 373 · 433

· 472 · 532 · 592 · 672 · 732 · 79 · 83 · 89 · 97 · 103 · 107 · 109 · 113 · 127
· 137 · 139 · 50951 · 450127 · 1464426640811 · 58871719018640089,

C160 =
−1

11 · 41
· 2158 · 372 · 540 · 717 · 1312 · 176 · 198 · 236 · 295 · 373 · 433

· 472 · 532 · 592 · 672 · 732 · 792 · 83 · 89 · 97 · 103 · 107 · 109 · 113 · 127 · 137
· 139 · 149 · 157 · 5473709 · 22543502622365730931551293201565706511,

C170 =
1

11
· 2167 · 378 · 542 · 719 · 1312 · 178 · 198 · 237 · 295 · 373 · 433

· 472 · 533 · 592 · 672 · 732 · 792 · 832 · 89 · 97 · 103 · 107 · 109 · 113 · 127
· 137 · 139 · 149 · 157 · 163 · 167
· 587 · 22573 · 18793 · 246289 · 311203545376580358674935387,

C180 =
−1

11·31·61·181
· 2177 · 387 · 545 · 719 · 1315 · 177 · 199 · 237 · 296 · 373 · 434

· 472 · 533 · 593 · 672 · 732 · 792 · 832 · 892 · 97 · 103 · 107 · 109 · 113 · 127
· 137 · 139 · 149 · 157 · 163 · 167 · 173
· 239 · 1471 · 1579 · 7030999221688667065861742323016843138707.
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Each C10n is writen by a certain integer G10n (von Staudt-Clausen type theorem) as

follows:

C10 =
6

11
+G10,

C20 =
62

11
+G20,

C30 =
63

11
+

10

31
+G30,

C40 =
64

11
+

7

41
+G40,

C50 =
65

11
+G50,

C60 =
66

11
+

102

31
+

1

61
+G60,

C70 =
67

11
+

32

71
+G70,

C80 =
68

11
+

72

41
+G80,

C90 =
69

11
+

103

31
+G90,

C100 =
610

11
+

46

101
+G100,

C110 =
611

11
+G110,

C120 =
612

11
+

104

31
+

73

41
+

1

61
+G120,

C130 =
613

11
+

64

131
+G130,

C140 =
614

11
+

322

71
+G140,

C150 =
615

11
+

105

31
+

52

151
+G150,

C160 =
616

11
+

74

41
+G160,

C170 =
617

11
+G170,

C180 =
618

11
+

106

31
+

1

61
+

37

181
+G180.
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16.2 y(u) of the curve y2 = x5 − 1

First several values of D10n for the curve y2 = x5 − 1 (g = 2) are as follows:

D10 =
1

11
· 24 · 32 · 52,

D20 =
1

11
· 215 · 36 · 54 · 7 · 13,

D30 =
−1

11 · 31
· 223 · 311 · 57 · 72 · 132 · 17 · 19 · 23,

D40 =
1

11 · 41
· 235 · 317 · 510 · 73 · 132 · 172 · 19 · 23 · 29 · 53,

D50 =
−1

11
· 243 · 321 · 512 · 74 · 133 · 17 · 192 · 232 · 29 · 37 · 43 · 683,

D60 =
1

11 · 31 · 61
· 257 · 328 · 515 · 76 · 134 · 172 · 192 · 232 · 29 · 37 · 43 · 47

· 53 · 115781,

D70 =
−1

11 · 71
· 264 · 332 · 516 · 78 · 136 · 172 · 193 · 232 · 292 · 37 · 43 · 47

· 53 · 59 · 22703881,

D80 =
1

11 · 41
· 275 · 333 · 519 · 78 · 136 · 173 · 194 · 233 · 292 · 372 · 43 · 47

· 53 · 59 · 67 · 73 · 4580521741,

D90 =
−1

11 · 31
· 283 · 342 · 522 · 79 · 136 · 174 · 195 · 233 · 292 · 372 · 432 · 47

· 53 · 59 · 67 · 73 · 79 · 83 · 9601 · 1285049,

D100 =
1

11 · 101
· 294 · 344 · 524 · 711 · 137 · 173 · 195 · 234 · 293 · 372 · 432 · 472

· 53 · 59 · 67 · 73 · 79 · 83 · 89 · 4002942001952573,

D110 =
−1

11
· 2102 · 348 · 527 · 712 · 138 · 174 · 195 · 234 · 293 · 37 · 432 · 472

· 532 · 59 · 67 · 73 · 79 · 83 · 89 · 97 · 103 · 9747003959677530439,

D120 =
1

11 · 31 · 41 · 61
· 2116 · 356 · 529 · 713 · 139 · 174 · 196 · 236 · 294 · 372

· 432 · 472 · 532 · 59 · 67 · 73 · 79 · 83 · 89 · 97 · 103 · 107 · 109 · 113
· 1759 · 2027 · 2278423765903.
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16.3 x(u) of the curve y2 = x5 − x

First several values of C8n for the curve y2 = x5 − x (g = 2) are as follows:

C8 = 27 · 5,

C16 =
−1

17
· 215 · 32 · 52 · 72 · 11 · 13,

C24 = 222 · 34 · 53 · 73 · 113 · 13 · 19,

C32 =
−1

17
· 231 · 36 · 56 · 74 · 11 · 132 · 19 · 23 · 29 · 1741,

C40 =
1

41
· 240 · 38 · 58 · 75 · 112 · 132 · 192 · 23 · 29 · 31 · 37 · 5693,

C48 =
−1

17
· 246 · 310 · 58·, 75 · 113 · 133 · 192 · 232 · 29 · 31 · 37 · 43 · 41957857,

C56 = 254 · 312 · 511 · 78 · 115 · 134 · 19 · 232 · 29 · 31 · 37 · 43 · 47 · 53 · 715991,

C64 =
−1

17
· 263 · 314 · 512 · 79 · 113 · 134 · 192 · 232 · 292 · 312 · 37 · 43 · 47

· 53 · 59 · 61 · 89 · 32591401,

C72 =
1

73
· 272 · 316 · 513 · 710 · 114 · 135 · 192 · 233 · 292 · 312 · 37 · 43 · 47

· 53 · 59 · 61 · 67 · 19346595547931,

C80 =
−1

17 · 41
· 280 · 318 · 517 · 711 · 115 · 136 · 193 · 233 · 292 · 312 · 372 · 43 · 47

· 53 · 59 · 612 · 67 · 71 · 5826608412403.
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Each C8n is written by a certain integer G8n (von Staudt-Clausen type theorem) as follows:

C8 “an integer”,

C16 =
11

17
+G16,

C24 “an integer”,

C32 =
112

17
+G32,

C40 =
35

41
+G40,

C48 =
113

17
+G48,

C56 “an integer”,

C64 =
114

17
+G64,

C72 =
2

73
+G72,

C80 =
116

17
+
352

41
+G80,

C88 =
18

89
+G88,

C96 =
117

17
+
10

97
+G96,

C104 “an integer”,

C112 =
118

17
+

18

113
+G112,

C120 =
353

41
+G120,

C128 =
119

17
+G128,

C136 =
131

137
+G136,

C144 =
1110

17
+
22

73
+G144.
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17 Non-hyperelliptic curves

17.1 Algebraic curves ramified completely at infinity

We here describe how the natural variable u is chosen for a general curve of cyclotomic

type.

Let a and b be coprime pair of positive integers, and let

(17.1) f(x, y) = ya − xb −
∑
(i,j)

λia+jbx
iyj

be separable polynomial, where the pair (i, j) runs through the integers such that

(17.2) 0 5 i < b− 1, 0 5 j < a− 1, ia+ jb < ab

We discuss with the algebraic curve defined by

(17.3) C : f(x, y) = 0.

Here C is regarded naturally as a curve with unique point ∞ at infinity. The genus of C

is given by g = (a− 1)(b− 1)/2. On this curve C , the set

(17.4)
xi−1ya−j−1dx

fy(x, y)

forms a basis of the differential forms of the first kind, where fy(x, y) = ∂f
∂y
(x, y). By

choosing a generator of the fundamental group of C , we define the period matrix [ω′ ω′′].

We also define the lattice of periods in Cg by

(17.5) Λ := ω′t
[
Z Z · · · Z

]
+ ω′′t

[
Z Z · · · Z

]
(⊂ Cg).

We denote the Jacobian variety of C by J , and the symmetric product of g copies of C

by Symg(C ). Then we have a birational map

Symg(C ) → Pic◦(C ) = J

(P1, . . . , Pg) 7→ the class of the divisor P1 + · · ·+ Pg − g · ∞.

As an analytic manifold, J is identified with Cg/Λ. We denote by κ the natural map

Cg → Cg/Λ = J . The map

ι : Q 7→ Q−∞

gives an embedding of C into J . The pull-back κ−1ι(C ) of the image of ι by κ is a universal

Abelian covering of C . The birational map is represented analytically by sending each

(P1, . . . , Pg) ∈ Symg(C ) to the point u mod Λ ∈ Cg/Λ, where

u = (u1, . . . , ug) =

(∫ P1

∞
+ · · ·+

∫ Pg

∞

)
(ω1, . . . , ωg).
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For each point u ∈ κ−1ι(C ), we denote by

(17.6) x(u), y(u)

the value of (x, y)-coordinate of C such that κ(u) = ι (x(u), y(u)) We regard a rational

function of x(u) and y(u) as a function on κ−1ι(C ). Basically, we have

Lemma 17.7. The Laurent development of x(u) and y(u) around the origin (0, · · · , 0)
with respect to ug is of the form

x(u) =
1

uga
+ (d◦(ug = −a+ 1)), y(u) = − 1

ugb
+ (d◦(ug = −b+ 1)).

Moreover, we have a result correspond to 4.4, and we see that It is natural to take

u := ug as a local parameter around u = (0, · · · , 0) on κ−1ι(C ).

We call a curve C defined by f(x, y) = 0, where

(17.8) f(x, y) = ya − xb + 1, or f(x, y) = ya − xb + x,

to be a curve of cyclotomic type. For such a curve C , the Hurwitz coefficients of the

power series development of the functions u = ug 7→ x(u), ug 7→ y(u) with respect to u

satisfy the Clarke type theorem (von Staudt-Clausen type theorem plus the extension of

von Staudt second theorem) and the Kummer type theorem. We can prove them by the

same argument of this paper.
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18 Appendices

18.1 Relations on binomial coefficients

The Hasse-Witt matrix with respect to the basis (4.1) for the curve y2 = x5 − 1 mod p is

diagonal ([Yu]), and its (2, 2)-entry is, as in 6.3, given by

Ap = (−1)(p−1)/10 ·
(
(p− 1)/2

(p− 1)/10

)
mod p.

We show that it coincide with the value (11.5). In other words, we claim, for a prime

p ≡ 1 mod 5 by letting p = 10m+ 1, that

(2m− 1)!!

m!2m
≡ (−1)m

(
5m

m

)
mod p.

Since this is equivalent to

(2m− 1)!!

m!
≡ (−2)m

(
5m

m

)
mod p

we prove this. Because

2(5m), 2(5m− 1), · · · , 2(5m− (m− 1)) mod p

are coincide with

−1, −3, · · · , −(2m− 1) mod p

respectively. Thus, we see the equation above. Similarly, we can prove

(5m− 3)!!

m!(−5)m
≡ (−1)m

(
5m

m

)
mod p.

Although, the facts above are proved by using basic properties of p-adic Γ -function, we

have described them quite elementary way.

18.2 Links with certain Eisenstein type series

It is a natural question whether the numbers Cn and Dn relate a kind of L-function. In

the below, we explain that such a question is not completely nonsense.

We recall the proof of Hurwitz formula, that is

(18.1)
∑

λ∈Z+Z
√
−1

λ̸=0

1

λ4n
=

ϖ4n

(4n)!
24nE4n

along [Hu1](see also [AIK], pp.193-198), where

ϖ =

∫ ∞

1

dx√
x3 − x

(> 0).
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After equating the two kinds of developments

(18.2)

℘(u) =
1

u2
+

∞∑
n=2

2nEn

n

un−2

(n− 2)!
,

℘(u) =
1

u2
+

∑
ℓ∈Zϖ+Zϖ

√
−1

ℓ ̸=0

(
1

(u− ℓ)2
− 1

ℓ2

)
,

by removing 1/u2, and by differentiating them 4n−2 times, we have (18.1) by substituting

u = 0. This argument is similar to the proof of Euler’s formula, namely the expression of

the special value ζ(2m) of the Riemann zeta function by a Bernoulli number and π, by

using two kinds of developments for 1/ sin2(u).

For the case of a hyperelliptic curve of arbitrary genus g, x(u) has Laurent expansion

around each lattice point ℓ = (ℓ1, ℓ2, · · · , ℓg) ∈ Λ (⊂ Cg):

(18.3) x(u) =
1

(ug − ℓg)2
+ · · · .

Although we do not have any justification, we could expect such the formula that

(18.4) x(u) =
1

ug2
+

∗∑
ℓ∈Λ
ℓ ̸=0

(
1

(ug − ℓg)2
− 1

ℓg
2

)
,

where ∗ means the sum is not justified. If such the formula exists, then, by the similar

argument as in ℘(u), we have the following type formulae:

—. for the curve y2 = x2g+1 − 1,

(18.5)
∗∑

λ∈L
λ̸=0

1

λ2(2g+1)n
=

Ω2(2g+1)n

(2(2g + 1)n)!
C2(2g+1)n

where

Ω =

∫ ∞

1

xg−1dx

y
> 0

and L is 1/Ω times the image of the projection of Λ ⊂ Cg to the g-th factor C (For

example, if 2g + 1 is a prime, then L = Z[e2πi/(2g+1)]), and

—. for the curve y2 = x2g+1 − x,

(18.6)
∗∑

λ∈L
λ̸=0

1

λ4gn
=

Ω4gn

(4gn)!
C4gn

where

Ω =

∫ ∞

1

xg−1dx

y
> 0
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and L is 1/Ω times the image of the projection of Λ ⊂ Cg to the g-th factor C.

If such results is obtained, it would be a discovery of new L-functions which is in the

different category of Hecke’s L-function associated to Grössen characters. The author also

expects that this story relates to the thing written in [I], p.240.

18.3 Problems

We list some problems not yet proved and things to be investigated:

(1) Looking at the numerical examples, the signature of Cn or Dn are alternative or stable

as in the cases of the Bernoulli and Hurwitz numbers. Prove this phenomena. This might

be not so difficult.

(2) For example, about the curve y2 = x5 − 1, if p ≡ 1 mod 5 and (p − 1)̸ | 10m then

p ̸ | C10m.

(3) How large are the orders of 2-part of the numbers Cn and Dn? For the case of the

Bernoulli and Hurwitz numbers, they are exactly determined. For instance, is it true that,

for y3 = x5 − 1 (g = 4), ord2C15n = 12n− 3?

(4) For example, the prime factors in the numerators of C10m and D10m are quite similar

though it is not exactly the same. Explain this theoretically.
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