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INTRODUCTION

Let p(u) be a Weierstrass elliptic function satisfying ¢ (u)” = 4p(u)? — 1. Let

¢ :=e”F. Then p(u) has a property p(—Cu) = Cp(u). If b is an element of Z[(],
the integer ring generated by (, we have a b-multiplication formula of p(u). If b is
a prime element and b =1 mod 3, the b-multiplication formula is of the form

0.1 puy = LN - )
0-1) olbu) (bp(u)" 2z +---£1)2

and all the coefficients belong to Z[(]. (These facts seem to be already known
to Eisenstein [6]). Therefore the product of the roots {g(u)} except for 0 of the
numerator is equal to b, and the product of reciprocals of the roots {p(u)} of
the denominator is equal to b%. So we have factorization of b or b? in an extended
integer ring of Z[¢]. Analogous fact is known for a function p(u) satisfying ¢’ (u)” =
Ap(u)® — p(u).

By using these facts essentially, the cubic and quartic Gauss sums were deeply
investigated (see [12] and [13]). So it seems natural for us to expect the existence
of formulae analogous to (0.1) for curves of higher genus. A remarkable formula
was discovered by D.Grant for the curve of genus two defined by y? = 2 + 1 ([9]).

The purpose of this paper is to generalize his formula. Let C' be a curve of genus
g(> 1) defined by y? = f(x), where f(x) is a polynomial of degree 2g + 1. Let J
denote the Jacobian variety of the curve C', and ¢ : C' — J the canonical embedding.
We identify J with a complex torus C9/A where A is a lattice of C9. Let u =
(u1,- -+ ,uq) be the canonical coordinate system of C9, and ¢(u) a meromorphic
function on CY9/A. We assume that p(u) satisfies p(—u) = —p(u), because the
abelian functions ¢(u) we treate in this paper are odd or even functions. In the
bellow, we denote by z(u) and y(u) the values of z-coordinate and y-coordinate,
respectively, at u such that u € ((C). Then the restriction to ¢(C') of the map
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u — (bu) gives an algebraic function. Hence ¢ o has a rational expression of x(u)

and y(u). Since z(—u) = x(u) and y(—u) = —y(u), we have an expression
_ yw) P (z(u)
02 P = Gaw)

with polynomials P(X) and Q(X). Here we do not mention the irreducibility of
right-hand side of the expression. We regard (0.2) as a generalization of (0.1).
We also call such formula a b-multiplication formula . However, our aim is, as
mentioned about (0.1), to find a nice Abelian function ¢(u) such that every one of
the roots of its numerator P(X) (or its denominator) is algebraic integer and the
product of the roots gives a factorization of b or of a product of conjugates of b, in
a certain integer ring.

The author found several such functions ¢(u) in the family of polynomials of
hyperelliptic p-functions constructed by H.F.Baker ([2], [3] and [4]) as Grant did,
because the author believes all the roots of P(X) and Q(X) or all of their recip-
rocals are algebraic integers. We will prove that the numerator of the complex
multiplication formula of each our function has required properties. Our functions
©(u) are Abelian functions associated to the following curves: curves of genus two
defined by y? = 2° + % (Grant’s case) and by y? = 2° — x, and of genus three
defined by y? = 27 + i and by y? = 27 — x. (see Theorems 6.1.6, 6.2.5. 7.1.6. and
7.2.5, respectively). Unfortunitely it is generally unknown the existence of such
nice functions. So the author do not explain how to find such functions.

In Section 1, we recall the fundamental facts about hyperelliptic functions from
[2], [3] and [4]. We introduce a well-tuned theta series o(u) called the sigma func-
tion, and define abelian functions called (hyperelliptic) p-functions as second deriva-
tives of logo(u). They are nice generalization of sigma function and p-function of
Weierstrass. So our function ¢(u) is a rational function of o(u) and its (higher)
derivatives. Dividing its numerator and denominator by certain power of o(u) or of
its derivative yields the expression just obtained by rewriting (0.2) in terms of o (u)
and its derivatives. In this expression, the denominator is a function so-called the
psi function. We can prove the psi function is a polynomial of x(u) or polynomial
of z(u) multiplied by y(u) when u € +(C).

Now we have a rational expression of P(z(u)) in terms of o(u), o(bu), and their
derivatives. We investigate P(x(u)) by using Taylor expansions of o(u). Such
expansions are given by using differential equations of the sigma function after
investigation of singularity of the theta divisor. Let u = Py € +(C) be a point such
that x(Py) = 0. For each of our curves such point Py is a torsion point in .J. For
instance, in the case of p(u) used in (0.1), a point Py such that p(Py) = 01is (1 —()-
torsion. Suppose Py be a c-torsion point for a non-trivial endomorphism ¢. Assume
b € End(J), the ring of endomorphisms of J, satisfies b = 1 mod ¢? in End(J).
Then we can obtain very explicitly first several terms of the Taylor expansion of
o(u) at the image of co and Py of C by the embedding ¢. This expansion at co
gives the expansion of p(bu) on ¢(C) at t(c0). Hence we can determine the highest
term of P(X).

The most difficult part is to give the Taylor expansion of o(bu) at u = Py. Since
o(bu) = o(b(u—Py)+ Py+(b—1)Py) and (b—1)Py € A by the assumption of b, we



may first use the expansion of o(b(v+ Py)) at v = 0. However, we need an explicit
relation of the leading coefficients of expansions of o(b(v + Fp)) and o(bv + Py) at
v = 0. We can express o(FPy) as a special value of exponential of the linear form
associated with the translational formula. The final form of the expansion of o(bu)
at u = Py is obtained in Part II by using this expression. Thus we can determine
the lowest term of P(X) by this expansion. Grant determines the lowest term of
P(X) for the curve y? = 2° + % by induction on b. Since the author can not
generalize such induction to other our curves, he determines it by using the Taylor
expansion at P.

In Sections 6 and 7, we prove the main results for our curves of genus two and
three, respectively. As an instruction, we give proofs of original formula for elliptic
curves in Section 5 by the method of ours.

We do not discuss the integrality of the coefficients of P(X) in this paper. For
the curve y? = 25 + %, the integrality of the coefficients of P(X) is essentially
proved by Grant (see [17]), and for the curve y? = 2° — x, such thing seems to be
proved similarly. The author are now preparing tools to investigate the coefficients
for curves of genus three.

If we use most of the results up to Section 4, we can investigate lower and higher
terms of the polynomial expression in terms of z(u) of the numerator of an arbitrary
Abelian function which is a polynomial of Baker’s p-functions. Furthermore, if we
take a 2-torsion point Qo instead of Py (then y(Qp) = 0) and y instead of x, we can
find many Abelian functions such that their coefficients have similar properties like
the above ¢(u). The reason that the author do not discuss such minor formulae
is that he want to find a formula which gives a non-canonical way to give certain
power-root of b or of a product of conjugates of b as a partial product as in [12]
and [13].

Convention. We denote, as usual, by Z, Q and C the ring of rational integers,
the field of rational numbers and the field of complex numbers, respectively. The
imaginary unit is denoted by ¢. For a variety V, the global sections of a sheaf
F on V is denoted by I'(V,F). The sheaf associated to a divisor D is denoted
by O(D). In an expression of the Laurent expansion of a function, the symbol
(d°(z1,- -+ ,%j) > n) means the terms of total degree at least n with respect to the
variables zq,---,2;. When the member of variables or the least total degree are
clear from the context, we simply use the symbol (d° > n) or the dots “ --”.

For cross references, we indicate a formula as (1.2.3), and each of Lemmas,
Propositions, Theorems and Remarks as 4.5.6 for example.
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I. Hyperelliptic Abelian Functions

In this part we recall fundamentals of the theory of hyperelliptic functions.

§1. GENERALITIES

1.1. Differential forms and period matrices.
Let C' be a smooth projective model of a curve of genus g > 0 defined over C whose
affine equation is given by y? = f(z), where

f(IL') - )\O + )\1«@ + /\Q.TQ + ..+ )\2g+1x2g—|—1.
In this paper, we keep the agreement A\o,11 = 1. We use, however, the letter Aggy1

too when this notation makes easy to read an equation of homogeneous weight (for
example, 1.5.1 below). The roots of the equation f(x) = 0 are denoted by

(111) C1, a1, C2, A2, -+, Cq, Gg, C,

according to their positions (c.f. Figure 1). We denote by oo the point of C at
infinity. It is known that the set of

_ I ldx .
w(])Z:Ty (]:1,.--79)

makes a basis of the vector space I'(C,Q'), where Q! is the sheaf of differential
forms of the first kind (see [15, p.3.77]). Let

29—J
, 1 ) .

v =

which are differential forms of the second kind without poles except at oo (see

[2, p.195, Ex. i] or [3, p.314]). We fix generators a'”, % (i=1, ---, g) of the
fundamental group of C' such that their intersections are a'” - @) = g% . 3 = (),
a® . BV =§;; fori, j =1, ---, g as illustrated in Figure 1.

Figure 1



As usual we let

fau)w(l) fa(,,)w“’ fg(l)w(l) fg@)w(l)

fa(l) we .. fa(g) w@ fg(l) w@ .. fﬁ(g) w@

=1

be the period matrices. Then the modulus of C' is given by Z := w’ "w”. The
lattice of periods is denoted by A, that is

AN=u'"Z Z - Z|+W''[Z Z --- Z] (CCY).
We also introduce the matrices of quasi-period:

fa(l) neo fa<g> n fg(l) nwoo.. fg(g) n

fa(l) n(g) . fa(g) n(g) f/@(l) n(g) .. fﬁ(g) n(g)

1.2. The Jacobian variety, the theta divisor.

Let J be the Jacobian variety of the curve C. We identify J with the Picard group
Pic°(C) of the linearly equivalence classes of divisors of degree zero of C. Let
Sym?(C) be the g-th symmetric product of C'. Then we have a birational map

Sym?(C) — Pic®(C) = J
(Pi,---,P;)—theclassof P, +---+ P, — g c0.
As an analytic manifold, J is identified with C9/A. We denote by k the canonical
map CY — CI9/A = J. We embed C into J by ¢ : Q — @Q — co. Let © be the

theta divisor, that is the divisor of J determined by the set of classes of the form
P1+-'-+Pg_1 —(g—l)'OO.

1.3. The hyperelliptic sigma Function o(u).
We let

For a and b in ( Z)g, we let

1
2

ﬁm (2) :0[2} (2 2)
=) exp [QM{% n+a)Z(n+a)+ t(n-l—a)(z-l—b)}] :

nezZ9I

Then the hyperelliptic sigma function on CY associated with C' is defined by
~ . 1 ;7 =1 ¢ 1—1 ¢ .
o(u) = eXp(—Qun w' T )90 (W 2)

up to a multiplicative constant. We fix the constant as follows.



LEMMA 1.3.1. The function o(u) has the following properties:

(1) The lowest terms of the Taylor expansion of o(u) at u = 0 contain the term
yuiuz - - -ug if g s odd, or yuius---ug—1 if g is even, with a non-zero constant ~y
independent of uyi, -+, ug;

(2) The function o(u) is an odd function if g =1, 2 mod 4, and is an even one if
g=3,0 mod 4;

(3) The divisor of o(u) is the pull-back of © by the map k: C9 — CI/A = J.

Proof. For a proof of (1), see [3, p.353]. The statement (2) and (3) are given in
[15, p.3.97, p.3.100], Proposition 6.3(c), respectively. O

In this paper, we make the following normalization: we let

o(u) := v 15 (u).
The constant 7 in 1.3.1 for curves of genus two is studied in [7]. For more details

on o(u), we refer the reader to [1] and [3].

1.4. Hyperelliptic Abelian functions p,;(u).
For j, k,---,re{l,--- g}, let

0 0
oj(u) = %a(u), Ojke..r(u) = %ak...r(u),
j j

(1.4.1) ,
w) =~ logo(u), () = 2 g (1)
5k - 8ujc9uk g0 y  $5k--r - aujpkmr .

Then the functions @jx....(u) are Abelian functions on the Jacobian variety J of
C. We call each of these functions, simply, a @-function when we talk about their
uniform properties. In the genus one case, the function i1 (u) is essentially the
Weierstrass elliptic function.

Let (u1,--- ,uqy) be the system of variables of o(u). Then we can find a set of g
points (z1,41), -+ -, (x4,y4) on C such that
(z1,91) ] (-Tg:yg) _
(1.4.2) uj:/ w(’)—l—---—I—/ wP (j=1,-4,9)
(0. @] oo

with certain paths of integrals. In this situation, the p-functions are characterized
as follows ([3, p.377]).

LEMMA 1.4.1. Assume that the variables uy, - -, uy of o(u) depend on g variable
points (x1,y1), -+, (T4,yg) of C by the equation (1.4.2). Let

g
F(X1,X0) =Y X{X] (hoj1 (X1 + X2) +2)95) .
=0

Then the functions pji(u) are characterized by the equations

Z i @jk 1.CCk_1 — F(LI?T,.’BS) - 2y7‘y5
s )

)2

j=1k=1 (r — )
g -

w =Y pjg(u)zlt =0

j=1
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forr,s=1,---, g withr # s. Especially, the functions g;;(u) are defined over the
field Q( Mo, -+, Aagy1), and (—1)97 o, (u) is the elementary symmetric function of
degree g —j +1 of x1, ---, x4.
For more details on p-functions, we refer the reader to [2] and [3].

By Lemma 1.3.1(3), we know that

(14.3) py;(u) €T(J,0(20)), pii(u) € T(J,0(30)),  piue(u) € T(J,0(40)),

where I'(J, O(n©)) denotes the functions on J having poles, only along O, with at
most n-th order.

1.5. Algebraic relations for p-functions.

Here we recall relations of the functions p;;(u) and @;;re(u).

PROPOSITION 1.5.1. Let ©;jke = pijre(w) and @5 = @i;(u) for simplicity. The
following equations hold for g =1, 2 and 3:

(1) 3333 — 6033 = 2A5A7 + 4A6033 + 4A7 032,
(2) 3332 — 633032 = 4632 + 2A7(3p31 — P22),
(3) 3331 — 6319033 = 4A631 — 2A79021,
(4) 3322 — 435 — 2033022 = 2A5032 + 46 P31 — 2A7021,
(5) 3321 — 2033021 — 432031 = 2A5031,
(6) 3311 — 4p5; — 2p33p11 = 24,
(7) 3222 — 63220 = —4Xa A7 — 2A333 + 4\4p032 + 45031 — 6A7p11,
(8) 3221 — 43221 — 2031022 = —2M1 A7 + 4\gp31 — 24,
(9) 3211 — 4p319021 — 2032011 = —4XoA7 + 2A3031,

(10) 3111 — 6319011 = 4X0p33 — 2A1 032 + 4231,

(11)  pasas — 63

= =826 + 2A3A5 — 6A1 A7 — 12X0033 + 4A3032 + 4Aa22 + 459021 — 12X6p011 + 124,
(12) 2201 — 62021 = —4A1 A6 — 8Ao A7 — 6A1 033 + 43031 + 4Aap21 — 2A5011,
(13) o211 — 431 — 2022011 = —8AoAe — 8Aopss — 2A1032 + 4hops1 + 23021,
(14) 2111 — 6p21p11 = —2X0A5 — 832 + 2A1 (3031 — P22) + 4201,
(15) 1111 — 6931 = —4AoAs + 2M1 A3 + 4Xo(4pa1 — 3p22) + 4A1p21 + 4hap11,

A = p32091 — P319022 + @%1 — ©33011-

These equations are presented under the convention that if g =1 or 2 then \; with
i > 29+ 1 and @-functions whose suffix contain j bigger than g are all zero.

Note that when g = 1 the equation (15) above is a well-known equation derived
from @' (u)? = 4f(p(u)). We refer the reader to [4] for the proof of this Proposition.

1.6. The algebraic addition formulae.

Here we present algebraic addition formulae which express each function g (u+
v) as a rational function of {p;;(w)}, {pij(v)}, {enij(u)} and {pni;(v)} with 1 <
h=g,1Zi<gand1<Zj=y.



o(u+v)o(u—v)
a(u)?o(v)?
9(g+ 1) functions {p;;(w)} and {p:;(v)} with coefficients in Q.

For a proof of this Proposition we refer the reader to [3].

ProrosiTION 1.6.1.

can be expressed as a polynomial in the

COROLLARY 1.6.2. FEach function ©;j....(u+v) has a rational expression in terms
of the functions {pi;(uw)}, {pij(v)}, {pnij(w)} and {pni;(v)} with coefficients in
Q(Xo, -+ Aggt1)-

Proof. After logarithmically differentiating the expression of 1.6.1 by u; and wv;,
respectively, by adding the obtained two equations, we have a rational expression of

0
2(9ui log a(u—l—v)—llam log U(u)_48vi

0
{onij(u)} and {ppi;(v)}. We operate W to this expression. Then we have a
u.

log o(v) in the functions {p;;(u)}, {pi;(v)},

j
rational expression of @;;(u + v) in the functions {g;;(u)}, {pij(v)}, {oni;(w)},

{onij ()}, {@ijre(w)}s {pijre(v)}s {@ijrem (1)} and {@ijrem (v)}. We can obatin the
desired expression by using the equations in 1.5.1. [J

1.7. Geometry of the theta divisor.
We fix the local parameter of every point of C. To make clear the following
argument we define the local parameter ¢ at each point P by

x —x(P) if P is an ordinary point,
(1.7.1) r—J Y if P is a branch point different from oo,
— if P =o0.
Vv
Here we call P a branch point if y(P) = 0 or oo, and an ordinary point otherwise.
We determine the singular locus of the theta divisor © by using certain matrix
attached to a positive divisor of C. Here our argument is based on [5, pp. 85-86].

For a point P of C, let t be the local parameter defined above. We denote by P;
the point of C such that the value of ¢ at P; is t. Then we define for u € T'(C,Q!)

' d’ Py
Dp(P)=—z | n

o0

t=0

Since p is a holomorphic form, Dfu(P) takes finite value at every point P. Let
k

D = Z n;P; be a positive divisor. We define by B(D) the matrix with deg D :=
j=1

>~ n; columns and g rows whose (ny + -+ +mn;_1 + £, i)-entry is D‘w® (P;), where

1 £ ¢ £ nj — 1. This matrix B(D) informs us singularity of © in J at the point

determined by the divisor D — (deg D)oo. For pu € T'(C,Q'), we can find uniquely

c1, -+, ¢g € Csuch that p = c;w™ + -+ + c,w®. In this situation, the three

statements

(1) 4 € T(C,91(=D)),

(2) D*u(P;) =0 for all j and ¢ with 1 < j < kand 1 </ <n; — 1, and
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C1 0

Cq 0
are equivalent. So dimI'(C, Q!(—D)) = g—rankB(D). The Riemann-Roch theorem
states
dimI'(C,0(D)) =deg D — g + 1 +dimT(C, Q' (-D)).

Hence
(1.7.2) dimI'(C,O(D)) = deg D + 1 — rankB(D).

However, by [1, p.190, (4.5)], singularity of © is known as follows.

LEMMA 1.7.1. The singular locus of © s the points determined by the elements of
{Pi+- -+ Py_1— (9 —1)oo| dimI'(C,O(P1 +---+ Py_1)) > 1}.

By (1.7.2), dimI'(C, O(D)) = 1 if and only if rankB(D) = deg D. So we can
determine the singular locus of © by calculating rank B(D). The result is

LEMMA 1.7.2. (1) If g =2, © is non-singular.
(2) If g = 3, © has only one singular point at the origin O = (0,0,0).

Proof. We firstly show (2). For two points P; and P, we can calculate B(D) and
its rank in each case that P, = P, or P; # P,, and that each P; is oo, a branch
point different from oo, or an ordinary point. Then we see the rank of B(D) is 1
only when P, = P, = oo and is 2(= deg(P1 + P»)) otherwise. According to 1.7.1
and the statement above this Lemma, we conclude the assertion (2). The assertion
(1) is shown by a similar explicit calculation of the matrix B(P) for each point
pP. O
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§2. TAYLOR AND LAURENT EXPANSIONS

In this section, we give lower terms of the Taylor expansion of o(u) at each point
on the curve C.

2.1. Taylor expansion of o(u) at O.
Let O = (0,---,0) € CY.

PRrROPOSITION 2.1.1.
(1) If g = 1, then the Taylor expansion of o(u) is of the following form:

o(u)=u+(d°>1).

(2) If g = 2, then the Taylor expansion of o(u) is of the following form:

1
U(U’) :Ul‘f‘g)\QU%— g)\{ﬂb%—l—(do 25)7 ()\5 = 1)_

(3) If g = 3, then Taylor expansion of o(u) is of the form
Aooq4 Aoz Ao 5 As 3 Moy

o(u) =ujus — us — QUL T guLU2 T U Ut — Ul — U
A A A A A
+€2U13U3 — 351623713 — 26 U9 U32 + €6U1U33 — E7UQ”LL33 + (do Z 6), ()\7 = 1),

and the coefficient of the term u§ is 2\15

Proposition 2.1.1 will be used in Sections 5, 6 and 7. The last statement about
a term of degree six is only used in 3.2.3.

Proof of 2.1.1. We omit the proof of the statement (1) because it is well-known
fact. The proof of the statement (2) was given by Baker, and is reproduced in [7,
pp. 129-130]. Let us prove (3). Since o(—u) = o(u), the terms of odd total degree
are vanish. From [3, p.353], we know that the constant term is vanish, and the
form of terms of second order is ujuz — u3. Hence o22(0) # 0, 031(0) # 0 and the
other partial derivatives of second order are vanish. The method to compute terms
of higher degree is essentially as same as in the proof of (2) in [7]. We set u = O,
after operating #;u?, or 88—53 to the equations, of o(u) and its partial derivatives,

obtained from (6), (8) and (11) of 1.5.1 by multiplying o(u)?, then we have the
following six equations:

2 1

(0°A)31(0) = —5o3311(0);

(0°A)31(0) = 3311( )

(02A)351(0) = —)\4 + (- %02222 + 03221)(0),
(02A)22(0) = (03311 — 203221)(0),
(02A)92(0) = 4y + ( ;02222 + 203201)(0),
(020)25(0) = — 2 A4 — L3230 (0).

3 6
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These equations yield 09202(0) = —8\y, 03221(0) = 03311(0) = 0. Furthermore,
we rewrite the leftover eleven equations in 1.5.1 by o(u) and its partial derivatives
by the definition of p-functions. Multiplying o(u)? to, for instance, the equation
obtained from 1.5.1(1) yields

0'3333(U)0'(U) + 40’333(U)O’3(U) — O'33(U)2
=2X5\70(1)? + 4)Xg(03(u)? — o33(w)o(u)) + 4h7(o3(w) oz (u) — o3 (u)o(u)).

After operating 88—; on this, by plugging u = O, we have
2

(2.1.1) —O’3333(O)0’22(O) = 0.

Since 092(0) # 0, we obtain that o3333(0O) = 0. This shows that the term of
uj vanishes. The proofs of the other statements are done by repeating the same
operation as which gave rise to (2.1.1) from 1.5.1(1). The leftover equations (2), (3),
(4), (5), (7), (9), (10), (12), (13), (14) and (15) of 1.5.1 give rise to the coefficients
of the terms of usu3, uiu3, udul, uiusu?, udus, uusus, uius, uiui, udu3, uius
and u‘ll, respectively. Finaly we can show 0333333(0O) = 16A7 by setting u = O after

operating 88—1; on 1.5.1(1) with multiplied by o(u)?. O
3

2.2. Taylor expansion of o(u) at each point of C' other than O. Here we give
the Taylor expansion of o(u) at each point on the curve ¢(C') other than O = ¢(0).

PROPOSITION 2.2.1. Let P be an arbitrary point of k= 1.(C) different from points
in A. Then the following statements hold.

(1) If g =1 then o(P) # 0.

(2) If g = 2 then o2(P) # 0 and 01(P) = —x(P)oy(P). Furthermore the partial
derivatives at P of third degree are written by ones of first and second degree as in
the following :

021011 3092201101 05101 0210220%
om(P)=B= "= -5 3, I
30320% 0% O’i)’ O’%
— -2 - 2 4\ — 33— — 31— — 35— )(P),
1 03 109 + 4A207 302 403 503)( )
1 o990 o2 09909210 102,02 o2 o3
o2(P) =(; ==+ 2 - = 4 B Ao A+ A 5)(P),
0990 1020 o2
o122(P) =( 2;221 1 222 L Aoy — )‘50__;>(P>7
30%2
O'QQQ(P) :(ZJ—Q + X102 + )\50'1)<P).

(3) If g = 3 then a3(P) = 0, 02(P) # 0, 01(P) = —z(P)o2(P) and (0?A)(P) =
3

()\72)(13). Furthermore, the partial derivatives at P of third degree are written by
02
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ones of first and second degree as in the following form:

0910 3 0990110 0.0 091099073 302,03
Ulll(P) :(_3 21011 _° 22 ;1 1 _3 21 1 +3 21 ?)2 1 2241 _2)\102+4)\201
o2 2 o3 o3 lop 4 (g
o? o3 ot o> 3. of
—3X3— — 30— — 3\ —= + 36— + -\ —)(P),
%oy 403 50§’+ 0 oy 4 703)( )
1 2 1
0112(P) :(5022011 + 21 02203101 + 02201 + Az01
o2 o2 o 4 o3
o? o3 ot o?
+ M= F A — Ae—= — M —)(P),
40_2 50_3 60_3 7 3)( )
099091 1 05201 a% O'i)’ O'il
P) = - = - A —As— +XAg—= + \7—= ) (P
o122(P) =( - 1 o 401 5 o + 60_% + 703)( )s
3022 2 3
UQQQ(P) (4 + Aoa + 507 —3)\6— +3)\7 )( )
0390
0113(P) :( 2 11)(P)7
02
0320
0123(P) :( 2 21>(P)7
02
2
0320 o
o133(P) =(——= + M\ —)(P),
g9 g9
2
032022 01
P) = — 27 —)(P
0223( ) ( oo 702)( )»
092,2
0233(P) :(0—2 — A701)(P),
0'333(P) :—2)\70'2(P).
Proof. The assertion (1) is well-known. We show (3). Since
01 0103 — 0130 13 T1T2X3
—P)=——"(P)="—"—(P)=— — — _ =-xz(P),
02 0203 — 0230 §223 T1L2 — T2X3 — T3Xy | 21=0¢
zg=x(P)
2 _
@(p):w(p):@@): L1+ o + 73 — 0,
02 0203 — 0230 223 12 T XT3 — X3LY | F1=
xg=x(P)

and P # O it must be o2(P) # 0 and o3(P) = 0 by virtue of 1.3.1(3) and 1.7.2(2).

We get 035(P) = 0 by setting u = P to the equation which is obtained from 1.5.1(1)

by writing it in terms of o(u) and its partial derivatives with multiplied by o (u)?.

Hence

We note that A(u) € I'(J, O(20)) by the equations (6), (8) or (11) of 1.5.1. So we
get

(2.2.2) (01032)(P) = (02031)(P)
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by plugging u = P in the equation
3 2 2 2
(0°A)(u) =(0302021 — 0201032 + 0301022 + 05031 — 20301031 + 05011 — 01033
2
+ 0320910 — 0310220 + 0'310' — 0'110'330’)(’&).

Here we have used (2.2.1), 03(P) = 0 and o(P) = 0. The rest of our proof are also
done by repeating the same operation as above. Though the facts (2.2.1), (2.2.2)
and o3(P) # 0 are used often in the following, we do not mention in the proof when
they used. The equation 1.5.1(6) gives rise to

g1

3
(2.2.3) (02A)(P) = A7 <0—2> (P).
Then the equations (8) and (11) of 1.5.1 give rise to the formulae for o321 (P) and
0222(P) by (2.2.3). The equations (3) and (15) of 1.5.1 are not nessesary here. The
leftover equations (2), (4), (5), (7), (9), (10), (12), (13) and (14) of 1.5.1 give rise to
the formulae for 0'333(P>, O'332(P>, 0'331(P), UgQQ(P), 0'311(P), 0'221(P>, 0'211(P> and
o111(P), respectively. The assertion (2) is obtained by a similar calculation. [

2.3. The Laurent expansions of analytic coordinates on C.

There are two different coordinates which identify a point of £ ~1¢(C) or ¢(C), the
analytic coordinate u = (ug,--- ,uy) and a pair of solution (x,y) of the algebraic
affine equation defining C'. This subsection is used to make relate these coordinates.
If u € k1(C) and k(u) = v(z,y), then, by (1.4.2),

(zy)

oo

with certain paths of integrals.

LEMMA 2.3.1. The Laurent expansion of x(u) and y(u) at u= O on the pull-back
k™1 (C) of C to CY are

1 1

z(u) = — T (d°(ug) > —=1), y(u)= — g1 T (d°(ug) > —2g).
Uy ug?
1
Proof. We take t = ——= as a local parameter at O along x 14(C). If u is in

Vv
x11(C) and sufficiently near O. We are agree to that ¢, u = (u1,---u,) and (z,y)
are coordinates of the same point on C. Then

(@9) 29-1
te :/ 2y

/(w,y) 2324y
0 214 dagd o+ Aozt

e (=p)at
_/0 24 (d°>1)
= —t+ (d°(t) > 2).

Hence 2(u) = 2 + (d°(ug) > —1) and our assertion is proved. [
g
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LEMMA 2.3.2. Ifu € k= 1(C), then the following statements hold.
(1) If g =2 then
1
up = gug + (d°(ug) > 4).
(2) If g = 3 then
1 5 o 1 3 o
UL = U + (d°(ug) > 6), ux= U3 + (d°(u3) > 4).

Proof. Similar argument as we have uy = —t + (d°(t) > 2) in 2.3.1 gives

1 1
Ug_q = —gt?’ +(d°(t) > 4), uy_o= —5t5 + (d°(t) > 6).

Hence we have the desired formulae. [

The following lemma gives an expression of the Taylor expansion of analytic
coordinates with respect to the local parameter y at branch points different from
oo along k™ 1u(C).

LEMMA 2.3.3. Let (a,0) be a branch point of C different from oo, that is f(a) =0,
and let P denote a point of C9 such that k(P) = (a,0). Choose v = (v1,- - ,vy)
such that k(v + P) = v(x,y). Then the Taylor expansion of v; as a function of y is
of the following form:

f(

1
(1) If g 2 1 then v = 55y + 3f/(;l>)2y3

1+af” o)
a WD s (@) 2 5). (3) Ig 2 3 then vy = iy +

+ (d°(y) = 5). (2) If g = 2 then

2 P@ T s

alar (o) s 4 (d°(y) > 5).

Proof. Let g = 3. Since f'(a) # 0 and y? = f(x) = f’(a)(w—a)—l—fTw(x—a)Q—l—- .
2 f"(a)

F@? " apa)y

T =a-+ yt + (d° > 6).

Therefore we have

(z,y) 22dx

U3:/(0,0) 2y
o Y 1 2 f”(a) 4 o 9, 1 f”(a)
‘/o @t Fay? T T 2O G T )

@ a@ia @) .
= Gt @ 2 0

it a2

The formulae for v; and v, are obtained by the same way. For ¢ =1 or g = 2, the
formulae are also shown similarly. [

y? + (d° > 4))dy
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§3. THE TRANSLATIONAL FORMULA OF o (u)

In this section, we discuss the translational formula and the Riemann form of o (u).
We also give a generalization of Weber’s psi function ([20, p.150] or [19, p.146]) to
higher genus case. Our generalization of the psi function is based on Grant [9].

3.1. The translational formula of o(u).

For v € C9 we conventionally denote by u’ and u” such elements of RY that
u = w'u' + w'u”, where w’ and w” are those defined in Section 1. We define a
C-valued R-bilinear form L( , ) by L(u,v) = ‘u(n’v' +n"v") for u, v € C9. For

¢ in A, the lattice of periods as defined in Section 1, let
x(0) = exp2mi(*0'6" — ") — mite'e",
where ¢’ and §” are those defined in Section 1.

LEMMA 3.1.1. (the translational formula) The function o(u) satisfies
1
o{u+ 1) = x(t)o(u)exp L{u-+ 20,0
for allu € C9 and ¢ € A.
For a proof of this formula we refer to the reader to [2, p.286].

Let
(3.1.1) E(u,v) = L(u,v) — L(v,u), (u,ve CY).

Then, obviously, E( , ) is a C-valued R-bilinear form and satisfies E(u,v) =
—E(v,u).

LEMMA 3.1.2. The linear form E( , ) has the following properties:

(1) E(iu,v) = E(iv, v),

(2) E(u,v) = 2mi(tu'v” — tuv').

Especially, E( , ) is an iR-valued form and 2wiZ-valued on A x A.

Proof. Statement (1) is proved in [10, p.85, Theorem 1.2]. Let us prove (2). In the

theory of curves, it is a basic fact that ‘w'n’ and ‘w”n” are symmetric. So

E(u,v) =L(u,v) — L(v, u)

7,11 ",

="u(nv" +n"v") = o(n'u" + n""u")

/ 11— / n, 11— / 11— 1 m, 1o -1
= 'y W T 4 W W W T e — W e — e W

:tvltw/n/(u/‘i_zu//) + t/U/ tw//n//(Z—lul +u//>
_ tu/ tw/n/(vl‘i_Z’UH) _ tu// tw//n//(Z_1U/+U//).
Since ‘w'n’ and Z are symmetric, it follows that

I /W " r— r ! ", 1
twnZ:tthn :tw tw 1tW77 :twn,

", .1 1,11 / 1 — ", .1 !, 1
twnZ:tthn:twtw ltwn:twn.

Therefore, by using the symmetricity of ‘w’n’ and *w’n” once more, we have

/ [ i "1/ / /NI 1 "1
E(u,v) =" W' v + "Wy + W "+ e

/ 11,1 1 ", 1.1 / 111 1 "1, 1
— W'tW'n'u — W W — W T u — T W

1o

The generalized Legendre relation ‘w’n” — *w”n’ = 27wil, shows our assertion. [J
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3.2. Functions v, (u).

In this subsection, we review the original and generalized Weber’s psi functions
defined for the (hyper)elliptic curve C'. For the case that J has complex multipli-
cation, we treat them more extensively in 4.4.

DEFINITION 3.2.1. Letn € Z.
(1) When g =1, we let

) = o(nu)
w’ﬂ( ) O'(’I,L)nz
(2) When g =2 or 3, we let
) = o(nu)
¢n< ) 0_2(u)n2

PROPOSITION 3.2.2. The function 1, (u) is a function on C if g =1 and on © if
g > 2. In other words, as a function on C = k= 1(C) if g = 1 and on k= 1(O) if
g > 2, it is periodic with respect to the lattice A. Furthermore 1, (u) restricted to
u € k1(C) is a polynomial of x(u) if g = 1, 2 with n odd or g = 3 with n even,
and is a polymomial of x(u) multiplied by y(u) if g = 1, 2 with n even or g = 3
with n odd.

Proof. We follow [9, p.126, Lemma 1]. We have (—1)*© = ©, because our theta
divisor is comming from a hyperelliptic curve. So n*© = n?0 ([16, p.59]). Hence

the function
o(nu)

¢n(u) = 0(u)”2

is a trivial theta function. On the other hand, by 3.1.1, we have o(n(u + ¢)) =
x(nl)o(nu) exp[n®L(u + 3£, ¢)]. By the definition of x( ), x(nf) is equal to x(¢)
or 1 if n is odd or even, respectively. So we have

Pn(u+€) = dn(u)

for all u € C9 and £ € A. Hence the proof of first statement for g = 1 is completed.
Now assume g = 2 or 3. Because of

02 — 0990 —203 + 3090990 + 099207
pa2(w) = (P22 (W), poaa(u) = (2T ()
and of o(u) = 0 for all u € k1O, we have
dulw) _ o(mw) on() o)
p22(u)T o (u)" —%pzzz(u)@m(u)%is o2(u)"

for all w € k~1(©) if n is even or odd, respectively. Thus %, (u) is a function on
©. Hence the first statement. For u € k™ 14(C), u = O if and only if oo(u) = 0
by 2.2.1. Therefore 1, (u) has, as a function on C, only pole at u = 0. So it must
be a polynomial of z(u) and y(u). The last statement is shown by z(—u) = x(u),
y(—u) = —y(u) and 1.3.1(3). O

We compute v, for n = 2, 3 and 4 in 3.2.4 bellow. To do so we give the following
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LEMMA 3.2.3. Let C be the hyperelliptic curve of genus g(> 2) defined in 1.1. Let
P be a point of C' different from oo. If nP € © withn = g or g+ 1, then P is a
branch point, that is y(P) = 0.

Proof. Since nP € O, we have g — 1 points (1, ---, Q41 such that, as divisors,
nP is linearly equivalent to Q1 +--- + Q4—1 + (n — g + 1)oo ([15, pp.3.28-29]).

For a point @ of C, we here denote by @ the point (z(Q), —y(Q)). We first assume
n = g. In this case, there exists a function G on C whose divisor is (@1 + -+ +

Qg—1+00) —nP. Since P # oo, G may not be a constant function. However, there
g

is no non-constant function whose poles are bounded by a divisor Z P; such that
j=1

Pj # oo and P; # P, for every i and j with i # j ([15, p.3.30]). Since P # oo, it
must be P = P, and hence y(P) = 0.

Secondly, we assume n = g+ 1. Then there exists a function G on C' whose divisor
is (Q1 + -+ Qg—1 + 200) — nP. The divisor of the function (z — z(P)) - G is
Q1+ -+ Qy—1+ P — (n—1)P. This function may not be a constant. So, by the
same argument as in the case n = g, we have P = P, and hence y(P) = 0. Now we
have shown the assertion. [J

LEMMA 3.2.4.

(1) If g = 1 then o (u) = —2y(u) and if g = 2 then o(u) = 2y(u).
(2) If g =2 or g = 3 then 3(u) = —8y(u)3.

(3) If g = 3 then 4 (u) = 64y(u)?*.

Proof. (1) When g =1, 2.1.1(1) implies

o(2u) 2u+ (d° > 2) 2

I Oy R CE S L

Thus 2.3.1 and 3.2.2 imply ¥9(u) = —2y(u) for u € C. When g = 2, 2.1.1(2) and
2.3.2(1) imply

o(2u)
o (u)?
2u1 + FA28uf — 2A58ud + (d° > 5)
N (—u3 + (d° > 4))"
—2u3 4 (d° > 5)
~(—ud + (d° = 9
2

= 4.,
”LL25

¢2(u)|u€HflL(C) =

Thus 2.3.1 and 3.2.2 imply ¥ (u) = 2y(u) for u € C.
(2) When g = 2, we have

D3 (1) w1 _ o(3u) _ 3up + %)\22710;’ - %27@5% + (d° > 5) _
3 u€r—1(C) O'Q(U)g (_u% + (do > 4))9 !
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by 2.1.1(2) and 2.3.2(1). Let P = (x(u),y(u)) and assume 93(u) = 0. Then we
have o(3u) = 0 because o2(u) = 0 if and only if v = O as seen in 2.2.1(2). So
3P € O©. By 3.2.3, it must be P = co or P = [—1|P. This means y(u) = oo or
y(u) = —y(u). Hence we have known, for u € k~14(C), that ¥3(u) = 0 is equivalent
to y(u) = 0. So ¥3(u) must be of the form

(3.2.1) Va(W)luen-1c) = —8y(u) [ (w(u) —=(P))

y(P)=0

by 3.2.2. To determine the product for points P, we look at the vanishing order at
each P such as y(P) = 0. Let P = (a,0). Assume u = v+ P € s %(C). Then
y = y(v+ P) is a local parameter at P. Since

V3(v + P)lotper-1.(0)
_o(B(v+P))
oa(v + P)?
_0(Bv+ P)x(2P)exp L(3v + P + P,2P)
B oa(v + P)?
~ (301(P)vy + 302(P)va + (d° > 3)) exp4L(P, P)(1 + (d°(v1,v2) > 1))
(02(P) + (@ (or, 1) = D)° ’

it follows from the first statement of 2.2.1(2) and 2.3.3 that

¢3(’U + P)|’U—|—P€K,_1L(C) = (do(y) > 3)

This argument is independent of the choice of a. So the factors of the product in
(3.2.1) contain z(v + P) — a for all @ with f(a) = 0. Thus the product must be
equal to y(u)?. Hence

¢3(u)|u€/@_1b(0) = —8y(u)3

When g = 3, we have

3
V3(u)luer-10(0) :%

_9u1U3 — 9u% — 81%1@1@ + 362\1—gu + -
(—2U2 — %ug _|_ .. .)9
o (d(us) 2 8)
(—u3 + (d°(u3) > 5))°
8

21
U3

for u € k= 1(C) by 2.1.1(3) and 2.3.2(2). Let P = (z(u), y(u)) and assume 13 (u) =
0. Then we have o(3u) = 0 because o2(u) = 0 if and only if u = O as seen in
2.2.1(3). Therefore 3P € ©. By 3.2.3, it must be P = co or P = [—1]P. This
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means y(u) = oo or y(u) = —y(u). Hence we have known, for u € C, that ¢5(u) =0
is equivalent to y(u) = 0. So 13(u) must be of the form

(3.2.2) Y3(W)luen-1ucy = —8y(u) [[ (a(u) —(P))

y(P)=0

by 3.2.2. As in the case g = 2, we look at the vanishing order at a point P =
(a,0) € C. By using the Taylor expansion 2.2.1(3) we have

Y3(v + P)lospen-1uc) = %
_0(3v+ P)x(2P)exp L(3v + P + P,2P)
B oa(v+ P)?

(3(c1(P)vy + 02(P)va + 03(P)vs) + (d° > 3)) exp4L(P, P)(1 4 (d°(v1,va,v3) > 1))

(02(P) + (d°(v1,v2,v3) > 1))?

So 2.3.3 and the first statement of 2.2.1(3) give

¢3(’U + P)|’U—|—P€K,_1L(C) = (do(y) > 3)

This argument is independent of the choice of a with f(a) = 0. So the factors of the
product in (3.2.2) contain x(v + P) — a for all a with f(a) = 0. Thus the product
must be equal to y(u)?. Hence

¢3(u)|u€HflL(C) = _Sy(u)g'
(3) We have

Ba(luentuic) =
16uuz — 16u3 — 44%1@7,@ + 462‘—gug + e
B (—QUQ—%ug—i—---)lG
_ 64u§ + (d°(us) > 8)
- (—uf + (d°(us) > 5))16
64

D)
U3

for u € k71 (C) by 2.1.1(3). Let P = (x(u),y(u)) and assume 14(u) = 0. Then
we have o(4u) = 0 because of that oo(u) = 0 if and only if v = O as seen in
2.2.1(3). Hence 4P € A. By 3.2.3, it must be P = co or P = [—1]|P. This means
y(u) = oo or y(u) = —y(u). Hence we have shown, for u € k= 14(C), that 14(u) =0
is equivalent to y(u) = 0. So 14(u) must be of the form

(3.2.3) Ya(W)|uen-1c) =64 ] (x(u) —z(P))

y(P)=0
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by 3.2.2. As in the proof of (2), we look at the vanishing order of 14 (u) at a point
P = (a,0) € C. We take y = y(u) as a local parameter at P along £~ (C). Let
u=v+ P on k 1(C). We first show that o(4v) = (d°(y(u)) > 6). By 2.3.3, we
have

1 f// CL2 (2 + f//>

VU3 — (f/y + 3f’2y + (d° > 5))(f' Y+ 377 + (d° > 5))
a 1+ f‘// o
— (?y + f/2 y3 -+ (d > 5))
=(d°(y) > 6),
A A A
—Eovf — Elv:fvg — Mvivd — Esvlvg’

A4 4+&vij’v3—)\53 _)‘622 A6 3_)‘7 3

BERCRE 3

2 6 3
1 )\0 /\1& 2 2)\2&2 /\3CL3 /\4&4
—— (=20 _ A%y _ _
f’4( 5 3 2t 3 3
Asa®  Aga®  Aga®  Aza”
_ 53& . 62a + 66a . 73& )y4 4+ (do > 6)
=(d°(y) = 6),

where we simply write f’ and f” instead of f’(a) and f”(a), respectively. By 3.1.1,
we have

o(4(v+P))  o(4v)x(4P)exp L(4v + 2P, 2P)
oa(v+ P)16 oo(v + P)16

Ya(v + P)lotpen—1uc) =

Therefore
V4(v + P)lytpen-1c) = (d°(y) > 6).

This argument is independent of the choice of a with f(a) = 0. So the factors of
the product in (3.2.3) contain z(v + P) — a for all a, f(a) = 0, with multiplicity at
least three. Hence the product must be equal to y(u)®. Therfore we have shown

Y4 (uW)] s Per-1.0) = 64y(u)°,

and we have established the proof. [J
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§4. CURVES OF CYCLOTOMIC TYPE

4.1. Automorphisms of C' and endomorphisms of J.
In this subsection, we treat the case when the affine equation of the curve C' is
given by y? = 2™ + % or y?> = " — x with m and n odd. In this paper we say such
a curve to be of cyclotomic type. In the latter case, if n — 1 be a power of 2, then
we call such a curve to be of 2-primary (cyclotomic) type.

In the first case, we let ¢ = exp( 27”) Then there are automorphisms

[+¢71:C = C,  (2,y) = ((z, +y)
for j =0, ---, m—1. Especially, [£(?]oo = 0o, [¢7](0, %) = (0, ) and [—1](=4~1/™,0
= (—47Ym 0).

In the second case, we let ¢ = exp(LZl). Then there are automorphisms
n —

[(71:C=C, (2,y) = (P, {Ty)

for j =0, -+, n—1. We have [(/]oo = oo and [¢?](0,0) = (0,0).
In each of the cases, each automorphism extends to an endomorphism

[£¢7T: Prt oo Py — goo = [£T P+ -+ [£¢7] Py — goo

of Pic®(C), hence, of J, where Py, ---, P, are points of C. We denote by Z[[(]]
the subring of End(J) generated by {[¢?]}. The ring Z[[¢]] also acts on CY with
A being stable, that is equivalent to say aA C A for all @ € Z[[(]]. We have
obvious relations [1] = 1, [¢/][¢*] = [¢/TF] and [—¢7] = —[¢?]. In each case,
since [+¢7]4(C) = 1(C), it is obvious that [4¢7]O = @

LEMMA 4.1.1.

(1) If C is defined by y* = 229" + % then Z[[(]] 2 Z[X]/(X?9+ -+ X + 1) by
(- X,

(2) If C is defined by y? = 22971 — x then Z[[{]] 2 Z[X]/(X?9+ 1) by [¢] — X.

Proof. The isomorphisms of (1) and (2) are easily obtained from the action

I_C-I (ulv U, - 7“9) = (Cuh C2u27 T 7€gug>

and

I_C-I (ul’ Uz, - ’ug> = (Cuh CSU% e ,CQQ—lug),
respectively. [

Let b be an element of Z[[(]]. In the following, we will investigate the b-
multiplication for o(u), that is o(bu), and pull-back of b-multiplication for ©, that
is b*O. If b € Z then most results of this section are quite simple. However, for
our main results, one of the most important cases would be when b is an imaginary

number in Z[[(]].

4.2. The Riemann form for a curve of cyclotomic type.

0)
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DEFINITION 4.2.1. The function o(u) = o(u; Z) is said to be a normalized theta
function ( in the sence of [10, p.87] or [18, p.20] ) if the form L(u,v) defined in
3.1 is hermitian, that is equivalent to say L(v,u) = L(u,v), where the bar means
the complex conjugate. If that is so,

L(u,v) = 2%[E(zu, v) + iE(u,v)]

for all u, v e C9.

LEMMA 4.2.2. Let " and " be the period matriz of differential forms of second
kind as is defined in 1.1. If n’~1n" = Z then o(u) is a normalized theta function.

Proof. By the definition of L( , ), L(iu,v) = iL(u,v). We will show that L(u,iv) =
—iL(u,v). Let us define w’ and w” € RY by zw' Ly =w' + Zw". Then —iw'~1v =
w' + Zw". Since w'"v = v’ + Zv" and w'~1v = v’ + Zv"”, we have

L(u,iv) = u(n'w’ +n"w")
= un’(w + Zw'")
= ury'(iw'~1v)

= un' (=) (v + Zv")
= —iu(n’v' +n"v")
= —iL(u,v).

Since E( , ) is R-valued, we have L(u,v) = L(v,u) by 3.1.2(1) and the relation of
L(, )and E(, )in 4.2.1. Therefore we have the assertion. [

PROPOSITION 4.2.3. If C is of cyclotomic type, then n'~'n" = Z. Hence o(u; Z)
1s normalized because of 4.2.2.

Proof. In our case, the differential forms n®, --- 1@ defined in 1.1 are
(1) z20] de. n® o d w _
=(29—1 =(29g—-3 D= —
n" = (29 —1) z, N = (29 - 3) oy T =g de

Let C be the curve defined by y? = 229! + 1 (resp. y? = 2%97! — z) and let

(—a7oeT o> (—47aFT o>
S T
0,3)

(1,0) (1,0)
(resp. K; = w, H; = n")
(0,0) (0,0)
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be integrals along the real axis. Then we have
(—4~1/ Qg+ ¢k ) (—4~ 1/ (29+1) )

[ som [T 0 2 s,
(0,3) (0,3)

(_4—1/(29+1)C7€70) (_4—1/(2g+1)’0)

/ n(i) o / Kk-ln(i) — C(Qg_H_l)kHi _ C_MHi
0,3) 0,3)

¢t (1,0) | ‘
esp. [t = [ b — vk,

(0,0) (0,0)

(¢*,0) (1,0)
/ ,’,’(i) _ / I‘Ck'ln(z) _ C(Q(Qg_i)+1)kHi _ C(_Q’H—l)kHi)a
0,3) (0,%)

where each of integrals is along the segment with a constant argument. Let us
compute the periods matrices ' and 7" by choosing paths a”) and 3% as a join of
segments of line in z-plane with constant argx as in Figure 2.

Figure 2

Then we are led to the following relations:

/ 77(”2&/ wm,/ U(i):&/ w®
al) K; Jow 3G) K Jgu

for all 7 and j. Hence

Hy Hy
Kl Kl

5
BE

X

So we have 0/~ 1n! =w/-1w" =Z. O

For each b € Z[[(]] we denote by b the involution in Z[[¢]] induced by [¢7] =
(¢
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ProprosITION 4.2.4. If C' is of cyclotomic type, then

E(bu,v) = E(u,bv), L(bu,v) = L(u,bv),

for all u, v € C9 and b € Z[[(]].

Proof. Since [(] is an automorphism of A, there exists a matrix M ({7) with entries
in Z such that

/

=@ | 1]

u

Since [¢7] is an automorphism of C over Q, it induces an automorphism of the
fundamental group of C. Hence

TM(C)IM(ST) =1

01 109} and M(¢?)M(¢™7) = 1g,. Thus we have 'M(¢))] =
g

IM(¢))™t = IM(¢™7). We define U" and U” by [¢(?]u = &'U’ + w"U"” or equiva-

/ /

/ /
lently by [g,,} = M(¢7) l::,,}, and let {“//,,} = M(¢9) {:j,,}, where the letters

uw', u”, v and v are used under the convention of 3.1. Then 3.1.2(2) and the above
equation give

with [ =

E([¢u,v) = 2mi(*UW" — tU"Y)
= 2mi[tU" tU"I [”,l,}
v
_ 27”-[tu/ tu//] tM(Cj)I qulll}
= 2mi[ /P TPM(¢) [”,l,}

/
= 2mi[ " tu) I {V ]

— ZWi(tu/V// _ tullvl)

= E(u, [¢7]v).

By linearlity the proof of the first equation is completed. The second is obtained
by the relation in 4.2.1. [J

LEMMA 4.2.5. If C is of cyclotomic type, then there is j € Z such that

o([¢Tu) = ¢’ o(u).

In particular,

(1) If the genus of C is 1 or 2, that is C is defined by y?> = y> + %, y? =3 — =z,
=y + L ory? =y —a, then o([Clu) = Colu)

(2) If C is defined by y* = 27 + 1, then o([(|u) = (*o(u) ;
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(3) If C is defined by y* = 27 — x, then o([(]u) = Co(u).

Proof. Since [(]*© = O, two functions o([(|u) and o(u) have the same divisor of
o([¢]w)

o(u
hand, by 3.1.1, we have

o[ +0) _ x([<10) a([¢]u) exp L[ ¢ (u + 54), [€16)

z€eros. So is an entire function, i.e. a trivial theta function. On the other

o(u+¥) x(¢)  o(u) exp L(u+ 34,

o ([¢]w)
o(u)

is bounded. In fact, if M be the maximum of

Since x( ) is 1 or —1, the above quotient is equal to + by virtue of 4.2.4.

o([¢lu)

o(u
absolute values of this function on the domain

Therefore the function

1

uy uy
v=w'| |+ | ;Ogu;.§1,0§u3’§1forj:1,---g ,
uy, Uy
o([¢]w) S .
then ( < M for all u € CY9. Liouville’s theorem says such function is a
o(u
u
constant function, say a(((ﬂ) ) = c. Consequently, if (¥ = 1, then
o(u

p_ oW o([Cle)  o([¢FHu)  o(w)

CcC =

So ¢ = (7 for some j € Z. If g is 1, 2 or 3, by looking at the Taylor expansion 2.1.1
at O, we get the desired formulae. [

The following Lemma is used in 4.2.8 bellow.

LEMMA 4.2.6. Let C be of cyclotomic type. Let ¢ and b be elements of Z[[(]] such
that € = ¢ and such that b=b mod c2. Let P be a point in C9 such that cP € A.
Then

L(bP,P) = L(P,bP) mod 2miZ.

Proof. Since b—b=0 mod c?, we can write b — b = ac® with a € Z[[¢]]. Then
E(P,(b—0b)P) = E(P,ac?P) = E(cP,acP) = E(cP,acP) € 2miZ by 4.2.4, because
cP € A and 3.1.2(2). Therefore!,

(4.2.1)
E(bP, P) =E(P,bP) by 4.2.4
=E(P,(b—b)P +bP)
=E(P,(b—b)P) + E(P,bP) = E(P,bP) mod 27iZ.

Hncidentally, since —E(P,bP) = E(bP, P), we have 2E(P,bP) =0 mod 27iZ.
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Furthermore, since
(4.2.2) E(i-bP,P)= E(iP,bP)
by 3.1.2(1), we obtain that

1
L(bP, P) = o-(E(i-bP, P) +iE(bP, P)) = L(P,bP) mod 2miZ

1

by 4.2.1, (4.2.1) and (4.2.2). O

DEFINITION 4.2.7. Let p: ( + (! be the complex conjugate. Let T be an element

of Z|Gal(Q(¢)/Q)]. If T+ pT is the norm from Q(() to Q, then T is called a type
norm ([11, p.22]).

LEMMA 4.2.8. Let C' be of cyclotomic type.

(1) Let ¢ and b be elements of Z[[(]] such that, as ideals, (¢7) = (¢) for all v €
Gal(Q(¢)/Q) and such that b = 1 mod c®. Let P be a point of CI such that
cP e A If T is a type norm, then for all v € C9Y.

o(b (v+P)) = o(bTv+P) exp[%(Nb—l)L(P, P)—i—%L(bTv, (T =1)P)]x((b" —1)P).

(2) Let Py be a point on C such that x(Py) = 0. For all v € CY,

o(v+[¢1F) = o(v+Fo) exp[L(v, ([¢] —1)Po)+%L(([ 1=1¢D) Po, Po)Ix((T¢T=1) Fo).-

Proof. The assumption on b and ¢ implies ¥ =1 mod ¢%. So (b7 — 1)P € A and
3.1.1 gives

o' (v + P)) =o(b"v + P+ (b7 —1)P)
=o(bTv + P) exp(L(bTv + P + %(bT —1)P, (" —1)P)x((bT — 1)P).
Here
L(bTv+ P+ %(bT — 1P, (" —1)P)
:L(%(bT +1)P,(b" —1)P) + L v, (0T —1)P)
=—L((b" +1)P, (b" —1)P) + L(b"v, (b" —1)P)

(LT P,bTP) — L(P, P)) + L(b"v, (b" —1)P) mod 2miZ by 4.2.6

NIR NI FRNI RN

(L(bTVT P, P) — L(P, P)) + L(bTv, (b" — 1)P) by 4.2.4

(Nb —1)L(P, P) + L(b"v, (b" — 1)P).

Hence we have (1). The formula (2) is obtained by calculation like (1). O
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4.3. Action for the theta divisor.

In this subsection, the curve C' is still assumed to be of cyclotomic type. For
b € Z[[(]] we denote by b*© the pull-back of © with respect to the endomorphism
b. Therefore £k~ 1(b*0O) is just the divisor of zeros of o(bu), and E(bu,bv) is the
Riemann form associated to this divisor.

The following proposition seems to be true for all C' of cyclotomic type. But the
author has no proof of it for 2-primary type (see 4.1) except for the curve defined
by 42 = 2° — 2. We denote by ~ the algebraic equivalence and by ~ the linear
equivalence.

PROPOSITION 4.3.1. Assume that g > 2 and that C' is not of 2-primary type. Let
€1, -+, En and b be elements of Z[[(]], and let by, 1, -- -, £, be rational integers.
Let p: (+— ¢1 be the complex conjugate. If b*P = by + 163 + -+ - + £,€2, then

V'O ~Lly- O+ Ly -e1O+ -+ L, -c0.

If C' is the curve defined by y? = 2° 4+ 1, 4.3.1 is proved in [9, p.126, Lemma 1],
We firstly prove the following lemma as in [9].

LEMMA 4.3.2. Assume that g > 2 and that C' is not of 2-primary type. Let D be
a divisor of J. If D =~ 0 and [+(]|*D ~ D, then D ~ 0.

Proof. We prove by using the dual Abelian variety of J. Since © gives a principal
polarization of J and D =~ 0, D ~ ©, — O for some u € J, where ©, denotes
the translation of © by u ([16, p.77, Theorem 1]). Since [¢/](0©) = O, we have
[+£¢77(0,) = Oriciu ~ Oy. Hence [£¢7u = u by [14, p.186, 6.6]. Because n — 1
is not a power of 2, there is an integer v such that 1 — [(¥] and 2 are coprime
in End(J). The above linear equivalences imply that w is 2-torsion and 1 — [(]-
torsion. Hence u = O and so D ~ 0. [

Proof of 4.3.1. For a divisor D in J, we denote by Ep( , ) the Riemann form
associated to D which takes values in 27iZ on A x A([11, p.68]). Then

Epo(u,v) =E(bu, bv)
E(bbu,v) (by 4.2.4)
=E(b"Pu, v)
=E((by + l1e] + -+ -+ £ne2)u,v)
=00 E(u,v) + 6 E(efu,v) 4 - - - + Lo E(e2u, v)
=loE(u,v) + 1 E(e1u,e1v) + - - - + £, E(epu, ,0)

:Ego.@+gl.51«@_,_..._’_@”.5;«1@(114, v).

Thus b*©@ =~ ly- O+ {1 - €70+ ---+{, - £;,0O. Since the both divisors are invariant
by the action [+(]*, 4.3.2 implies they are linearly equivalent. [

For a curve of 2-primary type, the proof above can not be applied. Here we give
a proof only for the curve defined by y? = x° — z, for the case that e; of 4.3.1
is certain special element. Note that, for this curve, the map Z[[(]] — End(J) is
known to be injective and the image is isomorphic to Z[(] by [¢(?] +— ( (see also
6.2).
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PROPOSITION 4.3.3. Assume that C is defined by y> = x° —x. Lete; = 14++/2 =
14+¢—¢3 and let b be an element of Z[(]. Let p : ( — (™1 be the complex conjugate.
If b1TP = by + 0162 with rational integers £y and £y, then b*© ~ £y - O + £ - £50.

Proof. We prove the stament in somewhat extended form. First of all, we note the
following. Let b € Z[¢] and let b = p + q¢ + r¢? + s¢3 with integers p, ¢, r and s.
Then we have

bt = <p2 +@*+ 7+ s g(—pq +ps —rs+q7“)> +(%(pq—ps+rs—qr)) ef.
So, in the expression b**7 = (o + 13 for arbitrary b € Z[(] with £ and ¢; € Q,
it is actually 2¢p and 2¢; € Z. Now let us prove that, for every b € ZI[(], if
201P = 20y + 20167 then 2(b*O) ~ 20y - © + 201 - 50, and if moreover £y, {1 € Z
then (b*0) ~ ¢y - © + {1 - €10 by induction with respect to p, ¢, r and s. In the
following we note that [(7]*© = ©. If four or three of p, ¢, r and s are 0, the
statement is trivial. We frequently apply [16, p.58, Corollary 2]. We get that

O=(1+4+i—14)%0
~(14+i)"0+(1-1:)"0+0"0 — 30
=(1+19)"0+((i +1)(—i))"6 - 30
=2-(1+14)"© —306.

Hence (1+4)*O ~ 2-© and ((—¢3)*0© = ((1+i)(—(?))*© ~ 2-0O. For the pull-back
of 1+ ¢, from

70 =(1+¢~-¢%)e
~1+)"0+1-)e+(¢-¢)'e-30
~(14+0)*O+ ((¢+1)(=¢*)*0 +20 - 30
=2-(1+(¢)"© -0,

we have 2-(1+()*0O ~ —O+¢ei0 and (1-¢)*0 = (1+(—(—()*O ~ 40— (1+()*O.
These are a part of the disired results since (14 ¢)'*# = 2(—1+¢%). Therefore the
statement is shown for 14+¢3 = ¢3(1—), (+¢? = ¢(1+4) and {2+ = ((1+(¢). By
using these results, we can check easily the statement for b with three or four of p,
q, r and s being 1. The rest of the proof is completed by induction as follows. If the
statement is true for b and b—(7 then it is true for b+¢7. In fact, let b* 7 = o+ 4162
and (b — ¢)1P = blTP — (¢TI0 + ¢9bP) + 1 = mg + mye?. Then ((79b+ (IbP) =
(o —mo + 1) + (61 — my)e?. Thus (b+ 7)1 = (20 — mo + 2) + (201 — my)e?.
Note that the coefficients 20y — mg + 2 and mg, 2¢; — mq and m, are of the same
parity. On the other hand,

V'O~ (b+)VO+(b—)O+0"0 -0 —2-0

yields ‘ '
b+¢)e~2"0—-(b—(’)"©+2-0.



30
So we have
2-(b+¢7)*O ~2(20) —mo +2) - O +2(201 —my) - £50O.
Furthermore if 20 — mg + 2 and 2¢; — my € Z, then we have
(b+ )"0 ~ (20 —mg +2) - © + (20, —my) - €70.

Hence the statement is also true for b+ ¢7. Similarly, if the statement is true for b
and b+ ¢7 then it is true for b — (7. Therefore we have shown the assertion for all
b. O

4.4. Further generalization of psi functions.
Here we construct a generarized Weber’s psi function.

LEMMA 4.4.1. Let b be an element of Z[[(]]. Under the notation of 4.3.1 or 4.3.3,
the function

o(bu)
o(uw)loo(equ)lr - -o(e u)tn

Pp(u) =

on CY satisfies

Gp(u +€) = £y (u)

for allu € C9 and ¢ € A. Here the signature £ is independent of u. Moreover if C
is not of 2-primary type or is defined by y*> = x° — x, then

Op(u+ L) = ¢p(u)

for allu € CY9 and £ € A.

The author can not follow the proof of [9, Section 3] for C defined by y? = 2°+ i.
Here we give another proof.

Proof. As is shown in 4.3.1 or 4.3.3,
E(bu,bv) = boE(u,v) + {1 E(e1u,e10) + - - - + €, E(epu, €,0).
Because of this and i(bu) = b(iu) for all u € CY9, we have
L(bu,bv) = byL(u,v) + 1 L(e1u,e1v) + - - - + € L(epu, ,0).
Hence
o(b(u+1)) =o(bu+ bl)
=x(bl)o (bu) exp[L(b(u + %K), bl)]

=x(bl)o (bu) exp[loL(u + %Z, 0)expll1 L(e1(u + %Z), e10)]

- exp[lnL(en(u + %IZ), enl)]
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by 3.1.1. On the other hand, we have
1
o(ej(u+10)) = x(el)o(eju) exp[L(e;(u + ), €50)]

for j=1,---,n by 3.1.1. Since x(\) = £1 for A € A, we get ¢p(u+¢) = £¢p(u) for
allu € C9 and ¢ € A. As ¢p(u+¢)/dp(u) is a meromorphic function, the signature
+ must be determined by /. Now we assume that C' is not of 2-primary type or the
curve defined by y? = 2% — 2. Then 4.3.1 and 4.3.3 imply that the divisor of ¢;(u)
is the pull-back of a divisor of a function with respect to the map x: C9 — C9/A.
Thus we can write ¢p(u) = f(u)e(u), where f(u) is periodic with the periods A and
e(u) is a trivial theta function with respect to the lattice A (see [10, p.82]). Then
we have
e(u+4) = te(u).

As in the proof of 4.2.5, if M is the maximum of e(u) on the domain

uy uy

v=w'| |+ | ;Ogu;.§1,0§u3’§1forj:1,---g ,
/ 1
g g

then e(u) < M for all u € CY9. Thus Liouville’s theorem says that e(u) is a constant
function. Hence the signature must be 4. So we have completed the proof. [

Since the function ¢p(u) has poles along the pull-back of ©, we modify it as in
[9].
DEFINITION-PROPOSITION 4.4.2. Let b € Z[[(]]. Let

o(bu) .
y(w) = <<u)e)0 ifg=1 and

o
B o(bu) L
¥o(w) ~oa(w)oo(eiu)h - o(equ)bn ifg=2or3

under the same situation of 4.3.1 or 4.3.2. Then p(u + ) = £hp(u) for all u €
k~1(C) and £ € A. Here the signature & is independent of u. Moreover, if C is of
genus 1 or not of 2-primary type except the curve defined by y?> = 2° — x, then

p(u+£) = p(u)

for allu € k™ 14(C) and ¢ € A.

Proof. The proof can be given by a similar fashion as in 3.2.1 by looking at the
parity of ¢o. O

REMARK 4.4.3. In the rest of this paper we treat only the case b'1° = {y € Z. So
we need not choose {e;} explicitly. We see that, in this case, Yp(u) is a polynomial
of z(u) or a such polynomial multiplied by y(u) by 3.2.2.
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II. Complex Multiplication Formulae

We mention here conventions for the following three Sections. We freely use the
notation of the part I. Let ¢(u) be an element of the ring

Qlpi; (u), pijk(w), Pijre(u)|i, j, k£, =1, g].
Let b € Z[[(]]. Then 1.4.1 and 1.6.2 shows that ¢(u)|,c,(c) can be expressed in

the form Pla(u), y(v)
_ fru), yw))
cp(bu)|u@(0) - Q(x(u)’y(u))a

where P(X,Y) and Q(X,Y) € Q(¢)[X,Y]. Especially we have shown the state-
ments about the coefficients in Theorems 5.1.3, 5.2.3, 6.1.6, and 7.1.6 below.

From now on we assume C' is a curve of cyclotomic type. We fix a special point
Py such that x(Py) = 0: if C is defined by the affine equation y? = 229! + % then
Py is the point (0, %), if C is defined by y? = 229! — z then without saying P, is
the point (0, 0).

Suppose we have labeled the roots of f(x) asin (1.1.1). Such labels are described
in the begining of each Subsection below. By applying the argument of our proof
of 4.2.3, with the same notation, for the integrals along the paths o™ and 5, we
can write the entries of w’, w”, 7/, and " by K,’s and H,’s.

We choose and fix a point in CY whose image of the map x : C — CI9/A = J
is Py. We denote such a point also by Fy. Throughout Sections 5, 6, and 7 such a
point is assumed to be given by taking the integral (2.3.1) along the line on which
the x-coordinate is real negative (resp. positive) and the y-coordinate has negative
imaginary part or is real positive if the curve C is defined by y? = 22971 + i (resp.
y? = 22971 — z). Then the coordinates of [(?]Py’s can be written explicitely, as
we describe in each of following Subections, in the form [¢7|Py = w'u’ + w"u” by
taking care that the integral from oo to (—4'/29t1 0) (resp. to (1,0)) along negative
(resp. positive) part of the real axis of z is half of the one along ™.

In the Sections, we give explicitly the highest and lowest term of P(X,Y) for
each of special functions p(u).

In Section 5 we write u; as u, K7 as K, and Hy as H.
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§5. ELLIPTIC CURVES OF CYCLOTOMIC TYPE

5.1. The curve defined by y? = 23 + 1.
We here give a version of the product formula of Eisenstein (see Section 8) for the
curve C defined by y* = 2%+ 1. According to 4.1.1(1) the ring Z[[(]] is isomorphic
to the ring Z[(] by [(] — (. So we may identify Z[[(]] and Z[(].

We let ¢ = —473, ay = —473(, ¢; = —473¢% in (1.1.1). Then we have

W' =2K((~¢?), v =2K(¢ 1), v =2H(¢* (), " =2H((* - 1),

and

1 1
(5.1.1) Py=K(-(*+() - K= gw' + gw”.

PROPOSITION 5.1.1. o(Py)® = —exp 3L(Py, Py).

Proof. Because of y(Py) = %, it is obtained from 3.2.4(1) and (2) that o(2P) =

—o(Py)*, On the other hand, from 3.1.1, we get
3 3
oc(2P) =o(—Py+3F) = — exp[ﬁL(Po, Py)lo(—Fy) = exp[§L(P0, Py)lo(Fy).

Here we used that o(—u) = —o(u) and that x(3P) = —1 which is calculated by
(5.1.1). Hence the statement. [J

PROPOSITION 5.1.2. Let b be an element of Z[¢]. If b=1 mod (1 — ¢)?, then

o(b(v + o)) = (=1) N7V ((b = 1) Po)o(Po)™ o (bv + Po)(1 + (d° > 1)).
Proof. Since Nb —1 =0 mod 3, the statement follows from 4.2.8(1) and
1
expl5 (Nb = 1) L(Po, Py)] = o(Po)N0!

which is a result of 5.1.1. [
THEOREM 5.1.3. (Eisenstein) Let b € Z[(] and assume b =1 mod (1—)?. Then
VYy(u)?p(bu) is of the form

Uo(u)p(bu) = x(u) > ya(u)
0<j<Nb—1
7=0 mod 3
with v; € Q(¢). Moreover vy = b and ynp—1 = 1.

Proof. At First, we look at the Laurent expansion at u = O. By 2.1.1(1), we have

o(bu) (Yp(u))? :U/(bu) (;(qj)';(Nbbu)a(bu)

(P (@ 2 0)(but )
(u+---)2Nb

1
 u2Nb
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Since o(u) is an odd function and has only zeros at u € A by 2.2.1(1), we know that
©(bu)y(u)? is a polynomial of z(u). Thus we have p(bu)yy(u)? = x(u)N0 + ...
by 2.3.1. Secondly, we look at the Laurent expansion at u = Py. Since b—1 =0
mod (1 - <)27

p(b(v + Po)) (¥ (v + Po))?/p(v + Po)
_o(b(v+ P))?  pb(v+ Py))
o(v+Fo)N  p(v+ P)
_(C1PTDEN((b — 1) Ry)*o ()N 2o (bu + Po)? p(bv + Po) (o,
B o(v+ Py)2No—2g(v + Py)? (v + Py) @z
(by using 5.1.2)
_o(bv+ Py)? b’ (bv + )
Co(v+R)? (v P
bt (@ 21) (since o/ (bFy) = ¢/ (Py) #0).

+(d°>1) (since o(Py)#0)

Because 2.2.1(1) states the function vy (u)?p(bu) has only pole at u = O the coeffi-
cient of the lowest term must be b. Since 1, (—Cu)?p(—Cbu) = (Noapy (u)?p(bu) be-
cause of 4.2.5(1), the function must be a polynomial of z(u)? multiplied by z(u). O
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5.2. The curve defined by y? = 2% — x.

Here we assume that the curve C is defined by y? = 23 — 2. For this curve the
ring Z[[4]] is also isomorphic to the ring Z[i| by [i] — i. So we identify Z[[i]] and
Z[i]. In this subsection, we write u; as u. Welet ¢ =1, a3 =0, and ¢; = —1, in
the notation of 1.1.1. The argument in the proof of 4.2.3 applied for the integrals
along the paths a and g% gives

3

W' =2K, W' =2Ki, n =2H, ' = —2Hi.

As in the previous subsection we take a point in C whose image of the map « :
C —- C/A=J=Cis Py and denote it by Py.
Similar path as in (5.1.1) gives

1 1
(5.2.1) Py=iK - K = —aw' + §w”.

PROPOSITION 5.2.1. o(Py)* = exp[2L(Py, Py)].

Proof. After differentiating the formula of 3.2.4(1), by setting u = Py, we have
—20(Py)* = 20" (2P). On the other hand, we get o(u+2Py) = x(2FP)o(u) exp[L(u+
Py,2PF)] from 3.1.1. After differentiating this, by setting v = 0, we have ¢'(2P)) =
—exp(2L( Py, Py)) because of 0/(0) = 1 and o(0) = 0. Here we have used the fact
x(2P,) = —1 which is obtained by (5.2.1). Hence o(Py)* = exp[2L(Py, Py)]. O

PROPOSITION 5.2.2. Let b be an element of Z[i]. If b=1 mod 4, then

a(b(v+ Py)) = x((b—1)Py)o(Py)N" o (bv + Py)(1 + (d° > 1)).

Proof. Since b = 1 mod 4, we have Nb = 1 mod 4. The statement follows from
4.2.8(1) and

1
expl5 (Nb = 1) L(Py, Po)] = o (Po)™"™
which is given by 5.2.1. [
THEOREM 5.2.3. (Eisenstein) Let b € Z[i] and assume b = 1 mod 4. Then

Py (u)?p(bu) is of the form

U(uw)?plbu) =2(u) Y ()
0<j<Nb—1
7=0 mod 2

with v; € Q(i). Moreover vo = b* and ynp—1 = 1.

Proof. As in the proof of 5.1.3 we have that p(bu)yy(u)? = NG + .-+, that
©(bu )iy (u)? is a polynomial of z(u) with coefficients in Q(4), and that p(bu)y(u)? =
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2(u)N? + ... For the Laurent expansion at u = Py, since b —1 = 0 mod 4 and
©(u) has a double order zero at Py,

p(b(v + o)) (vhy(v + Po))* /p(v + Fo)

a(b(v+ Po))* p(b(v+ Ry))

o0+ P (vt Po)

X((b = 1)Py)20(Po) ™ 20 (bu+ P)? p(bv+ Py)
o(v+ Py)No—20(v + Py)? plv+ Py)

_o(bv+ Py)? ‘ b2 (bv + Py)

o+ Py @ (vt Po)

=b? 4 (d° > 1) (since p'(bPy) = ¢/ (Py) #0).

+(d®>1) (by5.2.2)

+(d°>1) (since o(Fy) #0)

Since ¥y (iu)?p(ibu) = (—1)Nlqy(u)2p(bu) because of 4.2.5(1), the function must
be a polynomial of x(u)? multiplied by x(u). O



37

§6. GENUS TWO CURVES OF CYCLOTOMIC TYPE

6.1. The curve defined by y> = 2° + 1.

Now let us consider Grant’s original case. So the curve C' is defined by 32 = x° + i.
According to the isomorphism of 4.1.1(1) the ring Z[[(]] can be identified with Z|[(]
by [¢] + ¢. The endomorphism [—¢?] on C? is described as

(6.1.1) [—¢7 T (u, u2) = (=P ur, —¢*uy).

1

We let ¢ = —475, a1 = —4_%@ c, = —4_%C2, as = —4_%5’, co = —4_%C4, in
(1.1.1). Then we have

,[2K0(C = ¢Y) 2K1(C-¢?) }
| 2K5(C— (%) 2KL(¢P—¢Y) |
p [2K1(—1+¢ =+ ¢3) ZKl(C_l)}
2K5(—1+ (2=t +() 2Ka(¢2-1)
c_[2Hi(CP—¢Q) 2Hi(¢* - c3>]
T 2Ha(¢* — %) 2Ho(CP Q) |
p [2Hi(—1+¢* =3+ ¢?) 2H1(C4_1)}
T T 2Hy (<14 C3 = (4 ¢Y) 2H (3 —1)

The point Py is

K-+ - K| _
(612) Po— KQ(CQ—CA—FC—(S)— :|—CL)|:

Then [¢?] Py are given by (6.1.1) as follows:

(SIS
—_
&

~

I
| — |
(SIS
| S

r 2 3 4 T r_3 17

am=| s S e = [T e ]

_-CQK (C <2+CS C4_1) B /'2 y 17

(6.1.3) (1= | Gy & e — o) = é}“’ {—5%_’
T M3 _ 2 3 r_3 17
1R0= | e o ) = ) e i)
(K- G-t -] ] 2 i [5]
QP R R

Now let us compute the Taylor expansion at u = Py explicitly. Since

(6.1.4) (K] -1)Py=u' {:” +w” [8]
by (6.1.2) and (6.1.3), we have x(([{] — 1)Py) = 1. After substituting this to
4.2.8(2) and differentiating it by v, by setting v = O, we have

a2([C1Fy) = 02 (Fo) exp 1L((( 1= 1< P, Po),
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where we have used that o(Fy) = 0. Because of 4.2.5(1) and o2(Fp) # 0 (see
2.2.1(2)), it must be

exp 3 L((TCT ~ [Py, o) = ¢*

Therefore 4.2.8(2) gives rise to
(6.1.5) (v +[(1Po) = (o (v + Po) exp[L(v, ([¢] — 1) Fo)].

After operating ﬁ;w to (6.1.5), by setting v = O, we have

(6.1.6)  0i;([C1Po) = ¢*oij(Po) + 0s(Po)(—n1; — my;)¢* + 05(Po) (=i — mhi)¢*

by (6.1.4). For the case i = j = 1, (6.1.6) is of no use because o1(Fy) = 0. But
2.2.1 gives 011(Py) = 2/ Ao02(Py) = 02(F). Set i =1 and j = 2 in (6.1.6), then
012(Py) = 2H1(¢? + ¢*Y)o2(Py). By a similar fashion, we get g92(Py) = 4Ho(¢* +
(3)oa(Py) by setting i = j = 2 in (6.1.6). Although these explicit values are
unnecessary to prove 6.1.6 below, we mention this here to make 6.1.1 below clean.
The Taylor expansion at O is given by 2.1.1(2). Thus we have arrived at

PROPOSITION 6.1.1. Assume C be defined by y?> = x° + i. Let Py be the point
whose coordinate is given by (6.1.2). Then

1
(1) o(u) =u; — §u2 (d° > 5),
1
(2)  o(v+ Po) =oa(Po) (v2 + 51 +71201U2+% §+% ;

+ (% + %) 209 + 71227221;1113 + ng v+ (d° > 3)),

where 1o = 2H,(C? + (%) and yoo = 4H(C3 + ¢*).
PROPOSITION 6.1.2. 02(Pp)® = exp 2L(Py, P).
Proof. Because of y(Py) = 1, it is obtained from 3.2.4(1) and (2) that

0'(2P0) = O'Q(P0>4, U(?)Po) = O'Q(Po)g.
On the other hand, from 3.1.1, we get
5
0(3FPy) = o(—2Py+5F)) = — exp[ﬁL(PO, Py)|o(2PR).

Here we used that o(—u) = —o(u) and that x(5F) = 1 which is given by (6.1.2).
Therefore we obtain

—09(Py)? = — eXP[gL(Poa Py))oa(Po)?

and the statement. O

We denote by 7 the element of Gal(Q(¢)/Q) such that (T = ¢2. Then 1 + 7 is
a type norm (see 4.2.7) in Z[Gal(Q(¢)/Q)].
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LEMMA 6.1.3. Ifb€ Z[(] and b=1 mod (1—C), then x((b**7  —1)Py)No-1 =1,

Proof. If Nb is odd, the statement is trivial. So we assume Nb is even. For £ € A,
it is easily verified from the definition that the value y(¢) is determined only by

¢ mod 2A. By the assumption of b, we may write pltm "t = (a1¢ + aoC? + as3(® +
as¢H)(1 —¢) + 1. Since 2 is a prime in Z[¢], we have b = 0 mod 2 and hence

b7 =0 mod 2. By simple calculation, we see that a1 = a3 = 1 mod 2 and
a2 = a4 =0 mod 2. Therefore

X = 1)Py) =x((¢ + ) (1 = O) Py)
=x((¢ =+ 3 = HPy)
=1

because of
c-¢ae-chm=w || 4o |]]
which is obtained from (6.1.3). O
PROPOSITION 6.1.4. Let b be an element of Z[¢]. If b=1 mod (1 — ¢)?, then

(BT (v + Py)) = oo (PN iy (M = 1) Py)o (T v+ Po)(1 + (d° > 1)).
Proof. The statement follows from 4.2.8(1) and
1
exp[§(Nb — 1)L(Py, Py)] = 02(Py)N0~1

which is given by 6.1.2. []

LEMMA 6.1.5. Let p(u) denote the function (p35 — @o2p11)(u). Then it has the
following properties.

(1) @([¢Tu) = Cto(u),
(2) ¢(u) € T(J,0(30)),
(3) the Taylor expansions of o(u)3¢(u) at O and Py are of the form

o(u)o(u) = 2ug + (d°(u1, up) > 2) and
(v + Po)’p(v + Po) = 09 (Po)* (=1 + (d°(v1, ) > 1)).

Proof. The statement (1) follows from 4.2.5 and the definition of p-functions. The
statement (2) follows from
2

(0°0)(u) = —o2(u)?o11 (u) — 01 (u)? 022 (u) — 201 (u)o2(u)o12(u) + o12(u) o (u).

The statement (3) is easily derived from a calculation by using the equation above
and 6.1.1. [
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THEOREM 6.1.6. (Grant[9]) Let p(u) := (p35 — @oop11)(u). Let b € Z[¢] and
assume b =1 mod (1 — ()2 Then ;.1 (w)3(b7 ) is of the form

—1 .
Ypert (WO w) =29(w) Y y(u)
0<j<3(Nb—1)
j=0 mod 5

with every v; € Q(C). Moreover y3np—1) = (=N and vo = —1.

Proof. At first, we look at the Laurent expansion at v = O. By 6.1.5(3) and
6.1.1(1), we have

Vet (@O )|
a(bl+7—_1u)3g0(bl+7_1u)
0-2<u)3Nb
26 VTug + (d°(ug) > 2)
(—u3 4 (d°(uz) > 4))3N°

_ (_1)Nb2b'r+1

oNo1 T
Uz

1/1 3(Nb—1)
—Ctwn T (L) e
Uy \ U

= (—=1)N*207 Ly (u) (2 (u) 3N~ 4 “lower terms of power of z(u)®”).

Here we used 2.3.1 and the fact that ¢, . (u)cp(b1+771u) o) is a polynomial
UEKT L

of x(u) multiplied by y(u), which is deduced from that this function is odd and o9

has only zeroes at u € A by the first statement of 2.2.1(2). Secondly, we look at

the Laurent expansion at u = Py (k(FP) = ¢(0,3)). Since b=1 mod (1 —¢)? we

have b™1 =1 mod (1 — ¢)%. Because of (1 — {)Py € A and ¢(u) being periodic,

we have (b7 (v+Py)) = p(b'*™ v+ Py). Consequently, 6.1.4, 6.1.1, 6.1.5 and
6.1.3 imply

Yyrirt (v + P00 (0 + Po)) o poen—1u(c)

o (vt RV (v+ R)) ]
oo (b1 (v + Pp))3Nb vtPoer=1(0)
02(Po)* M Do (b7 v + P> x((b*+7 " = DPy)* (1 + (d°(v2) > 1)+ v + Py)
(o2 (B v+ Po)x (0 = 1) Po) (1 + (d°(v2) > 1))]*N
02(Po)* Moy (Py)® (=1 + (d°(v1) > 1))
0-2(b1—|—7' 11)-|—P0)3Nb

== 1+ (d°(n) > 1)
== 2y(u)(1+ (d°(z(u)) > 2)).

Furthermore, since .-+ ([~Clu) (b7 [~Cu) = ~2¥0-2g, 4 () p(b 1)
by 4.2.5(1), the function must be a polynomial of z(u)® multiplied by y(u). O

X((bl—i—T*l . 1)P0)3(1—Nb)
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6.2. The curve defined by y? = z° — z.
We treat here the other genus two curve C defined by y? = 2% — 2. The ring Z[[(]]
can also be identified with Z[¢] by 4.1.1(2). The endomorphism [—¢7] acts as

(¢ (w1, u) = (—¢Fur, —(Pug)

because [(Jw® = (w® and [(Jw® = 2w®. Welet c =1, a; = i, ¢; = —1,
as = —i, co =0, in (1.1.1). In this case

, [ 2K 2K (¢ -
| 2Kp¢ 2K, g6
" [ 2K1(C2 C‘i‘l) 2K1( ) ]
| 2K5(C° - ¢ +1) 2K2( ¢3+1)
, [—2H1¢5 2H,(¢5 -
T2l 2 (2 -

" _2H1(C6 §7+1) 2H1(
T T 2Ha(C? — P +1) 2Ha(C

Our choice of Py in C? gives

S RS N —1 —3
(6.2.1) Py = [g;ggg _CC(;‘:_CC; - gﬂ = { 2} W [ 2} ;

and

(6.2.2) [P = [é@;&gfzgfz__?ﬂ = E} e [_0%] '

Taking care of the fact x(([¢] — 1)FPp) = 1 deduced from

(623) (1= DR =o' ||+ 7]

which is given by (6.2.1) and (6.2.2), we have by similar argument to Subsection
6.1

(6.2.4) o(v+ [C1Po) = CSa(v + Po) exp[L(v, (1] — 1) Po)].

instead of (6.1.5). After operating #;uj to (6.2.4), by setting v = O, we have
(6.2.5) 03 ([C1Po) = %04 (Po) + oi(Po)(m); + 5, )C° + 05 (Po) (mh; + 1m5;)C°

by (6.2.3). Instead of (6.1.6), we here use (6.2.5). Then we have 012(Py) = H1(—1—

(V2 — 1)i)oo(Py) and o9o(Py) = 2Ho(—1 + V2 +i)oo(Py). From 2.2.1(2) we have
011(FPo) = 2/ Aoo2(FPp) = 0. Summing up with 2.1.1(2), we arrived at



42

PROPOSITION 6.2.1. Assume C be defined by y?> = x° — x. Let Py be the point
whose coordinate is given by (6.2.1). Then

(1) o(u) =uy — %uQ + (d° > 5),

1
2) (v + Py) = 02(Po)(vs + 7120102 + %v% Svi+ %v%vz

§ 0 2 Vs (o > g),
2 8

where y1o = Hi(—=1 — (vV/2 = 1)) and yg2 = 2Hy(—1 4+ /2 +14).

PROPOSITION 6.2.2. 02(Py)* = exp2L(Py, R).

Proof. Take y = y(u) as a local parameter at Py along k= 1.(C). By 3.2.2(1), w

have 2y(u)os(u)* = o(2u). After differentiating this with respect to y, by settlng

u = Py, we get 202(Py)* = 201(2F,) because of y(Py) = 0 and o(2P) = 0 which is

led from the fact 2Py € A. Moreover, after differentiating with respect to u; the

equation o(u + 2Py) = x(2FP)o(u) exp L(u + Py, 2Fy), by settting u = Py, we get

01(2Py) = exp 2L(Py, Py) because 0(0) =0, 01(0O) =1 and x(2F,) = 1. Here the

last is obtained from (6.2.1) and the definition of x( ). Thus, we have proved the

statement. [

We denote by 7 the element of Gal(Q(¢)/Q) such that (7 = ¢3. Then 1+ 7 is
a type norm (see 4.2.7) in Z[Gal(Q(¢)/Q)].

PROPOSITION 6.2.3. Let b be an element of Z[(]. If b=1 mod 4, then

o (v 4 Py)) = 02(Po)N o (b T + Py)(1 + (d° > 1)),

Proof. By the assumption, b1*7 — 1 =0 mod 4 and hence (b'*™ — 1)Py € 2A. So
x((b'F™ — 1)Py) = 1. Moreover Nb — 1 = 0 mod 4 and 2Py € A, the statement
follows from 4.2.8(1) and

1
exp[§(Nb — 1)L(Py, Py)] = 02(Py)N0~1
which is given by 6.2.2. [

LEMMA 6.2.4. Let

1 1
o(u) == <§(@2222 — 62, ) 0111 + 1(91112 — 6@11@12)@222)) (u).

Then it has the following properties.

(1) @([Clu) = o(u),

(2) p(u) € F(J 0(509)),

(3) the Taylor expansions of o(u)’p(u) at O and Py are of the form

o(u)’p(u) = us + cru? + cougug + (d°(uy, uz) > 4) for some constants ¢ and cs,

(v + Po)’p(v + Py) = 09(Po)*(1 + (d°(v1,v) > 1)).
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Proof. The statement (1) follows from 4.2.5(1) and the definition of p-functions.
Since

o (u)*(p2222 — 6935) (1) = (—022220 + 402220 — 3039) (),

a(u) o111 (u)

o(u)?(p1112 — 6p119075) (1)

U(U)Bpggg(u) = (—20’3 + 30’20’220’ — 022202)(u)

(—
(—20% + 3010110 — 011102)@),
(—

011120 + 3011201 + 011102 — 3011012) (u),

the statement (2) holds. The expansion in 6.2.1(1) gives

(—022220 + 4092202 — 303,) (u)
=—(d° > 1)(u1 + (d° > 3)) +4(=2 + (d° > 1))(—u3 + (d° > 4)) — 3(—2uz + (d° > 3))”
= — 4us + cjud + chuqug + (d° > 4) for some constants ¢j and cj,

(=207 + 3010110 — 01110°) (1)
=—2(1+(d°>1))P+3(14(d°>1))(d°>3)(d° >1)—(d° >3)(d° >1)?
= — 24 (d° > 2),

(—011120 + 3011201 — 3011102 — 3011012) ()
=—(d°>1)(us + (d° >3))+3(d° > 2)(d° > 4) + (d° > 2)(d° > 2) — 3(d° > 3)(d° > 3)
=(d® > 2),

(=205 + 3020920 — 02220°) (1)
= —2(d° > 2)® +3(d° > 2)(d° > 1)(d° > 1) — (d° > 0)(d° > 1)*
=(d° > 2).
Therefore

o(u)’p(u) = u2 + cyu? + cougug + (d° > 4)

for some constants ¢; and cy. Similarly, 6.2.1(2) gives

(=203 + 3010110 — 01110°) (v + Py)
=09(Py)*[—2(d° > 2)% + 3(d° > 2)(d° > 1)(d° > 1) — (d° > 0)(d° > 1)?]
=(d® > 2),

(—011120 + 3011201 + 011102 — 3011012) (v + Po)
o2 (Po[—(d° > 0)(d° > 1) +3(d° = 0)(d° > 2)

+ (=24 (d° =2 1)1+ (d° 2 1)) = 3(d° 2 1)(d° = 0)]
=09(Py)* (=2 + (d° > 1)),

(=205 + 3020920 — 022202 (v + Py)
=03(Po)*[~2(1 + (d° > 1))° + 3(1 + (d° > 1))(d° > 0)(d° > 1) — (d° > 0)(d° > 1)*
=03(Py)* (=2 + (d° > 1)).
Hence

a(u)’p(v + Po) = 02(F)*(1 + (d° > 1)).

This is (3). O
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THEOREM 6.2.5. Let p(u) be as in 6.2.4. Let b € Z[(] and assume b =1 mod 4.
Then Yy~ (u)%(bYT7u) is of the form

Yper (WP ) = Y ya(u)
0<j<5Nb—1
7=0 mod 4

with v; € Q(¢). Moreover ysnp—1 = b>I+7) and o = 1.

Proof. We look at the Laurent expansion at v = O. By 6.2.4(3) and 6.2.1(1), we
have

B o (b1 u)P (b1 u)
u€xk~1(C) N 0'2(16)5Nb
O+ (P () 2 )
 (—up o+ (do(ug) > 4))PN
1
u%ONb—Z

5Nb—1

1

= b2(7_+1) <F) _|_ e
2

Yprer (w) (b )

— p2(r+1)

= b2 2 (1)°N~1 4 “lower terms of power of z(u)”.

Here we used 2.3.1 and the fact that ¢+~ (u)go(bH'Tu)‘ueﬁ_lL(C) is a polynomial of

x(u), which is deduced from that this function is even and o5 has only zeroes at u €
A by the first statement of 2.2.1(2). So we look at the Laurent expansion at u = Py
(k(P) = ¢(0,0)). Since b=1 mod 4 we have b""! =1 mod 4. Hence, because of
(1 —¢)Py € A and p(u) being periodic, we have (b7 (v + Py)) = o(b'T7v + ).
Therefore, 6.2.3, 6.2.1 and 6.2.4 imply

(6.2.7)

Pyitr (V4 Po) (0" (v + Po))l oy pyen-10(C)

_ oM (v + P))’e(0 T (v + By))
o9 (b7 (v + Py))5Nb v+Poer—1(C)

02(Po)® Mo Va (070 + Po) x((0'7 = 1) P)®(1 + (d°(v1) > 1)p(b" 70 + Ry)
B 02 (FPo)Nb(1 + (d° > 1))x((b1F7 — 1) F)5NP

02(Po)* ™Dy (Py)® (1 + (d°(v1) > 1)x (b7 — 1) Py)> N0
a o2 (Fo)*No(1 + (d° > 1))
=x (07— 1P 0N (1 4 (d°(vy) > 1)).

Since T — 1 is divisible by 4, x((b**7 — 1)Py) = 1. Hence continuing the last of
(6.2.7) is equal to
14 (d°(xz(u)) > 2).

According 0 4.2.5(1), G- ([CTu) (B [CTu) = CONDyri (w)P (617 u), and
hence the function must be a polynomial of x(u)*. O

IS
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§7. GENUS THREE CURVES OF CYCLOTOMIC TYPE

7.1. The curve defined by y> = 27 + ;.
Let us treate genus three case. First example is the curve C defined by y? = 27 + i.
As in Sections 5 and 6 the ring Z[[(]] is isomorphic to Z[¢]. Then [—¢7] acts such
as

(¢ (w1, u2) = (=P u1, —¢Pug, = usg).
Welet ¢ = —477, a1y = —477¢, ¢1 = —477(% ay = 4773, ¢ = —477(4,
a3 =—4"7(% ¢3 = —477¢% in (1.1.1). Then

[2K,(C° — ¢Y) 2Ky (¢~ ¢F) 2K, (¢~ ¢?)
W= | 2Ka(CP—¢) 2K —C)  2Ka(C—CY) |
| 2K5(C - CF) 2K5((2—¢F) 2Ka(CF - C°)

(2K (P =P+ P =P+ ¢—1) 2K1(P -G +¢—1) 2K1(¢C—-1)
W= 2K5(C* =+ =P+ —1) 2K,(¢C° (P47 —1) 2K,(¢C—-1) |,
| 2K3(C—CP+ -+ —1) 2K3(¢2 -+ —1) 2K3(¢°—1)
[2H, (¢ —¢*) 2H1(¢* —¢*) 2H1(¢° —¢P)
n = |2H2(¢* —¢%)  2Ho(¢—(¢% 2H»(¢°—-¢3) |,
| 2H5(¢° —¢?) 2H3(¢° —¢?)  2H3(¢* - ()
[2H,(¢?

N’ = | 2H2(¢" = O+ -+ —1) 2Hx(( -+ —1) 2H(¢° —1)
| 2H3(¢° =2+ =+t = 1) 2H3(¢P—C+ " —1) 2K3(¢* - 1)

—CH -0+ -1) 2H(¢T =+ - 1) 2H1(C6—1)}

The point Py in C? is given by
Ki((=C+C ¢+ =) - K,

(T11)  Po= | K=+~ (+P =)~ Ky | =
K3((* =+ =P+ (¢ — K3
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The Taylor expansion at u = Py is computed as follows. Taking care of the fact
X(([¢] = 1)Py) = 1 deduced from
—1 0
1| +w" |0
0

—1

(7.1.3) ([¢T=1DPy =o'
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which is given by (7.1.1) and (7.1.2), and the fact o2([¢]Py) = (%02(P) # 0
deduced from 4.2.5(2), instead of (6.1.5) we can deduce

(7.1.4) (v + [¢1Po) = (P (v + Po) exp[L(v, ([¢] — 1) P)].

from 4.2.8(2). After operating #{;w to (7.1.4), by setting v = O, we have
(7.1.5)
73 ([¢1Po) = ¢*oij(Po) + 03(Po) (=ni; — my; — mi;)¢* + 5 (Po) (=nfy — s — ;)¢

by using (7.1.3). Similar argument to Subsection 6.1 gives

011(Po) =2v/ X002 (Po) = 02(Po) # 0,  a12(Po) =2H1(—C* + ¢* + ¢B)oa(Py),
092 (Py) =4Ho(C* + ¢ + ¢°)oa(Po), o13(Po) =0,
o23(Po) =2Ha(—C* + ° + (M)o2(Po), 033(Py) =0

provided (6.1.6) is replaced by (7.1.5). Since the Taylor expansion at O is given by
2.1.1(3), we have obtained the following.

PROPOSITION 7.1.1. Assume C be defined by y?> = x7 +
whose coordinate is given by (7.1.1). Then

i. Let Py be the point

1 1
(1) o(u) =ujuz — us — T3 uf 3u2u3 (d° > 6),
(2)
1 1
o(v+ P) :UQ(PO)(UQ + 21)1 + Y12v102 + % §+ <% — §>U%

1 (o)
+ Y22771201V2V3 + 72272302113 + 74 UQU;JQ, gvs (d° > 4))

where y13 = 2H1 (=3 +C*4+C%), ya2 = 4H(CH4+C+CP) and a3 = 2Ho(—(4+¢°+¢1).
PROPOSITION 7.1.2. 09(Py)” = exp 2L(PO,PO)
Proof. Because of y(Py) = 1, it is obtained from 3.2.4(2) and (3) that

U(?)P()) = O'Q(Po)g and O'(4P0> = O'Q(Po)16,

respectively. On the other hand, from 3.1.1 we get
7
0(4Py) = o0(—3Py+ TF)) = — exp[iL(PO, Py)]o(3F).

Here we have used that o(—3Py) = 0(3F) and (7.1.1) which implies x(7Fp) =1
Therefore we obtain

O'Q(P())lG = exp[gL(Po, P())]O'Q(Po)g

and the statement. O

We denote by 7 the element of Gal(Q(¢)/Q) such that (T = ¢3. Then 1+ 7 is
a type norm (see 4.2.7) in Z[Gal(Q(¢)/Q)].



47

LEMMA 7.1.3. Ifb € Z[¢] and = 1 mod (1 — (), then x((B*™ +7 " —1)Py)No—1 =
1.

Proof. If Nb is odd, the statemnt is trivial. So we assume Nb is even. For ¢ € A,
it is easily verified from the definition that the value x(¢) is determined only by ¢
mod 2A. By the assumption of b, we may write b1 77 ' = (a1¢ + a2 + a3 +
asCt 4 a5 + agC®) (1 —¢) + 1 with integers a;. Since 2 is a prime in Z[¢], we have
b=0 mod 2 and hence b*™ '+ ° =0 mod 2. By simple calculation, we see that
ai=az3=as =1 mod 2 and as = a4 = ag = 0 mod 2. Therefore

X )P =x((C+ 4+ )1 = O Py)
=x((( =+ ="+ -O)VP)

=1
because of
-3 1
(<_<~2+<—3_<—4+C5_<—6)p02w/ —9 +w// 1
—1 1

which is obtained from (7.1.2). O
PROPOSITION 7.1.4. Let b be an element of Z[¢]. If b=1 mod (1 — ()2, then

(BT T (0 Py)) = (0T T = 1) Py)aa (PN
(b 4+ PY)(1+ (d° > 1).

Proof. The statement follows from 4.2.8 and
1 _
expl5 (Nb — 1) L( Py, Po)] = oo (Po)N0 1

which is given by 7.1.2. [

LEMMA 7.1.5. Let
o(u) = (piy — p22p11)(u).

Then it has the following properties.
(1) @([¢Tu) = ¢®p(u),
(2) ¢(u) € T(J,0(30)),
(3) the Taylor expansions of o(u)3p(u) at O and Py are of the form
o(u)dp(u) = 2u3 + (d°(u1,uz, u3) > 4) and
o(v+ Py)3p(v + Py) = —02(Py)3(1 4 (d°(vy, v, v3) > 1)).

Proof. The statement (1) follows from 4.2.5(2) and the definition of p-functions.
The statement (2) follows from

(0'3(,0)(’&) = —O'Q(U)20'11<u) — 01 (u)20'22<U) + 20’1 (u)0'2<u)0'12<u) + 012(U)20<U).

The statement (3) is easily derived from the equation above and 7.1.1. O
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THEOREM 7.1.6. Let p(u) = (p35 — @oop11)(u) as above. Let b € Z[¢] and assume
b=1 mod (1—()2.
(1) If Nb is odd then @y, . —1, -2 (u)gcp(bHFIU) is of the form

Vg2 (WSO T ) = 2y(u) Y ()]

._ 9(Nb—1)
0<j<————

7=0 mod 7

with v; € Q. Moreover yomy—1) = B2+ and o = —1.
2
(2) If Nb is even then ¢, 14,2 (u)gcp(b“”ilu) is of the form

-1 —2 .
¢b1+771+772 (u)3@(61+T +T u) = Z ij(u)]
0< <=2
7=0 mod 7

with v; € Q(¢). Moreover yony—2 = b2+ g Yo = —1.
2

Proof. At First, we look at the Laurent expansion at v = O. By 7.1.5(3) and
7.1.1(1), we have

(7.1.5)
o (O T )BT T )
uer—14(C) oo (u)3Nb
2(b1+f1+f2>27u§ + (d° > 4)
(~2uy — Fuf o+ (@ = 5))*
2(b20 TN u2 4 (d° > 4)
(—uf + (@ = 5)

1

9Nb—2
Us

b1—|—7'_1—|—7'_2

Yp1pr—14--2 (U)?"P( u)

— (_1)Nb2b2(r—|—1+7-_1) b

This function 9, , -1, -2 (u)3<,0(b1+T71+T72u) e is odd or even and o9 has
UEK™ "L

only zeroes at u € A by the first statement of 2.2.1(3), accordingly is a polynomial

of z(u) multiplied by y(u) or a polynomial of z(u). If Nb is odd, then, the last of

(7.1.6) is

9(Nb—1)/2

_ op2(r+14771 —1 1

— 2p2( )7 (?) 4.
3 3

= 2y(u)(b2(7+1+7_1):E(u)9(Nb_1)/2 + “lower terms of power of z(u)”)

by 2.3.1 and 2.3.2. If Nb is even, then the last of (7.1.6) is

1 )(9Nb—2)/2

_ 9p2(r+1+r ) <_2
us

= 262(T+1+7_1)x(u)(9Nb_2)/2) + “lower terms of power of x(u)”
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by 2.3.1 and 2.3.2. Secondly, we look at the Laurent expansion at u = Py (k(P) =
(0, %)) Since b = 1 mod (1 — ¢)? we have plt T = Ifl?d g —()?. Be
cause of (1 — )Py € A and ¢(u) being periodic, we have p(b!T™ +7 " (v + Py)) =
(U177 7y 4+ Py). Therefore, 7.1.3, 7.1.1, 7.1.4 and 7.1.5 imply
(7.1.7)

¢b1+T71+772 (v + PO)?’(,O(Z)H'T T (v + PO))|'U—|—POEK,—1L(C)

_a(bl+7—_1+7—_2(v+P0))3<,0(b1+7_1+7_2(11—I—PO))|
B oo (b T (v 4 Py)3Nb oHERTE)

= {2(Roy P Vo (b R0 = )R+ (d(0n) 2 1))
PO Po)}
/{0,2(1)1—1—7714—772 (U 4 PO)BNbX(<bl—i—771—i—772 o 1)P0)3Nb}

_O'Q(P())B(Nb_l)O'Q(P())B(—l + (do(’l)1> Z 1))

o UQ(PO)SNb(]_ + (do > 1)) (by 7-1-3)
=—1+ (do(v1> > 1)

_{ —2y(u)(1+ (d°(z(v)) > 1))  if Nbis odd,

L =14 (do(z(u) > 1) if Nb is even.

Furthermore, since

Gyt ([=Clu)p+7 47 () = ()N o1 ()07 )

by 4.2.5(2), the function must be a polynomial of z:(u)” if Nb even, or one multiplied
by y(u) if Nbis odd. O
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7.2. The curve defined by y? = 27 — z.

Second example of genus three is the curve C defined by y? = 27 — 2. The ring
Z[[(]] is isomorphic to the ring Z[i] & Z[¢] by [¢/] — #/ & ¢/ by 4.1.1(2). The
endomorphism [¢?] acts such as

7

(7.2.1) (¢ (ur, ug, us) = (P, iPug, (Vus)

because [(|w® = (Jw® for j =1,2,3. Welet c =1, a1 = (2, c; = (4, ap = (5,
2 =C% a3 =¢" ¢c3=0,in (1.1.1).
As in the previous Subsections, we have

W= | —2K5C3 2Ka(C+C%)  2Ka(—1—¢3)
| —2K3¢ 2K3(—C% (%) 2K3(—¢t - ()
[ 2K (- (D) 2K (-G H G -+ 2Ki(—C+ )
W' = 2K, 0 CB—I—I) ,
| 265(—¢7 = 0 = (P =P+ 1) 2K5(-¢P ¢ = O 1) 2K5(—C7 + 1)
[ 2H( ¢ 2H (—C?+ %) 2H (—CP +¢P)
n' = | 2Hs¢® 2H(—(° —(3)  2Hy(-1+C?) |,
|2H3(®  2H3(¢* 4¢3 2H3(¢2+()

[ —2K.1¢° 2K, (¢t - ¢P) 21@(@—0}

(2 (=P + P = ¢+ 1) 2H(+¢ =P+ + 1) 2H(C + 1)
n' = 2H, 0 2H,(C3 + 1)
| 2H3(C*+ P+ HC+ 1) 2H3(—CH 4 (+1) 2H5(C+1)

Furthermore

Ki(C—C+3 - +)— K, —3
(722) PO = KQ(CS +1-— <3 -1+ CS) — KQ = w’
K3((P+ P+ + ¢ +() —Ks

and, by (7.2.1),

CKo(-1+3+1-3 -1+ -1)
CK3(-1 -+ +G+¢3+¢-1)

| 1
+ W O2 )
0

Let us compute the Taylor expansion at u = Py explicitly. Taking care of the
fact x(([¢] —1)Py) = 1 deduced from

[C1P =

<K1(1+<<2+<3<4+<51)}

(7.2.3)

I
= w

—_ =

(7.2.4) ([¢T=1DPy =o'
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which is given by (7.2.2) and (7.2.3), and the fact oo([¢]Py) = (302(Py) # 0
deduced from 4.2.5(3), we have from 4.2.8(2) by similar argument to Subsection
6.1

(7.2.5) o(v+[¢1Po) = (o v+ Po) exp[L(v, ([¢] — 1) P)].

Guic‘?uj
(7.2.6) 04;([C1Po) = ¢P0ij(Po)+0i(Po) (0 +1ja+13) ¢ +05 (Po) (i +nja +1i3) ¢,
by using (7.2.4). Similar argument to Subsection 6.1 gives

instead of (6.1.5). After operating to (7.2.5), by setting v = O, we have

o11(Fo) =0, a12(Po) =H1(=1 = (2 = V3)i)oa(Py),
O'QQ(P()) :HQ(—l —i)Ug(P0>, 0'13(P0) :0,
0'23(p0) :Hl(—l—(\/§+2)Z)02(P0), 0'33(p0) :O,

provided (6.1.6) is replaced by (7.2.6). Summing up these results and 2.2.1(3), we
arrived at

PROPOSITION 7.2.1. Assume C' be defind by y?> = 7 —x. Let Py be the point whose
coordinate is given by (7.2.1). Then

1 1
(1) o(u) =ujus — us — Eu‘f - gUgug + (d° > 6),

1
(2) o(v+ Py) =02(Fo)(ve + yi2v1v2 + %vg + V130103 + Y23V203 — gﬂi’

2
2 Y22 3
V1V5 + V12723010203 + S U2

2
Y12 2 V12722
+ 4 U1U2 + 4

2
V22723 o V23 2

1
1 v3U3 + Tvgvg — gvg’ + (d° > 4)),

where Y12 = Hl(—l — (2 — \/§>’L), Y22 = HQ(—l — ’L) and Y23 = Hl(—l — (\/§—|— 2)2)
PROPOSITION 7.2.2. 02(Py)® = exp4L(Py, P).

_|_

Proof. Take y = y(u) as a local parameter at Py along k= 1.(C). By 3.2.4(2), we
have 8y(u)os(u)® = o(3u). After operating % to this, by setting u = Py, we get

(7.2.7) 270111(3Py) + 602(3Py) = —4803(Py)°?
because of y(Fy) = 0 and 2.3.2(3). Moreover, we have the equation
(7.2.8) o(u+3Py) = x(2FPy)o(u+ Py) exp L(u+ Py + Py, 2F))

given by 3.1.1. After operating 38—53 to (7.2.8), by putting u = 0, we get 0111 (3Fp) =
1

—0111(FPo) exp 2L( Py, Py) because of 0(O) = 0, 01(0O) = 1 and x(2Fy) = 1. The
last is obtained by (7.2.2) and definition of x( ). Similarly, after differentiating
(7.2.8) with respect to ug, by setting u = 0, we get
(729) 0'2(3P0) = O'Q(Po) exp 4L(P0, P())
Summing up (7.2.7), (7.2.8) and (7.2.9), we arrive at the statement. [

We denote by 7 the element of Gal(Q(¢)/Q) such that (7 = ¢°. Then 1+ 7 is
a type norm (see 4.2.7) in Z[Gal(Q(¢)/Q)].
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PROPOSITION 7.2.3. Let b be an element of Z[[C]]. If b=1 mod 8, then

o (v 4 Py)) = o2(Po)N o (b + Py)(1 + (d° > 1)),

Proof. Note that 2Py € A. By the assumption, b!*7 — 1 is divisible by 8. So
x((b'F™ —1)Py) = 1. Moreover Nb — 1 is divisible by 8, the statement follows from
4.2.8 and

eXp[%(Nb - ]-)L(Po, P())] = O'Q(PO)Nb_l

which is given by 7.2.2. [J
LEMMA 7.2.4. Let

1 1
P(u) == [=(p2222 — 603, p111 + 5(@1112 — 6911 022)0222] ().

24

Then it has the following properties.

(1) ([¢lu) = Co(u),

(2) p(u) € F(J 0(59)),

(3) the Taylor expansions of o(u)’p(u) at O and Py are of the form
o(u)’p(u) = —uj + (d°(u1, uz,us) > 5)
o(v+ Py)’o(v + Py) = 09(Py)*(—1 + (d°(v1, v2,v3) > 1)).

Proof. The statement (1) follows from 4.2.5(3) and the definition of p-functions.
Since

o (u)* (222 — 6959 (u 099220 + 4029009 — 3035) (1),

()
o(u)’p111(u)
(u)
()

o(u)*(p1112 — 691195, ) (u 011120 + 3011201 — 011102 — 3011012) (u),

o (U)Smm U

=(=
(=207 + 3010110 — o1110%) (u),
(=
(=

203 + 3090990 — 022202)(u).
the statement (2) holds. The expansion in 7.2.1(1) gives

(—092220 + 4029009 — 303, (1)
—(d° > 2)(d° > 2) +4(d° > 2)(d° > 2) — 3(—2+ (d° > 2))?
=12 + (d° > 2),
(=207 + 3010110 — 011102) (u)
=—2(uz + (d° > 3))> +3(d° > 1)(d° > 2)(d° > 2) — (d° > 1)(d° > 2)?
= —2uj + (d° > 4),
(—011120 + 3011201 — 011102 — 3011012) (u)
—(d° > 0)(d° > 2)+3(d° > 1)(d° > 1) 4 (d° > 0)(d° > 1) — 3(d° > 2)(d° > 2)
=(d° > 2),
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(—20’3 -+ 30’20220' — 0'222(72)(U)
=—2(d° > 1)* +3(d° > 1)(d° > 1)(d° > 2) — (d° > 3)(d° > 2)*
=(d° > 3).

Therefore

Similarly, 7.2.1(2) gives

(=203 + 3010110 — 01110°) (v + Py)
=—2(d° > 1)> +3(d° > 1)(d° > 1)(d° > 1) — (d° > 0)(d° > 1)*
=(d* = 2),
(—011120 + 3011201 + 011102 — 3011012) (v + P)
=09(Pp)*[—(d® > 0)(d° > 1) + 3(d° > 0)(d° > 1)
+ 1+ (d° = 1)1+ (d° 2 1)) —3(d° > 1)(d° > 0)]
=02(Po)*(1+ (d° > 1)),
(—203 + 3090990 — 022202)(v + Py)
=09(Po)*[—2(1 + (d° > 1))* +3(d° > 0)(d° > 0)(d° > 1) — (d° > 0)(d° > 1)?]
=03(Pp)* (=2 + (d° = 1)).

Hence
o(u)’p(v+ Po) = 02(P)°(1+ (d° > 1)).

So (3) is proved. [

THEOREM 7.2.5. Let o(u) be as in 7.2.4. Let b € Z[[(]] and assume b=1 mod 8.
Then pyi+- (w)3(b1T7u) is of the form

Yy3(1+7) (U)5<P(b1+TU) = E fij(u)j
0<j< LoNb=3
jiEOi rnozd 6

with v; € Q(C). Moreover yisne—3 = b3+ and vy = 1.

Proof. At first, we look at the Laurent expansion at v = O. By 7.2.4(3) and
7.2.1(1), we have

wlerT (U)SSD(bl—H—U) uek—1(C)

:O'(bl+T”LL)5(,0<b1+TU)
UQ(’U,)5Nb
_(b1—|—7')37'ug + (do<u2

)
(—2uy — %u% + (d°(usz) >
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1
_p3(T+1
=b* NG T
Us

1 (15Nb—3)/2
:bg(T+1) (_2> _|_ e

U3

=p3 D) ((u) PPNO=3)/2 4 “lower terms of power of z(u)”).

Here we used 2.3.1, 2.3.2 and the fact that 11+~ (u)5p (b T u) © which fact
uer—1e
is deduced from that this function is even and o5 has only zeroes at u € A by the

first statement of 2.2.1(3). Secondly, we look at the Laurent expansion at u = P
((Py mod A) = (0,0)). Since b =1 mod 8 we have "' = 1 mod 8. Because
of 2Py € A and ¢(u) being periodic, we have o(b1T7 (v + Py)) = ¢(b'T7v + P).
Consequently, 7.2.3, 7.2.1 and 7.2.4 imply

yir (V4 Po) 00" (0 + Po))l oy pyer-10(C)
(0T (v 4 Ry)° (0T (v + Py)) |
T (0 (v + By Ve
2(Po) NV (b17w + Py)® (1 4 (d°(v1) > 1)) (b v + Py)

09 (Po)"NP(—1+ (d° > 1))
02(Po) NNy (Py)® (1 + (d°(v1) > 1))
o2(Po)*No(1 + (d° > 1))

=—1 + (do(’Ul) Z 1)
=— 1+ (d°(z(u)) > 1).

Furthermore, since 114+ ([—C )07 [—Clu) = —C3NP=Dhys o (u)®p (b7 u) by
4.2.5(3), the function must be a polynomial of x(u)¢. O
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§8. SOME REMARKS AND COMMENTS

1. As is mentioned in the beginning of the part II, in each formula in 5.1.3,
5.2.3, 6.1.6, 6.2.6, 7.1.6 and 7.2.6, the coefficients of the right hand side, which
side is a polynomial expression in z(u) and y(u), are contained in the field Q(().
Furthermore we can prove that the coefficients of the right hand side of the each
formula of 5.1.3 and 5.2.3 are contained in Z[e*™*/3] and Z[i], respectively. The
coefficients of the right hand side of the formula of 6.1.6 are also contained in
Z[e*>™/%] (see [9] or [17, p.46]). For each of the other three formulae, its coefficients
seem also to be contained in the ground integer ring.

2. Theorem 5.1.3 implies

[T =@ =N
Peb” (p)o,

(1—C)Po#£0
/£1

Theorem 5.2.3 implies

Peb*(p)o,
(1+4) Po#£0
/+1

These are versions of the product formula of Eisenstein.
3. Theorem 6.1.6 (Grant’s formula) implies

1
H x<P) - pl+7’
Peu(C)-(0* )  (p)
2P+£0

/+1

where - denotes an intersection of cycles in J. In fact the cycle ¢(C) - (bl+771)*(g0)0
contains only five 2-torsion points (—43¢7,0) with j = 0, ---, 4 (See [9, p.131]).
Theorem 6.2.6 also implies that the product of roots x(u) of the right hand side

[EIE=ag Similarly Theorem 7.1.6 states that

the product of roots z(u) of the right hand side of the formula in 7.1.6 is equal to
+1 +1

p2(r+1+7-1) or 2p2(T+1+7-1)7

of the formula of 6.2.6 is equal to

and Theorem 7.2.6 states that the product of roots

1
x(u) of the right hand side of the formula above is equal to PEE==E These are

generalizations of the product formula of Eisenstein.

4. The polynomial of z(u) in the right hand side of each of the formula of
5.1.3 and 5.2.3 is known to be irreducible over the ground ring when b is a prime
element. It is unknown whether the other polynomials of 6.1.6, 6.2.6, 7.1.6 and
7,2,6 are irreducible.

5. The roots of each polynomial of z(u) generate a finite algebraic extension over
the ground field. For the genus one case, such extensions are known to be abelian.
Contrarily, the extensions in higher genus case seem not to be abelian but to have
very large Galois groups. For Grant’s original formula, some numerical examples
are given in [17].
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