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Introduction

Let ℘(u) be a Weierstrass elliptic function satisfying ℘′(u)
2

= 4℘(u)3 − 1. Let

ζ := e
2πi
3 . Then ℘(u) has a property ℘(−ζu) = ζ℘(u). If b is an element of Z[ζ],

the integer ring generated by ζ, we have a b-multiplication formula of ℘(u). If b is
a prime element and b ≡ 1 mod 3, the b-multiplication formula is of the form

(0.1) ℘(bu) =
℘(u)(℘(u)Nb−1 + · · ·+ b)

(b℘(u)
Nb−1

2 + · · · ± 1)2
,

and all the coefficients belong to Z[ζ]. (These facts seem to be already known
to Eisenstein [6]). Therefore the product of the roots {℘(u)} except for 0 of the
numerator is equal to ±b, and the product of reciprocals of the roots {℘(u)} of
the denominator is equal to b2. So we have factorization of b or b2 in an extended
integer ring of Z[ζ]. Analogous fact is known for a function ℘(u) satisfying ℘′(u)

2
=

4℘(u)3 − ℘(u).

By using these facts essentially, the cubic and quartic Gauss sums were deeply
investigated (see [12] and [13]). So it seems natural for us to expect the existence
of formulae analogous to (0.1) for curves of higher genus. A remarkable formula
was discovered by D.Grant for the curve of genus two defined by y2 = x5 + 1

4
([9]).

The purpose of this paper is to generalize his formula. Let C be a curve of genus
g(≥ 1) defined by y2 = f(x), where f(x) is a polynomial of degree 2g + 1. Let J
denote the Jacobian variety of the curve C, and ι : C ↪→ J the canonical embedding.
We identify J with a complex torus Cg/Λ where Λ is a lattice of Cg. Let u =
(u1, · · · , ug) be the canonical coordinate system of Cg, and ϕ(u) a meromorphic
function on Cg/Λ. We assume that ϕ(u) satisfies ϕ(−u) = −ϕ(u), because the
abelian functions ϕ(u) we treate in this paper are odd or even functions. In the
bellow, we denote by x(u) and y(u) the values of x-coordinate and y-coordinate,
respectively, at u such that u ∈ ι(C). Then the restriction to ι(C) of the map
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u 7→ ϕ(bu) gives an algebraic function. Hence ϕ◦ ι has a rational expression of x(u)
and y(u). Since x(−u) = x(u) and y(−u) = −y(u), we have an expression

(0.2) ϕ(bu) =
y(u)P (x(u))

Q (x(u))

with polynomials P (X) and Q(X). Here we do not mention the irreducibility of
right-hand side of the expression. We regard (0.2) as a generalization of (0.1).
We also call such formula a b-multiplication formula . However, our aim is, as
mentioned about (0.1), to find a nice Abelian function ϕ(u) such that every one of
the roots of its numerator P (X) (or its denominator) is algebraic integer and the
product of the roots gives a factorization of b or of a product of conjugates of b, in
a certain integer ring.

The author found several such functions ϕ(u) in the family of polynomials of
hyperelliptic ℘-functions constructed by H.F.Baker ([2], [3] and [4]) as Grant did,
because the author believes all the roots of P (X) and Q(X) or all of their recip-
rocals are algebraic integers. We will prove that the numerator of the complex
multiplication formula of each our function has required properties. Our functions
ϕ(u) are Abelian functions associated to the following curves: curves of genus two
defined by y2 = x5 + 1

4 (Grant’s case) and by y2 = x5 − x, and of genus three

defined by y2 = x7 + 1
4

and by y2 = x7 − x. (see Theorems 6.1.6, 6.2.5. 7.1.6. and
7.2.5, respectively). Unfortunitely it is generally unknown the existence of such
nice functions. So the author do not explain how to find such functions.

In Section 1, we recall the fundamental facts about hyperelliptic functions from
[2], [3] and [4]. We introduce a well-tuned theta series σ(u) called the sigma func-
tion, and define abelian functions called (hyperelliptic) ℘-functions as second deriva-
tives of log σ(u). They are nice generalization of sigma function and ℘-function of
Weierstrass. So our function ϕ(u) is a rational function of σ(u) and its (higher)
derivatives. Dividing its numerator and denominator by certain power of σ(u) or of
its derivative yields the expression just obtained by rewriting (0.2) in terms of σ(u)
and its derivatives. In this expression, the denominator is a function so-called the
psi function. We can prove the psi function is a polynomial of x(u) or polynomial
of x(u) multiplied by y(u) when u ∈ ι(C).

Now we have a rational expression of P (x(u)) in terms of σ(u), σ(bu), and their
derivatives. We investigate P (x(u)) by using Taylor expansions of σ(u). Such
expansions are given by using differential equations of the sigma function after
investigation of singularity of the theta divisor. Let u = P0 ∈ ι(C) be a point such
that x(P0) = 0. For each of our curves such point P0 is a torsion point in J . For
instance, in the case of ℘(u) used in (0.1), a point P0 such that ℘(P0) = 0 is (1−ζ)-
torsion. Suppose P0 be a c-torsion point for a non-trivial endomorphism c. Assume
b ∈ End(J), the ring of endomorphisms of J , satisfies b ≡ 1 mod c2 in End(J).
Then we can obtain very explicitly first several terms of the Taylor expansion of
σ(u) at the image of ∞ and P0 of C by the embedding ι. This expansion at ∞
gives the expansion of ϕ(bu) on ι(C) at ι(∞). Hence we can determine the highest
term of P (X).

The most difficult part is to give the Taylor expansion of σ(bu) at u = P0. Since
σ(bu) = σ(b(u−P0) +P0 + (b− 1)P0) and (b− 1)P0 ∈ Λ by the assumption of b, we
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may first use the expansion of σ(b(v+ P0)) at v = 0. However, we need an explicit
relation of the leading coefficients of expansions of σ(b(v + P0)) and σ(bv + P0) at
v = 0. We can express σ(P0) as a special value of exponential of the linear form
associated with the translational formula. The final form of the expansion of σ(bu)
at u = P0 is obtained in Part II by using this expression. Thus we can determine
the lowest term of P (X) by this expansion. Grant determines the lowest term of
P (X) for the curve y2 = x5 + 1

4 by induction on b. Since the author can not
generalize such induction to other our curves, he determines it by using the Taylor
expansion at P0.

In Sections 6 and 7, we prove the main results for our curves of genus two and
three, respectively. As an instruction, we give proofs of original formula for elliptic
curves in Section 5 by the method of ours.

We do not discuss the integrality of the coefficients of P (X) in this paper. For
the curve y2 = x5 + 1

4 , the integrality of the coefficients of P (X) is essentially

proved by Grant (see [17]), and for the curve y2 = x5 − x, such thing seems to be
proved similarly. The author are now preparing tools to investigate the coefficients
for curves of genus three.

If we use most of the results up to Section 4, we can investigate lower and higher
terms of the polynomial expression in terms of x(u) of the numerator of an arbitrary
Abelian function which is a polynomial of Baker’s ℘-functions. Furthermore, if we
take a 2-torsion point Q0 instead of P0 (then y(Q0) = 0) and y instead of x, we can
find many Abelian functions such that their coefficients have similar properties like
the above ϕ(u). The reason that the author do not discuss such minor formulae
is that he want to find a formula which gives a non-canonical way to give certain
power-root of b or of a product of conjugates of b as a partial product as in [12]
and [13].

Convention. We denote, as usual, by Z, Q and C the ring of rational integers,
the field of rational numbers and the field of complex numbers, respectively. The
imaginary unit is denoted by i. For a variety V , the global sections of a sheaf
F on V is denoted by Γ(V,F). The sheaf associated to a divisor D is denoted
by O(D). In an expression of the Laurent expansion of a function, the symbol
(d◦(z1, · · · , zj) ≥ n) means the terms of total degree at least n with respect to the
variables z1, · · · , zj . When the member of variables or the least total degree are
clear from the context, we simply use the symbol (d◦ ≥ n) or the dots “· · · ”.

For cross references, we indicate a formula as (1.2.3), and each of Lemmas,
Propositions, Theorems and Remarks as 4.5.6 for example.
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I. Hyperelliptic Abelian Functions

In this part we recall fundamentals of the theory of hyperelliptic functions.

§1. Generalities

1.1. Differential forms and period matrices.

Let C be a smooth projective model of a curve of genus g > 0 defined over C whose
affine equation is given by y2 = f(x), where

f(x) = λ0 + λ1x+ λ2x
2 + · · ·+ λ2g+1x

2g+1.

In this paper, we keep the agreement λ2g+1 = 1. We use, however, the letter λ2g+1

too when this notation makes easy to read an equation of homogeneous weight (for
example, 1.5.1 below). The roots of the equation f(x) = 0 are denoted by

(1.1.1) c1, a1, c2, a2, · · · , cg, ag, c,

according to their positions (c.f. Figure 1). We denote by ∞ the point of C at
infinity. It is known that the set of

ω(j) :=
xj−1dx

2y
(j = 1, · · · , g)

makes a basis of the vector space Γ(C,Ω1), where Ω1 is the sheaf of differential
forms of the first kind (see [15, p.3.77]). Let

η(j) :=
1

2y

2g−j∑

k=j

(k + 1− j)λk+1+jx
kdx (j = 1, · · · , g),

which are differential forms of the second kind without poles except at ∞ (see
[2, p.195, Ex. i] or [3, p.314]). We fix generators α(i), β(i) (i=1, · · · , g) of the
fundamental group of C such that their intersections are α(i) · α(j) = β(i) · β(j) = 0,
α(i) · β(j) = δij for i, j = 1, · · · , g as illustrated in Figure 1.

Figure 1
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As usual we let

ω′ :=




∫
α(1) ω

(1) · · ·
∫
α(g) ω

(1)

...
. . .

...∫
α(1) ω

(g) · · ·
∫
α(g) ω

(g)


 , ω′′ :=




∫
β(1) ω

(1) · · ·
∫
β(g) ω

(1)

...
. . .

...∫
β(1) ω

(g) · · ·
∫
β(g) ω

(g)




be the period matrices. Then the modulus of C is given by Z := ω′−1
ω′′. The

lattice of periods is denoted by Λ, that is

Λ := ω′ t [ Z Z · · · Z ] + ω′′ t [ Z Z · · · Z ] (⊂ Cg).

We also introduce the matrices of quasi-period:

η′ :=




∫
α(1) η

(1) · · ·
∫
α(g) η

(1)

...
. . .

...∫
α(1) η

(g) · · ·
∫
α(g) η

(g)


 , η′′ :=




∫
β(1) η

(1) · · ·
∫
β(g) η

(1)

...
. . .

...∫
β(1) η

(g) · · ·
∫
β(g) η

(g)


 .

1.2. The Jacobian variety, the theta divisor.
Let J be the Jacobian variety of the curve C. We identify J with the Picard group
Pic◦(C) of the linearly equivalence classes of divisors of degree zero of C. Let
Symg(C) be the g-th symmetric product of C. Then we have a birational map

Symg(C)→ Pic◦(C) = J

(P1, · · · , Pg) 7→ the class of P1 + · · ·+ Pg − g · ∞.

As an analytic manifold, J is identified with Cg/Λ. We denote by κ the canonical
map Cg → Cg/Λ = J . We embed C into J by ι : Q 7→ Q − ∞. Let Θ be the
theta divisor, that is the divisor of J determined by the set of classes of the form
P1 + · · ·+ Pg−1 − (g − 1) · ∞.

1.3. The hyperelliptic sigma Function σ(u).
We let

δ′′ := t
[ 1

2

1

2
· · · 1

2

]
, δ′ := t

[ g
2

g − 1

2
· · · 1

2

]
and δ :=

[
δ′′

δ′

]
.

For a and b in
(

1
2Z
)g

, we let

ϑ

[
a
b

]
(z) = ϑ

[
a
b

]
(z;Z)

=
∑

n∈Zg

exp

[
2πi

{
1

2
t(n+ a)Z(n+ a) + t(n+ a)(z + b)

}]
.

Then the hyperelliptic sigma function on Cg associated with C is defined by

σ̃(u) = exp(−1

2
uη′ω′

−1 tu)ϑ[δ] (ω′
−1 tu; Z)

up to a multiplicative constant. We fix the constant as follows.
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Lemma 1.3.1. The function σ̃(u) has the following properties:
(1) The lowest terms of the Taylor expansion of σ̃(u) at u = 0 contain the term
γu1u3 · · ·ug if g is odd, or γu1u3 · · ·ug−1 if g is even, with a non-zero constant γ
independent of u1, · · · , ug;
(2) The function σ̃(u) is an odd function if g ≡ 1, 2 mod 4, and is an even one if
g ≡ 3, 0 mod 4;
(3) The divisor of σ̃(u) is the pull-back of Θ by the map κ : Cg → Cg/Λ = J .

Proof. For a proof of (1), see [3, p.353]. The statement (2) and (3) are given in
[15, p.3.97, p.3.100], Proposition 6.3(c), respectively. �

In this paper, we make the following normalization: we let

σ(u) := γ−1σ̃(u).

The constant γ in 1.3.1 for curves of genus two is studied in [7]. For more details
on σ(u), we refer the reader to [1] and [3].

1.4. Hyperelliptic Abelian functions ℘jk(u).
For j, k, · · · , r ∈ {1, · · · , g}, let

(1.4.1)

σj(u) =
∂

∂uj
σ(u), σjk···r(u) =

∂

∂uj
σk···r(u),

℘jk(u) = − ∂2

∂uj∂uk
logσ(u), ℘jk···r(u) =

∂

∂uj
℘k···r(u).

Then the functions ℘jk···r(u) are Abelian functions on the Jacobian variety J of
C. We call each of these functions, simply, a ℘-function when we talk about their
uniform properties. In the genus one case, the function ℘11(u) is essentially the
Weierstrass elliptic function.

Let (u1, · · · , ug) be the system of variables of σ(u). Then we can find a set of g
points (x1, y1), · · · , (xg, yg) on C such that

(1.4.2) uj =

∫ (x1,y1)

∞
ω(j) + · · ·+

∫ (xg,yg)

∞
ω(j) (j = 1, · · · , g)

with certain paths of integrals. In this situation, the ℘-functions are characterized
as follows ([3, p.377]).

Lemma 1.4.1. Assume that the variables u1, · · · , ug of σ(u) depend on g variable
points (x1, y1), · · · , (xg, yg) of C by the equation (1.4.2). Let

F (X1, X2) =

g∑

j=0

Xj
1X

j
2 (λ2j+1(X1 +X2) + 2λ2j) .

Then the functions ℘jk(u) are characterized by the equations

g∑

j=1

g∑

k=1

℘jk(u)xj−1
r xk−1

s =
F (xr, xs)− 2yrys

(xr − xs)2
,

xgr −
g∑

j=1

℘jg(u)xj−1
r = 0
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for r, s = 1, · · · , g with r 6= s. Especially, the functions ℘ij(u) are defined over the
field Q(λ0, · · · , λ2g+1), and (−1)g−j℘gj(u) is the elementary symmetric function of
degree g − j + 1 of x1, · · · , xg.

For more details on ℘-functions, we refer the reader to [2] and [3].
By Lemma 1.3.1(3), we know that

(1.4.3) ℘ij(u) ∈ Γ(J,O(2Θ)), ℘ijk(u) ∈ Γ(J,O(3Θ)), ℘ijk`(u) ∈ Γ(J,O(4Θ)),

where Γ(J,O(nΘ)) denotes the functions on J having poles, only along Θ, with at
most n-th order.

1.5. Algebraic relations for ℘-functions.
Here we recall relations of the functions ℘ij(u) and ℘ijk`(u).

Proposition 1.5.1. Let ℘ijk` := ℘ijk`(u) and ℘ij := ℘ij(u) for simplicity. The
following equations hold for g = 1, 2 and 3:

(1) ℘3333 − 6℘2
33 = 2λ5λ7 + 4λ6℘33 + 4λ7℘32,

(2) ℘3332 − 6℘33℘32 = 4λ6℘32 + 2λ7(3℘31 − ℘22),

(3) ℘3331 − 6℘31℘33 = 4λ6℘31 − 2λ7℘21,

(4) ℘3322 − 4℘2
32 − 2℘33℘22 = 2λ5℘32 + 4λ6℘31 − 2λ7℘21,

(5) ℘3321 − 2℘33℘21 − 4℘32℘31 = 2λ5℘31,

(6) ℘3311 − 4℘2
31 − 2℘33℘11 = 2∆,

(7) ℘3222 − 6℘32℘22 = −4λ2λ7 − 2λ3℘33 + 4λ4℘32 + 4λ5℘31 − 6λ7℘11,

(8) ℘3221 − 4℘32℘21 − 2℘31℘22 = −2λ1λ7 + 4λ4℘31 − 2∆,

(9) ℘3211 − 4℘31℘21 − 2℘32℘11 = −4λ0λ7 + 2λ3℘31,

(10) ℘3111 − 6℘31℘11 = 4λ0℘33 − 2λ1℘32 + 4λ2℘31,

(11) ℘2222 − 6℘2
22

= −8λ2λ6 + 2λ3λ5 − 6λ1λ7 − 12λ2℘33 + 4λ3℘32 + 4λ4℘22 + 4λ5℘21 − 12λ6℘11 + 12∆,

(12) ℘2221 − 6℘22℘21 = −4λ1λ6 − 8λ0λ7 − 6λ1℘33 + 4λ3℘31 + 4λ4℘21 − 2λ5℘11,

(13) ℘2211 − 4℘2
21 − 2℘22℘11 = −8λ0λ6 − 8λ0℘33 − 2λ1℘32 + 4λ2℘31 + 2λ3℘21,

(14) ℘2111 − 6℘21℘11 = −2λ0λ5 − 8λ0℘32 + 2λ1(3℘31 − ℘22) + 4λ2℘21,

(15) ℘1111 − 6℘2
11 = −4λ0λ4 + 2λ1λ3 + 4λ0(4℘31 − 3℘22) + 4λ1℘21 + 4λ2℘11,

where
∆ = ℘32℘21 − ℘31℘22 + ℘2

31 − ℘33℘11.

These equations are presented under the convention that if g = 1 or 2 then λi with
i > 2g + 1 and ℘-functions whose suffix contain j bigger than g are all zero.

Note that when g = 1 the equation (15) above is a well-known equation derived
from ℘′(u)2 = 4f(℘(u)). We refer the reader to [4] for the proof of this Proposition.

1.6. The algebraic addition formulae.
Here we present algebraic addition formulae which express each function ℘k`(u+

v) as a rational function of {℘ij(u)}, {℘ij(v)}, {℘hij(u)} and {℘hij(v)} with 1 5
h 5 g, 1 5 i 5 g and 1 5 j 5 g.
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Proposition 1.6.1.
σ(u+ v)σ(u− v)

σ(u)2σ(v)2
can be expressed as a polynomial in the

g(g + 1) functions {℘ij(u)} and {℘ij(v)} with coefficients in Q.

For a proof of this Proposition we refer the reader to [3].

Corollary 1.6.2. Each function ℘ij···r(u+ v) has a rational expression in terms
of the functions {℘ij(u)}, {℘ij(v)}, {℘hij(u)} and {℘hij(v)} with coefficients in
Q(λ0, · · · , λ2g+1).

Proof. After logarithmically differentiating the expression of 1.6.1 by ui and vi,
respectively, by adding the obtained two equations, we have a rational expression of

2
∂

∂ui
logσ(u+v)−4

∂

∂ui
log σ(u)−4

∂

∂vi
logσ(v) in the functions {℘ij(u)}, {℘ij(v)},

{℘hij(u)} and {℘hij(v)}. We operate
∂

∂uj
to this expression. Then we have a

rational expression of ℘ij(u + v) in the functions {℘ij(u)}, {℘ij(v)}, {℘hij(u)},
{℘hij(v)}, {℘ijk`(u)}, {℘ijk`(v)}, {℘ijk`m(u)} and {℘ijk`m(v)}. We can obatin the
desired expression by using the equations in 1.5.1. �
1.7. Geometry of the theta divisor.

We fix the local parameter of every point of C. To make clear the following
argument we define the local parameter t at each point P by

(1.7.1) t =





x− x(P ) if P is an ordinary point,

y if P is a branch point different from ∞,
1√
x

if P =∞.

Here we call P a branch point if y(P ) = 0 or ∞, and an ordinary point otherwise.
We determine the singular locus of the theta divisor Θ by using certain matrix

attached to a positive divisor of C. Here our argument is based on [5, pp. 85-86].
For a point P of C, let t be the local parameter defined above. We denote by Pt
the point of C such that the value of t at Pt is t. Then we define for µ ∈ Γ(C,Ω1)

D`µ(P ) =
d`

dt`

∫ Pt

∞
µ

∣∣∣∣∣
t=0

.

Since µ is a holomorphic form, D`µ(P ) takes finite value at every point P . Let

D :=

k∑

j=1

njPj be a positive divisor. We define by B(D) the matrix with degD :=

∑
nj columns and g rows whose (n1 + · · ·+ nj−1 + `, i)-entry is D`ω(i)(Pj), where

1 5 ` 5 nj − 1. This matrix B(D) informs us singularity of Θ in J at the point
determined by the divisor D − (degD)∞. For µ ∈ Γ(C,Ω1), we can find uniquely
c1, · · · , cg ∈ C such that µ = c1ω

(1) + · · · + cgω
(g). In this situation, the three

statements
(1) µ ∈ Γ(C,Ω1(−D)),
(2) D`µ(Pj) = 0 for all j and ` with 1 5 j ≤ k and 1 5 ` 5 nj − 1, and
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(3) B(D)



c1
...
cg


 =




0
...
0




are equivalent. So dim Γ(C,Ω1(−D)) = g−rankB(D). The Riemann-Roch theorem
states

dim Γ(C,O(D)) = degD − g + 1 + dim Γ(C,Ω1(−D)).

Hence

(1.7.2) dim Γ(C,O(D)) = degD + 1− rankB(D).

However, by [1, p.190, (4.5)], singularity of Θ is known as follows.

Lemma 1.7.1. The singular locus of Θ is the points determined by the elements of
{P1 + · · ·+ Pg−1 − (g − 1)∞| dim Γ(C,O(P1 + · · ·+ Pg−1)) > 1}.

By (1.7.2), dim Γ(C,O(D)) = 1 if and only if rankB(D) = degD. So we can
determine the singular locus of Θ by calculating rankB(D). The result is

Lemma 1.7.2. (1) If g = 2, Θ is non-singular.
(2) If g = 3, Θ has only one singular point at the origin O = (0, 0, 0).

Proof. We firstly show (2). For two points P1 and P2, we can calculate B(D) and
its rank in each case that P1 = P2 or P1 6= P2, and that each Pi is ∞, a branch
point different from ∞, or an ordinary point. Then we see the rank of B(D) is 1
only when P1 = P2 = ∞ and is 2(= deg(P1 + P2)) otherwise. According to 1.7.1
and the statement above this Lemma, we conclude the assertion (2). The assertion
(1) is shown by a similar explicit calculation of the matrix B(P ) for each point
P . �
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§2. Taylor and Laurent Expansions

In this section, we give lower terms of the Taylor expansion of σ(u) at each point
on the curve C.

2.1. Taylor expansion of σ(u) at O.
Let O = (0, · · · , 0) ∈ Cg.

Proposition 2.1.1.
(1) If g = 1, then the Taylor expansion of σ(u) is of the following form:

σ(u) = u+ (d◦ ≥ 1).

(2) If g = 2, then the Taylor expansion of σ(u) is of the following form:

σ(u) = u1 +
1

6
λ2u

3
1 −

1

3
λ5u

3
2 + (d◦ ≥ 5), (λ5 = 1).

(3) If g = 3, then Taylor expansion of σ(u) is of the form

σ(u) =u1u3 − u2
2 −

λ0

3
u1

4 − λ1

3
u1

3u2 −
λ2

2
u1

2u2
2 − λ3

3
u1u2

3 − λ4

3
u2

4

+
λ2

6
u1

3u3 −
λ5

3
u2

3u3 −
λ6

2
u2

2u32 +
λ6

6
u1u3

3 − λ7

3
u2u3

3 + (d◦ ≥ 6), (λ7 = 1),

and the coefficient of the term u6
3 is λ7

45 .

Proposition 2.1.1 will be used in Sections 5, 6 and 7. The last statement about
a term of degree six is only used in 3.2.3.

Proof of 2.1.1. We omit the proof of the statement (1) because it is well-known
fact. The proof of the statement (2) was given by Baker, and is reproduced in [7,
pp. 129-130]. Let us prove (3). Since σ(−u) = σ(u), the terms of odd total degree
are vanish. From [3, p.353], we know that the constant term is vanish, and the
form of terms of second order is u1u3 − u2

2. Hence σ22(O) 6= 0, σ31(O) 6= 0 and the
other partial derivatives of second order are vanish. The method to compute terms
of higher degree is essentially as same as in the proof of (2) in [7]. We set u = O,

after operating ∂2

∂u1∂u3
or ∂2

∂u2
2

to the equations, of σ(u) and its partial derivatives,

obtained from (6), (8) and (11) of 1.5.1 by multiplying σ(u)2, then we have the
following six equations:

(σ2∆)31(O) = −1

2
σ3311(O),

(σ2∆)31(O) = σ3311(O),

(σ2∆)31(O) = −2

3
λ4 + (− 1

12
σ2222 + σ3221)(O),

(σ2∆)22(O) = (σ3311 − 2σ3221)(O),

(σ2∆)22(O) = 4λ4 + (
1

2
σ2222 + 2σ3221)(O),

(σ2∆)22(O) = −4

3
λ4 −

1

6
σ2222(O).
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These equations yield σ2222(O) = −8λ4, σ3221(O) = σ3311(O) = 0. Furthermore,
we rewrite the leftover eleven equations in 1.5.1 by σ(u) and its partial derivatives
by the definition of ℘-functions. Multiplying σ(u)2 to, for instance, the equation
obtained from 1.5.1(1) yields

σ3333(u)σ(u) + 4σ333(u)σ3(u)− σ33(u)2

=2λ5λ7σ(u)2 + 4λ6(σ3(u)2 − σ33(u)σ(u)) + 4λ7(σ3(u)σ2(u)− σ32(u)σ(u)).

After operating ∂2

∂u2
2

on this, by plugging u = O, we have

(2.1.1) −σ3333(O)σ22(O) = 0.

Since σ22(O) 6= 0, we obtain that σ3333(O) = 0. This shows that the term of
u4

3 vanishes. The proofs of the other statements are done by repeating the same
operation as which gave rise to (2.1.1) from 1.5.1(1). The leftover equations (2), (3),
(4), (5), (7), (9), (10), (12), (13), (14) and (15) of 1.5.1 give rise to the coefficients
of the terms of u2u

3
3, u1u

3
3, u2

2u
2
3, u1u2u

2
3, u3

2u3, u2
1u2u3, u3

1u3, u1u
3
2, u2

1u
2
2, u3

1u2

and u4
1, respectively. Finaly we can show σ333333(O) = 16λ7 by setting u = O after

operating ∂4

∂u4
3

on 1.5.1(1) with multiplied by σ(u)2. �

2.2. Taylor expansion of σ(u) at each point of C other than O. Here we give
the Taylor expansion of σ(u) at each point on the curve ι(C) other than O = ι(∞).

Proposition 2.2.1. Let P be an arbitrary point of κ−1ι(C) different from points
in Λ. Then the following statements hold.

(1) If g = 1 then σ(P ) 6= 0.

(2) If g = 2 then σ2(P ) 6= 0 and σ1(P ) = −x(P )σ2(P ). Furthermore the partial
derivatives at P of third degree are written by ones of first and second degree as in
the following :

σ111(P ) =(3
σ21σ11

σ2
− 3

2

σ22σ11σ1

σ2
2

− 3
σ2

21σ1

σ2
2

+ 3
σ21σ22σ

2
1

σ3
2

− 3

4

σ2
22σ

3
1

σ4
2

− 2λ1σ2 + 4λ2σ1 − 3λ3
σ2

1

σ2
− 3λ4

σ3
1

σ2
2

− 3λ5
σ4

1

σ3
2

)(P ),

σ112(P ) =(
1

2

σ22σ11

σ2
+
σ2

21

σ2
− σ22σ21σ1

σ2
2

+
1

4

σ2
22σ

2
1

σ3
2

+ λ3σ1 + λ4
σ2

1

σ2
+ λ5

σ3
1

σ2
2

)(P ),

σ122(P ) =(
σ22σ21

σ2
− 1

4

σ2
22σ1

σ2
− λ4σ1 − λ5

σ2
1

σ2
)(P ),

σ222(P ) =(
3

4

σ2
22

σ2
+ λ4σ2 + λ5σ1)(P ).

(3) If g = 3 then σ3(P ) = 0, σ2(P ) 6= 0, σ1(P ) = −x(P )σ2(P ) and (σ2∆)(P ) =

(λ7
σ3

1

σ2
)(P ). Furthermore, the partial derivatives at P of third degree are written by
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ones of first and second degree as in the following form:

σ111(P ) =(−3
σ21σ11

σ2
− 3

2

σ22σ11σ1

σ2
2

− 3
σ2

21σ1

σ2
2

+ 3
σ21σ22σ

2
1

σ3
2

− 3

4

σ2
22σ

3
1

σ4
2

− 2λ1σ2 + 4λ2σ1

− 3λ3
σ2

1

σ2
− 3λ4

σ3
1

σ2
2

− 3λ5
σ4

1

σ3
2

+ 3λ6
σ5

1

σ4
2

+
3

4
λ7
σ6

1

σ5
2

)(P ),

σ112(P ) =(
1

2

σ22σ11

σ2
+
σ2

21

σ2
− σ22σ21σ1

σ2
2

+
1

4

σ2
22σ

2
1

σ3
2

+ λ3σ1

+ λ4
σ2

1

σ2
+ λ5

σ3
1

σ2
2

− λ6
σ4

1

σ3
2

− λ7
σ5

1

σ4
2

)(P ),

σ122(P ) =(
σ22σ21

σ2
− 1

4

σ2
22σ1

σ2
− λ4σ1 − λ5

σ2
1

σ2
+ λ6

σ3
1

σ2
2

+ λ7
σ4

1

σ3
2

)(P ),

σ222(P ) =(
3

4

σ2
22

σ2
+ λ4σ2 + λ5σ1 − 3λ6

σ2
1

σ2
+ 3λ7

σ3
1

σ2
2

)(P ),

σ113(P ) =(
σ32σ11

σ2
)(P ),

σ123(P ) =(
σ32σ21

σ2
)(P ),

σ133(P ) =(
σ32σ31

σ2
+ λ7

σ2
1

σ2
)(P ),

σ223(P ) =(
σ32σ22

σ2
− 2λ7

σ2
1

σ2
)(P ),

σ233(P ) =(
σ2

32

σ2
− λ7σ1)(P ),

σ333(P ) =− 2λ7σ2(P ).

Proof. The assertion (1) is well-known. We show (3). Since

σ1

σ2
(P ) =

σ1σ3 − σ13σ

σ2σ3 − σ23σ
(P ) =

℘13

℘23
(P ) =

x1x2x3

−x1x2 − x2x3 − x3x1

∣∣∣∣∣ x1=∞
x2=∞
x3=x(P )

= −x(P ),

σ3

σ2
(P ) =

σ3
2 − σ33σ

σ2σ3 − σ23σ
(P ) =

℘33

℘23
(P ) =

x1 + x2 + x3

−x1x2 − x2x3 − x3x1

∣∣∣∣∣ x1=∞
x2=∞
x3=x(P )

= 0,

and P 6= O it must be σ2(P ) 6= 0 and σ3(P ) = 0 by virtue of 1.3.1(3) and 1.7.2(2).
We get σ2

33(P ) = 0 by setting u = P to the equation which is obtained from 1.5.1(1)
by writing it in terms of σ(u) and its partial derivatives with multiplied by σ(u)2.
Hence

(2.2.1) σ33(P ) = 0.

We note that ∆(u) ∈ Γ(J,O(2Θ)) by the equations (6), (8) or (11) of 1.5.1. So we
get

(2.2.2) (σ1σ32)(P ) = (σ2σ31)(P )
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by plugging u = P in the equation

(σ3∆)(u) =(σ3σ2σ21 − σ2σ1σ32 + σ3σ1σ22 + σ2
2σ31 − 2σ3σ1σ31 + σ2

3σ11 − σ2
1σ33

+ σ32σ21σ − σ31σ22σ + σ2
31σ − σ11σ33σ)(u).

Here we have used (2.2.1), σ3(P ) = 0 and σ(P ) = 0. The rest of our proof are also
done by repeating the same operation as above. Though the facts (2.2.1), (2.2.2)
and σ2(P ) 6= 0 are used often in the following, we do not mention in the proof when
they used. The equation 1.5.1(6) gives rise to

(2.2.3) (σ2∆)(P ) = λ7

(
σ1

3

σ2

)
(P ).

Then the equations (8) and (11) of 1.5.1 give rise to the formulae for σ321(P ) and
σ222(P ) by (2.2.3). The equations (3) and (15) of 1.5.1 are not nessesary here. The
leftover equations (2), (4), (5), (7), (9), (10), (12), (13) and (14) of 1.5.1 give rise to
the formulae for σ333(P ), σ332(P ), σ331(P ), σ322(P ), σ311(P ), σ221(P ), σ211(P ) and
σ111(P ), respectively. The assertion (2) is obtained by a similar calculation. �
2.3. The Laurent expansions of analytic coordinates on C.

There are two different coordinates which identify a point of κ−1ι(C) or ι(C), the
analytic coordinate u = (u1, · · · , ug) and a pair of solution (x, y) of the algebraic
affine equation defining C. This subsection is used to make relate these coordinates.
If u ∈ κ−1ι(C) and κ(u) = ι(x, y), then, by (1.4.2),

(2.3.1) uj =

∫ (x,y)

∞
ω(j) (j = 1, · · · , g)

with certain paths of integrals.

Lemma 2.3.1. The Laurent expansion of x(u) and y(u) at u = O on the pull-back
κ−1ι(C) of C to Cg are

x(u) =
1

u2
g

+ (d◦(ug) ≥ −1), y(u) = − 1

u2g+1
g

+ (d◦(ug) ≥ −2g).

Proof. We take t =
1√
x

as a local parameter at O along κ−1ι(C). If u is in

κ−1ι(C) and sufficiently near O. We are agree to that t, u = (u1, · · ·ug) and (x, y)
are coordinates of the same point on C. Then

ug =

∫ (x,y)

∞

xg−1dx

2y

=

∫ (x,y)

∞

x−3/2dx

2
√

1 + λ2g
1
x + · · ·+ λ0

1
x2g+1

=

∫ t

0

t3 ·
(
− 2
t3

)
dt

2 + (d◦ ≥ 1)

=− t+ (d◦(t) ≥ 2).

Hence x(u) = 1
u2
g

+ (d◦(ug) ≥ −1) and our assertion is proved. �
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Lemma 2.3.2. If u ∈ κ−1ι(C), then the following statements hold.
(1) If g = 2 then

u1 =
1

3
u3

2 + (d◦(u2) ≥ 4).

(2) If g = 3 then

u1 =
1

5
u5

3 + (d◦(u3) ≥ 6), u2 =
1

3
u3

3 + (d◦(u3) ≥ 4).

Proof. Similar argument as we have ug = −t+ (d◦(t) ≥ 2) in 2.3.1 gives

ug−1 = −1

3
t3 + (d◦(t) ≥ 4), ug−2 = −1

5
t5 + (d◦(t) ≥ 6).

Hence we have the desired formulae. �
The following lemma gives an expression of the Taylor expansion of analytic

coordinates with respect to the local parameter y at branch points different from
∞ along κ−1ι(C).

Lemma 2.3.3. Let (a, 0) be a branch point of C different from ∞, that is f(a) = 0,
and let P denote a point of Cg such that κ(P ) = ι(a, 0). Choose v = (v1, · · · , vg)
such that κ(v +P ) = ι(x, y). Then the Taylor expansion of vi as a function of y is
of the following form:

(1) If g ≥ 1 then v1 =
1

f ′(a)
y +

f ′′(a)

3f ′(a)2
y3 + (d◦(y) ≥ 5). (2) If g ≥ 2 then

v2 =
a

f ′(a)
y +

1 + af ′′(a)

3f ′(a)2
y3 + (d◦(y) ≥ 5). (3) If g ≥ 3 then v3 = a2

f ′(a)y +

a(2+af ′′(a))
3f ′(a)2 y3 + (d◦(y) ≥ 5).

Proof. Let g = 3. Since f ′(a) 6= 0 and y2 = f(x) = f ′(a)(x−a)+ f ′′(a)
2 (x−a)2+· · · ,

x = a+
1

f ′(a)
y2 +

f ′′(a)

2f ′(a)2
y4 + (d◦ ≥ 6).

Therefore we have

v3 =

∫ (x,y)

(0,0)

x2dx

2y

=

∫ y

0

(a+
1

f ′(a)
y2 +

f ′′(a)

2f ′(a)2
y4 + (d◦ ≥ 6))2(

1

f ′(a)
+
f ′′(a)

f ′(a)2
y2 + (d◦ ≥ 4))dy

=

∫ t

0

(
a2

f ′(a)
+ (

a(2 + a2f ′′(a))

f ′(a)2
)y2 + (d◦ ≥ 4))dy

=
a2

f ′(a)
y +

a(2 + f ′′(a))

3f ′(a)2
y3 + (d◦ ≥ 5).

The formulae for v1 and v2 are obtained by the same way. For g = 1 or g = 2, the
formulae are also shown similarly. �
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§3. The translational formula of σ(u)

In this section, we discuss the translational formula and the Riemann form of σ(u).
We also give a generalization of Weber’s psi function ([20, p.150] or [19, p.146]) to
higher genus case. Our generalization of the psi function is based on Grant [9].

3.1. The translational formula of σ(u).
For u ∈ Cg we conventionally denote by u′ and u′′ such elements of Rg that
u = ω′u′ + ω′′u′′, where ω′ and ω′′ are those defined in Section 1. We define a
C-valued R-bilinear form L( , ) by L(u, v) = tu(η′v′+ η′′v′′) for u, v ∈ Cg. For
` in Λ, the lattice of periods as defined in Section 1, let

χ(`) = exp[2πi( t`′δ′′ − t`′′δ′)− πi t`′`′′],
where δ′ and δ′′ are those defined in Section 1.

Lemma 3.1.1. (the translational formula) The function σ(u) satisfies

σ(u+ `) = χ(`)σ(u) expL(u+
1

2
`, `)

for all u ∈ Cg and ` ∈ Λ.

For a proof of this formula we refer to the reader to [2, p.286].

Let

(3.1.1) E(u, v) = L(u, v)− L(v, u), (u, v ∈ Cg).

Then, obviously, E( , ) is a C-valued R-bilinear form and satisfies E(u, v) =
−E(v, u).

Lemma 3.1.2. The linear form E( , ) has the following properties:
(1) E(iu, v) = E(iv, u),
(2) E(u, v) = 2πi( tu′v′′ − tu′′v′).
Especially, E( , ) is an iR-valued form and 2πiZ-valued on Λ× Λ.

Proof. Statement (1) is proved in [10, p.85, Theorem 1.2]. Let us prove (2). In the
theory of curves, it is a basic fact that tω′η′ and tω′′η′′ are symmetric. So

E(u, v) =L(u, v)− L(v, u)

= tu(η′v′ + η′′v′′)− tv(η′u′ + η′′u′′)

= tv′ tω′η′ω′−1u+ tv′ tω′′η′′ω′′−1u− tu′ tω′η′ω′−1v − tu′′ tω′′η′′ω′′−1v

= tv′ tω′η′(u′ + Zu′′) + tv′ tω′′η′′(Z−1u′ + u′′)

− tu′ tω′η′(v′ + Zv′′)− tu′′ tω′′η′′(Z−1v′ + v′′).

Since tω′η′ and Z are symmetric, it follows that
tω′η′Z = tZ tω′η′ = tω′′ tω′−1 tω′η′ = tω′′η′,
tω′′η′′Z = tZ tω′′η′′ = tω′ tω′′−1 tω′′η′′ = tω′η′′.

Therefore, by using the symmetricity of tω′η′ and tω′′η′′ once more, we have

E(u, v) = tu′ tω′η′v′ + tu′′ tω′′η′v′ + tu′ tω′η′′v′′ + tu′′ tω′′η′′v′′

− tv′ tω′η′u′ − tv′′ tω′′η′u′ − tv′ tω′η′′u′′ − tv′′ tω′′η′′u′′.

The generalized Legendre relation tω′η′′ − tw′′η′ = 2πi1g shows our assertion. �
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3.2. Functions ψn(u).
In this subsection, we review the original and generalized Weber’s psi functions
defined for the (hyper)elliptic curve C. For the case that J has complex multipli-
cation, we treat them more extensively in 4.4.

Definition 3.2.1. Let n ∈ Z.
(1) When g = 1, we let

ψn(u) =
σ(nu)

σ(u)n2 .

(2) When g = 2 or 3, we let

ψn(u) =
σ(nu)

σ2(u)n2 .

Proposition 3.2.2. The function ψn(u) is a function on C if g = 1 and on Θ if
g ≥ 2. In other words, as a function on C = κ−1(C) if g = 1 and on κ−1(Θ) if
g ≥ 2, it is periodic with respect to the lattice Λ. Furthermore ψn(u) restricted to
u ∈ κ−1ι(C) is a polynomial of x(u) if g = 1, 2 with n odd or g = 3 with n even,
and is a polymomial of x(u) multiplied by y(u) if g = 1, 2 with n even or g = 3
with n odd.

Proof. We follow [9, p.126, Lemma 1]. We have (−1)∗Θ = Θ, because our theta
divisor is comming from a hyperelliptic curve. So n∗Θ = n2Θ ([16, p.59]). Hence
the function

φn(u) :=
σ(nu)

σ(u)n2

is a trivial theta function. On the other hand, by 3.1.1, we have σ(n(u + `)) =
χ(n`)σ(nu) exp[n2L(u + 1

2`, `)]. By the definition of χ( ), χ(n`) is equal to χ(`)
or 1 if n is odd or even, respectively. So we have

φn(u+ `) = φn(u)

for all u ∈ Cg and ` ∈ Λ. Hence the proof of first statement for g = 1 is completed.
Now assume g = 2 or 3. Because of

℘22(u) = (
σ2

2 − σ22σ

σ2
)(u), ℘222(u) = (

−2σ3
2 + 3σ2σ22σ + σ222σ

2

σ3
)(u)

and of σ(u) = 0 for all u ∈ κ−1Θ, we have

φn(u)

℘22(u)
n2

2

=
σ(nu)

σ2(u)n2 or
φn(u)

− 1
2
℘222(u)℘22(u)

n2−3
2

=
σ(nu)

σ2(u)n2

for all u ∈ κ−1(Θ) if n is even or odd, respectively. Thus ψn(u) is a function on
Θ. Hence the first statement. For u ∈ κ−1ι(C), u = O if and only if σ2(u) = 0
by 2.2.1. Therefore ψn(u) has, as a function on C, only pole at u = 0. So it must
be a polynomial of x(u) and y(u). The last statement is shown by x(−u) = x(u),
y(−u) = −y(u) and 1.3.1(3). �

We compute ψn for n = 2, 3 and 4 in 3.2.4 bellow. To do so we give the following
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Lemma 3.2.3. Let C be the hyperelliptic curve of genus g(≥ 2) defined in 1.1. Let
P be a point of C different from ∞. If nP ∈ Θ with n = g or g + 1, then P is a
branch point, that is y(P ) = 0.

Proof. Since nP ∈ Θ, we have g − 1 points Q1, · · · , Qg−1 such that, as divisors,
nP is linearly equivalent to Q1 + · · ·+Qg−1 + (n− g + 1)∞ ([15, pp.3.28-29]).

For a point Q of C, we here denote by Q the point (x(Q),−y(Q)). We first assume
n = g. In this case, there exists a function G on C whose divisor is (Q1 + · · · +
Qg−1 +∞)−nP . Since P 6=∞, G may not be a constant function. However, there

is no non-constant function whose poles are bounded by a divisor

g∑

j=1

Pj such that

Pj 6= ∞ and Pj 6= Pi for every i and j with i 6= j ([15, p.3.30]). Since P 6= ∞, it

must be P = P , and hence y(P ) = 0.
Secondly, we assume n = g+ 1. Then there exists a function G on C whose divisor
is (Q1 + · · · + Qg−1 + 2∞) − nP . The divisor of the function (x − x(P )) · G is

Q1 + · · ·+Qg−1 + P − (n− 1)P . This function may not be a constant. So, by the

same argument as in the case n = g, we have P = P , and hence y(P ) = 0. Now we
have shown the assertion. �

Lemma 3.2.4.
(1) If g = 1 then ψ2(u) = −2y(u) and if g = 2 then ψ2(u) = 2y(u).
(2) If g = 2 or g = 3 then ψ3(u) = −8y(u)3.
(3) If g = 3 then ψ4(u) = 64y(u)4.

Proof. (1) When g = 1, 2.1.1(1) implies

ψ2(u) =
σ(2u)

σ(u)4
=

2u+ (d◦ ≥ 2)

(u+ (d◦ ≥ 2))4
=

2

u3
+ · · · .

Thus 2.3.1 and 3.2.2 imply ψ2(u) = −2y(u) for u ∈ C. When g = 2, 2.1.1(2) and
2.3.2(1) imply

ψ2(u)|u∈κ−1ι(C) =
σ(2u)

σ2(u)4

=
2u1 + 1

6
λ28u3

1 − 1
3
λ58u3

2 + (d◦ ≥ 5)

(−u2
2 + (d◦ ≥ 4))4

=
−2u3

2 + (d◦ ≥ 5)

(−u2
2 + (d◦ ≥ 4))4

=− 2

u2
5

+ · · · .

Thus 2.3.1 and 3.2.2 imply ψ2(u) = 2y(u) for u ∈ C.
(2) When g = 2, we have

ψ3(u)|u∈κ−1ι(C) =
σ(3u)

σ2(u)9
=

3u1 + 1
6λ227u3

1 − 1
327u3

2 + (d◦ ≥ 5)

(−u2
2 + (d◦ ≥ 4))9

= 8
1

u15
2

+ · · ·
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by 2.1.1(2) and 2.3.2(1). Let P = (x(u), y(u)) and assume ψ3(u) = 0. Then we
have σ(3u) = 0 because σ2(u) = 0 if and only if u = O as seen in 2.2.1(2). So
3P ∈ Θ. By 3.2.3, it must be P = ∞ or P = d−1eP . This means y(u) = ∞ or
y(u) = −y(u). Hence we have known, for u ∈ κ−1ι(C), that ψ3(u) = 0 is equivalent
to y(u) = 0. So ψ3(u) must be of the form

(3.2.1) ψ3(u)|u∈κ−1ι(C) = −8y(u)
∏

y(P )=0

(x(u)− x(P ))

by 3.2.2. To determine the product for points P , we look at the vanishing order at
each P such as y(P ) = 0. Let P = (a, 0). Assume u = v + P ∈ κ−1ι(C). Then
y = y(v + P ) is a local parameter at P . Since

ψ3(v + P )|v+P∈κ−1ι(C)

=
σ(3(v + P ))

σ2(v + P )9

=
σ(3v + P )χ(2P ) expL(3v + P + P, 2P )

σ2(v + P )9

=
(3σ1(P )v1 + 3σ2(P )v2 + (d◦ ≥ 3)) exp 4L(P, P )(1 + (d◦(v1, v2) ≥ 1))

(σ2(P ) + (d◦(v1, v2) ≥ 1))9
,

it follows from the first statement of 2.2.1(2) and 2.3.3 that

ψ3(v + P )|v+P∈κ−1ι(C) = (d◦(y) ≥ 3).

This argument is independent of the choice of a. So the factors of the product in
(3.2.1) contain x(v + P ) − a for all a with f(a) = 0. Thus the product must be
equal to y(u)2. Hence

ψ3(u)|u∈κ−1ι(C) = −8y(u)3.

When g = 3, we have

ψ3(u)|u∈κ−1ι(C) =
σ(3u)

σ2(u)9

=
9u1u3 − 9u2

2 − 81λ7

3 u2u
3
3 + 36 λ7

45u
6
3 + · · ·

(−2u2 − λ7

3
u3

3 + · · · )9

=8
u6

3 + (d◦(u3) ≥ 8)

(−u3
3 + (d◦(u3) ≥ 5))9

=− 8

u21
3

+ · · ·

for u ∈ κ−1ι(C) by 2.1.1(3) and 2.3.2(2). Let P = (x(u), y(u)) and assume ψ3(u) =
0. Then we have σ(3u) = 0 because σ2(u) = 0 if and only if u = O as seen in
2.2.1(3). Therefore 3P ∈ Θ. By 3.2.3, it must be P = ∞ or P = d−1eP . This
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means y(u) =∞ or y(u) = −y(u). Hence we have known, for u ∈ C, that ψ3(u) = 0
is equivalent to y(u) = 0. So ψ3(u) must be of the form

(3.2.2) ψ3(u)|u∈κ−1ι(C) = −8y(u)
∏

y(P )=0

(x(u)− x(P ))

by 3.2.2. As in the case g = 2, we look at the vanishing order at a point P =
(a, 0) ∈ C. By using the Taylor expansion 2.2.1(3) we have

ψ3(v + P )|v+P∈κ−1ι(C) =
σ(3(v + P ))

σ2(v + P )9

=
σ(3v + P )χ(2P ) expL(3v + P + P, 2P )

σ2(v + P )9

=
(3(σ1(P )v1 + σ2(P )v2 + σ3(P )v3) + (d◦ ≥ 3)) exp 4L(P, P )(1 + (d◦(v1, v2, v3) ≥ 1))

(σ2(P ) + (d◦(v1, v2, v3) ≥ 1))9
.

So 2.3.3 and the first statement of 2.2.1(3) give

ψ3(v + P )|v+P∈κ−1ι(C) = (d◦(y) ≥ 3).

This argument is independent of the choice of a with f(a) = 0. So the factors of the
product in (3.2.2) contain x(v + P )− a for all a with f(a) = 0. Thus the product
must be equal to y(u)2. Hence

ψ3(u)|u∈κ−1ι(C) = −8y(u)3.

(3) We have

ψ4(u)|u∈κ−1ι(C) =
σ(4u)

σ2(u)16

=
16u1u3 − 16u2

2 − 44 λ7

3 u2u
3
3 + 46 λ7

45u
6
3 + · · ·

(−2u2 − λ7

3
u3

3 + · · · )16

=
64u6

3 + (d◦(u3) ≥ 8)

(−u3
3 + (d◦(u3) ≥ 5))16

=
64

u42
3

+ · · ·

for u ∈ κ−1ι(C) by 2.1.1(3). Let P = (x(u), y(u)) and assume ψ4(u) = 0. Then
we have σ(4u) = 0 because of that σ2(u) = 0 if and only if u = O as seen in
2.2.1(3). Hence 4P ∈ Λ. By 3.2.3, it must be P = ∞ or P = d−1eP . This means
y(u) =∞ or y(u) = −y(u). Hence we have shown, for u ∈ κ−1ι(C), that ψ4(u) = 0
is equivalent to y(u) = 0. So ψ4(u) must be of the form

(3.2.3) ψ4(u)|u∈κ−1ι(C) = 64
∏

y(P )=0

(x(u)− x(P ))
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by 3.2.2. As in the proof of (2), we look at the vanishing order of ψ4(u) at a point
P = (a, 0) ∈ C. We take y = y(u) as a local parameter at P along κ−1ι(C). Let
u = v + P on κ−1ι(C). We first show that σ(4v) = (d◦(y(u)) ≥ 6). By 2.3.3, we
have

v1v3 − v2
2 =
( 1

f ′
y +

f ′′

3f ′2
y2 + (d◦ ≥ 5)

)(a2

f ′
y +

a(2 + af ′′)
3f ′2

y3 + (d◦ ≥ 5)
)

−
( a
f ′
y +

1 + af ′′

f ′2
y3 + (d◦ ≥ 5)

)2

=(d◦(y) ≥ 6),

−λ0

3
v4

1 −
λ1

3
v3

1v2 − λ2v
2
1v

2
2 −

λ3

3
v1v

3
2

−λ4

3
v4

2 +
2λ2

3
v3

1v3 −
λ5

3
v3

2v3 −
λ6

2
v2

2v
2
3 +

λ6

6
v1v

3
3 −

λ7

3
v2v

3
3

=
1

f ′4
(
− λ0

3
− λ1a

3
− λ2a

2 +
2λ2a

2

3
− λ3a

3

3
− λ4a

4

3

− λ5a
5

3
− λ6a

6

2
+
λ6a

6

6
− λ7a

7

3

)
y4 + (d◦ ≥ 6)

=(d◦(y) ≥ 6),

where we simply write f ′ and f ′′ instead of f ′(a) and f ′′(a), respectively. By 3.1.1,
we have

ψ4(v + P )|v+P∈κ−1ι(C) =
σ(4(v + P ))

σ2(v + P )16
=
σ(4v)χ(4P ) expL(4v + 2P, 2P )

σ2(v + P )16

Therefore
ψ4(v + P )|v+P∈κ−1ι(C) = (d◦(y) ≥ 6).

This argument is independent of the choice of a with f(a) = 0. So the factors of
the product in (3.2.3) contain x(v+ P )− a for all a, f(a) = 0, with multiplicity at
least three. Hence the product must be equal to y(u)6. Therfore we have shown

ψ4(u)|v+P∈κ−1ι(C) = 64y(u)6,

and we have established the proof. �
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§4. Curves of cyclotomic type

4.1. Automorphisms of C and endomorphisms of J .
In this subsection, we treat the case when the affine equation of the curve C is
given by y2 = xm + 1

4 or y2 = xn− x with m and n odd. In this paper we say such
a curve to be of cyclotomic type. In the latter case, if n− 1 be a power of 2, then
we call such a curve to be of 2-primary (cyclotomic) type.

In the first case, we let ζ = exp( 2πi
m

). Then there are automorphisms

d±ζje : C → C, (x, y) 7→ (ζjx,±y)

for j = 0, · · · , m−1. Especially, d±ζje∞=∞, dζje(0, 1
2
) = (0, 1

2
) and d−1e(−4−1/m, 0)

= (−4−1/m, 0).

In the second case, we let ζ = exp(
πi

n− 1
). Then there are automorphisms

dζje : C → C, (x, y) 7→ (ζ2jx, ζjy)

for j = 0, · · · , n− 1. We have dζje∞ =∞ and dζje(0, 0) = (0, 0).
In each of the cases, each automorphism extends to an endomorphism

d±ζje : P1 + · · ·+ Pg − g∞ 7→ d±ζjeP1 + · · ·+ d±ζjePg − g∞

of Pic◦(C), hence, of J , where P1, · · · , Pg are points of C. We denote by Z[dζe]
the subring of End(J) generated by {dζje}. The ring Z[dζe] also acts on Cg with
Λ being stable, that is equivalent to say αΛ ⊂ Λ for all α ∈ Z[dζe]. We have
obvious relations d1e = 1, dζjedζke = dζj+ke and d−ζje = −dζje. In each case,
since d±ζjeι(C) = ι(C), it is obvious that d±ζjeΘ = Θ.

Lemma 4.1.1.
(1) If C is defined by y2 = x2g+1 + 1

4 then Z[dζe] ∼= Z[X]/(X2g + · · ·+ X + 1) by
dζe 7→ X.
(2) If C is defined by y2 = x2g+1 − x then Z[dζe] ∼= Z[X]/(X2g + 1) by dζe 7→ X.

Proof. The isomorphisms of (1) and (2) are easily obtained from the action

dζe(u1, u2, · · · , ug) = (ζu1, ζ
2u2, · · · , ζgug)

and
dζe(u1, u2, · · · , ug) = (ζu1, ζ

3u2, · · · , ζ2g−1ug),

respectively. �
Let b be an element of Z[dζe]. In the following, we will investigate the b-

multiplication for σ(u), that is σ(bu), and pull-back of b-multiplication for Θ, that
is b∗Θ. If b ∈ Z then most results of this section are quite simple. However, for
our main results, one of the most important cases would be when b is an imaginary
number in Z[dζe].
4.2. The Riemann form for a curve of cyclotomic type.
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Definition 4.2.1. The function σ(u) = σ(u;Z) is said to be a normalized theta
function ( in the sence of [10, p.87] or [18, p.20] ) if the form L(u, v) defined in

3.1 is hermitian, that is equivalent to say L(v, u) = L(u, v), where the bar means
the complex conjugate. If that is so,

L(u, v) =
1

2i
[E(iu, v) + iE(u, v)]

for all u, v ∈ Cg.

Lemma 4.2.2. Let η′ and η′′ be the period matrix of differential forms of second
kind as is defined in 1.1. If η′−1η′′ = Z then σ(u) is a normalized theta function.

Proof. By the definition of L( , ), L(iu, v) = iL(u, v). We will show that L(u, iv) =

−iL(u, v). Let us define w′ and w′′ ∈ Rg by iω′−1v = w′ +Zw′′. Then −iω′−1v =

w′ + Zw′′. Since ω′−1v = v′ + Zv′′ and ω′−1v = v′ + Zv′′, we have

L(u, iv) = u(η′w′ + η′′w′′)

= uη′(w′ + Zw′′)

= uη′(iω′−1v)

= uη′(−i)(v′ + Zv′′)

= −iu(η′v′ + η′′v′′)

= −iL(u, v).

Since E( , ) is R-valued, we have L(u, v) = L(v, u) by 3.1.2(1) and the relation of
L( , ) and E( , ) in 4.2.1. Therefore we have the assertion. �

Proposition 4.2.3. If C is of cyclotomic type, then η′−1η′′ = Z. Hence σ(u;Z)
is normalized because of 4.2.2.

Proof. In our case, the differential forms η(1), · · · , η(g) defined in 1.1 are

η(1) = (2g − 1)
x2g−1

2y
dx, η(2) = (2g − 3)

x2g−2

2y
dx, · · · , η(g) =

xg

2y
dx.

Let C be the curve defined by y2 = x2g+1 + 1
4 (resp. y2 = x2g+1 − x) and let

Ki =

∫ (−4
−1

2g+1 ,0)

(0, 12 )

ω(i), Hi =

∫ (−4
−1

2g+1 ,0)

(0, 12 )

η(i)

(resp. Ki =

∫ (1,0)

(0,0)

ω(i), Hi =

∫ (1,0)

(0,0)

η(i))
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be integrals along the real axis. Then we have

∫ (−4−1/(2g+1)ζk,0)

(0, 12 )

ω(i) =

∫ (−4−1/(2g+1),0)

(0, 12 )

dζkeω(i) = ζkiKi,

∫ (−4−1/(2g+1)ζk,0)

(0, 12 )

η(i) =

∫ (−4−1/(2g+1),0)

(0, 12 )

dζkeη(i) = ζ(2g−i+1)kHi = ζ−kiHi

(resp.

∫ (ζk,0)

(0,0)

ω(i) =

∫ (1,0)

(0,0)

dζkeω(i) = ζ(2i−1)kKi,

∫ (ζk,0)

(0, 12 )

η(i) =

∫ (1,0)

(0, 12 )

dζkeη(i) = ζ(2(2g−i)+1)kHi = ζ(−2i+1)kHi),

where each of integrals is along the segment with a constant argument. Let us
compute the periods matrices η′ and η′′ by choosing paths α(j) and β(j) as a join of
segments of line in x-plane with constant argx as in Figure 2.

Figure 2

Then we are led to the following relations:

∫

α(j)

η(i) =
Hi

Ki

∫

α(j)

ω(i),

∫

β(j)

η(i) =
Hi

Ki

∫

β(j)

ω(i)

for all i and j. Hence

η′ =




H1

K1

. . .
Hg
Kg


ω′, η′′ =




H1

K1

. . .
Hg
Kg


ω′′,

So we have η′−1η′′ = ω′−1ω′′ = Z. �
For each b ∈ Z[dζe] we denote by b the involution in Z[dζe] induced by dζje =

dζ−je.
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Proposition 4.2.4. If C is of cyclotomic type, then

E(bu, v) = E(u, bv), L(bu, v) = L(u, bv),

for all u, v ∈ Cg and b ∈ Z[dζe].
Proof. Since dζe is an automorphism of Λ, there exists a matrix M(ζj) with entries
in Z such that

dζjeu = [ω′ ω′′]M(ζj)

[
u′

u′′

]
.

Since dζje is an automorphism of C over Q, it induces an automorphism of the
fundamental group of C. Hence

tM(ζj)IM(ζj) = I

with I =

[
0 1g
−1g 0

]
and M(ζj)M(ζ−j) = 12g. Thus we have tM(ζj)I =

IM(ζj)−1 = IM(ζ−j). We define U ′ and U ′′ by dζjeu = ω′U ′ + ω′′U ′′ or equiva-

lently by

[
U ′

U ′′

]
= M(ζj)

[
u′

u′′

]
, and let

[
V ′

V ′′

]
= M(ζ−j)

[
v′

v′′

]
, where the letters

u′, u′′, v′ and v′′ are used under the convention of 3.1. Then 3.1.2(2) and the above
equation give

E(dζjeu, v) = 2πi( tU ′v′′ − tU ′′v′)

= 2πi[ tU ′ tU ′′]I

[
v′

v′′

]

= 2πi[ tu′ tu′′] tM(ζj)I

[
v′

v′′

]

= 2πi[ tu′ tu′′]I tM(ζ−j)

[
v′

v′′

]

= 2πi[ tu′ tu′′]I

[
V ′

V ′′

]

= 2πi( tu′V ′′ − tu′′V ′)

= E(u, dζjev).

By linearlity the proof of the first equation is completed. The second is obtained
by the relation in 4.2.1. �
Lemma 4.2.5. If C is of cyclotomic type, then there is j ∈ Z such that

σ(dζeu) = ζjσ(u).

In particular,
(1) If the genus of C is 1 or 2, that is C is defined by y2 = y3 + 1

4 , y2 = y3 − x,

y2 = y5 + 1
4

or y2 = y5 − x, then σ(dζeu) = ζσ(u) ;

(2) If C is defined by y2 = x7 + 1
4 , then σ(dζeu) = ζ4σ(u) ;
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(3) If C is defined by y2 = x7 − x, then σ(dζeu) = ζ6σ(u).

Proof. Since dζe∗Θ = Θ, two functions σ(dζeu) and σ(u) have the same divisor of

zeros. So
σ(dζeu)

σ(u)
is an entire function, i.e. a trivial theta function. On the other

hand, by 3.1.1, we have

σ(dζe(u+ `))

σ(u+ `)
=
χ(dζe`)
χ(`)

σ(dζeu)

σ(u)

expL(dζe(u+ 1
2
`), dζe`)

expL(u+ 1
2`, `)

.

Since χ( ) is 1 or −1, the above quotient is equal to ±σ(dζeu)

σ(u)
by virtue of 4.2.4.

Therefore the function
σ(dζeu)

σ(u)
is bounded. In fact, if M be the maximum of

absolute values of this function on the domain



u = ω′



u′1
...
u′g


+ ω′′



u′′1
...
u′′g


 ; 0 ≤ u′j ≤ 1, 0 ≤ u′′j ≤ 1 for j = 1, · · ·g




,

then
σ(dζeu)

σ(u)
≤ M for all u ∈ Cg. Liouville’s theorem says such function is a

constant function, say
σ(dζeu)

σ(u)
= c. Consequently, if ζk = 1, then

ck =
σ(dζeu)

σ(u)

σ(dζ2eu)

σ(dζeu)
· · · σ(dζk−1eu)

σ(dζk−2eu)

σ(u)

σ(dζk−1eu)
= 1

So c = ζj for some j ∈ Z. If g is 1, 2 or 3, by looking at the Taylor expansion 2.1.1
at O, we get the desired formulae. �

The following Lemma is used in 4.2.8 bellow.

Lemma 4.2.6. Let C be of cyclotomic type. Let c and b be elements of Z[dζe] such
that c = c and such that b ≡ b mod c2. Let P be a point in Cg such that cP ∈ Λ.
Then

L(bP, P ) ≡ L(P, bP ) mod 2πiZ.

Proof. Since b − b ≡ 0 mod c2, we can write b − b = ac2 with a ∈ Z[dζe]. Then
E(P, (b− b)P ) = E(P, ac2P ) = E(cP, acP ) = E(cP, acP ) ∈ 2πiZ by 4.2.4, because
cP ∈ Λ and 3.1.2(2). Therefore1,

E(bP, P ) =E(P, bP ) by 4.2.4

(4.2.1)

=E(P, (b− b)P + bP )

=E(P, (b− b)P ) + E(P, bP ) ≡ E(P, bP ) mod 2πiZ.

1Incidentally, since −E(P, bP ) = E(bP, P ), we have 2E(P, bP ) ≡ 0 mod 2πiZ.
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Furthermore, since

(4.2.2) E(i · bP, P ) = E(iP, bP )

by 3.1.2(1), we obtain that

L(bP, P ) =
1

2i
(E(i · bP, P ) + iE(bP, P )) ≡ L(P, bP ) mod 2πiZ

by 4.2.1, (4.2.1) and (4.2.2). �
Definition 4.2.7. Let ρ : ζ 7→ ζ−1 be the complex conjugate. Let T be an element
of Z[Gal(Q(ζ)/Q)]. If T + ρT is the norm from Q(ζ) to Q, then T is called a type
norm ([11, p.22]).

Lemma 4.2.8. Let C be of cyclotomic type.
(1) Let c and b be elements of Z[dζe] such that, as ideals, (cγ) = (c) for all γ ∈
Gal(Q(ζ)/Q) and such that b ≡ 1 mod c2. Let P be a point of Cg such that
cP ∈ Λ. If T is a type norm, then for all v ∈ Cg.

σ(bT (v+P )) = σ(bT v+P ) exp[
1

2
(Nb−1)L(P, P )+

1

2
L(bT v, (bT−1)P )]χ((bT−1)P ).

(2) Let P0 be a point on C such that x(P0) = 0. For all v ∈ Cg,

σ(v+dζeP0) = σ(v+P0) exp[L(v, (dζe−1)P0)+
1

2
L((dζe−dζe)P0, P0)]χ((dζe−1)P0).

Proof. The assumption on b and c implies bT ≡ 1 mod c2. So (bT − 1)P ∈ Λ and
3.1.1 gives

σ(bT (v + P )) =σ(bT v + P + (bT − 1)P )

=σ(bT v + P ) exp(L(bTv + P +
1

2
(bT − 1)P, (bT − 1)P )χ((bT − 1)P ).

Here

L(bT v + P +
1

2
(bT − 1)P, (bT − 1)P )

=L(
1

2
(bT + 1)P, (bT − 1)P ) + L(bT v, (bT − 1)P )

=
1

2
L((bT + 1)P, (bT − 1)P ) + L(bT v, (bT − 1)P )

≡1

2
(L(bTP, bTP )− L(P, P )) + L(bT v, (bT − 1)P ) mod 2πiZ by 4.2.6

=
1

2
(L(bT bTP, P )− L(P, P )) + L(bT v, (bT − 1)P ) by 4.2.4

=
1

2
(Nb− 1)L(P, P ) + L(bT v, (bT − 1)P ).

Hence we have (1). The formula (2) is obtained by calculation like (1). �
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4.3. Action for the theta divisor.
In this subsection, the curve C is still assumed to be of cyclotomic type. For
b ∈ Z[dζe] we denote by b∗Θ the pull-back of Θ with respect to the endomorphism
b. Therefore κ−1(b∗Θ) is just the divisor of zeros of σ(bu), and E(bu, bv) is the
Riemann form associated to this divisor.

The following proposition seems to be true for all C of cyclotomic type. But the
author has no proof of it for 2-primary type (see 4.1) except for the curve defined
by y2 = x5 − x. We denote by ≈ the algebraic equivalence and by ∼ the linear
equivalence.

Proposition 4.3.1. Assume that g ≥ 2 and that C is not of 2-primary type. Let
ε1, · · · , εn and b be elements of Z[dζe], and let `0, `1, · · · , `n be rational integers.
Let ρ : ζ 7→ ζ−1 be the complex conjugate. If b1+ρ = `0 + `1ε

2
1 + · · ·+ `nε

2
n, then

b∗Θ ∼ `0 ·Θ + `1 · ε∗1Θ + · · ·+ `n · ε∗nΘ.

If C is the curve defined by y2 = x5 + 1
4 , 4.3.1 is proved in [9, p.126, Lemma 1],

We firstly prove the following lemma as in [9].

Lemma 4.3.2. Assume that g ≥ 2 and that C is not of 2-primary type. Let D be
a divisor of J . If D ≈ 0 and d±ζe∗D ∼ D, then D ∼ 0.

Proof. We prove by using the dual Abelian variety of J . Since Θ gives a principal
polarization of J and D ≈ 0, D ∼ Θu − Θ for some u ∈ J , where Θu denotes
the translation of Θ by u ([16, p.77, Theorem 1]). Since dζje(Θ) = Θ, we have
d±ζje(Θu) = Θd±ζjeu ∼ Θu. Hence d±ζjeu = u by [14, p.186, 6.6]. Because n− 1
is not a power of 2, there is an integer ν such that 1 − dζνe and 2 are coprime
in End(J). The above linear equivalences imply that u is 2-torsion and 1 − dζνe-
torsion. Hence u = O and so D ∼ 0. �
Proof of 4.3.1. For a divisor D in J , we denote by ED( , ) the Riemann form
associated to D which takes values in 2πiZ on Λ× Λ([11, p.68]). Then

Eb∗Θ(u, v) =E(bu, bv)

=E(bbu, v) (by 4.2.4)

=E(b1+ρu, v)

=E((`0 + `1ε
2
1 + · · ·+ `nε

2
n)u, v)

=`0E(u, v) + `1E(ε2
1u, v) + · · ·+ `nE(ε2

nu, v)

=`0E(u, v) + `1E(ε1u, ε1v) + · · ·+ `nE(εnu, εnv)

=E`0·Θ+`1·ε∗1Θ+···+`n·ε∗nΘ(u, v).

Thus b∗Θ ≈ `0 ·Θ + `1 · ε∗1Θ + · · ·+ `n · ε∗nΘ. Since the both divisors are invariant
by the action d±ζe∗, 4.3.2 implies they are linearly equivalent. �

For a curve of 2-primary type, the proof above can not be applied. Here we give
a proof only for the curve defined by y2 = x5 − x, for the case that ε1 of 4.3.1
is certain special element. Note that, for this curve, the map Z[dζe] → End(J) is
known to be injective and the image is isomorphic to Z[ζ] by dζje 7→ ζ (see also
6.2).
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Proposition 4.3.3. Assume that C is defined by y2 = x5 − x. Let ε1 = 1 +
√

2 =
1+ζ−ζ3 and let b be an element of Z[ζ]. Let ρ : ζ 7→ ζ−1 be the complex conjugate.
If b1+ρ = `0 + `1ε

2
1 with rational integers `0 and `1, then b∗Θ ∼ `0 ·Θ + `1 · ε∗1Θ.

Proof. We prove the stament in somewhat extended form. First of all, we note the
following. Let b ∈ Z[ζ] and let b = p + qζ + rζ2 + sζ3 with integers p, q, r and s.
Then we have

b1+ρ =

(
p2 + q2 + r2 + s2 +

3

2
(−pq + ps− rs+ qr)

)
+

(
1

2
(pq − ps+ rs− qr)

)
ε2

1.

So, in the expression b1+ρ = `0 + `1ε
2
1 for arbitrary b ∈ Z[ζ] with `0 and `1 ∈ Q,

it is actually 2`0 and 2`1 ∈ Z. Now let us prove that, for every b ∈ Z[ζ], if
2b1+ρ = 2`0 + 2`1ε

2
1 then 2(b∗Θ) ∼ 2`0 ·Θ + 2`1 · ε∗1Θ, and if moreover `0, `1 ∈ Z

then (b∗Θ) ∼ `0 · Θ + `1 · ε∗1Θ by induction with respect to p, q, r and s. In the
following we note that dζje∗Θ = Θ. If four or three of p, q, r and s are 0, the
statement is trivial. We frequently apply [16, p.58, Corollary 2]. We get that

Θ =(1 + i− i)∗Θ
∼(1 + i)∗Θ + (1− i)∗Θ + 0∗Θ− 3Θ

=(1 + i)∗Θ + ((i+ 1)(−i))∗Θ− 3Θ

=2 · (1 + i)∗Θ− 3Θ.

Hence (1+i)∗Θ ∼ 2 ·Θ and (ζ−ζ3)∗Θ = ((1+i)(−ζ3))∗Θ ∼ 2 ·Θ. For the pull-back
of 1 + ζ, from

ε∗1Θ =(1 + ζ − ζ3)∗Θ

∼(1 + ζ)∗Θ + (1− ζ3)∗Θ + (ζ − ζ3)∗Θ− 3Θ

∼(1 + ζ)∗Θ + ((ζ + 1)(−ζ3))∗Θ + 2Θ− 3Θ

=2 · (1 + ζ)∗Θ−Θ,

we have 2·(1+ζ)∗Θ ∼ −Θ+ε∗1Θ and (1−ζ)∗Θ = (1+ζ−ζ−ζ)∗Θ ∼ 4Θ−(1+ζ)∗Θ.
These are a part of the disired results since (1 + ζ)1+ρ = 1

2 (−1 + ε2
1). Therefore the

statement is shown for 1+ζ3 = ζ3(1−ζ), ζ+ζ2 = ζ(1+i) and ζ2+ζ3 = ζ(1+ζ). By
using these results, we can check easily the statement for b with three or four of p,
q, r and s being 1. The rest of the proof is completed by induction as follows. If the
statement is true for b and b−ζj then it is true for b+ζj . In fact, let b1+ρ = `0+`1ε

2
1

and (b − ζj)1+ρ = b1+ρ − (ζ−jb + ζjbρ) + 1 = m0 + m1ε
2
1. Then (ζ−jb + ζjbρ) =

(`0 −m0 + 1) + (`1 −m1)ε2
1. Thus (b + ζj)1+ρ = (2`0 −m0 + 2) + (2`1 −m1)ε2

1.
Note that the coefficients 2`0 −m0 + 2 and m0, 2`1 −m1 and m1 are of the same
parity. On the other hand,

b∗Θ ∼ (b+ ζj)∗Θ + (b− ζj)∗Θ + 0∗Θ− b∗Θ− 2 ·Θ

yields
(b+ ζj)∗Θ ∼ 2b∗Θ− (b− ζj)∗Θ + 2 ·Θ.
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So we have

2 · (b+ ζj)∗Θ ∼ 2(2`0 −m0 + 2) ·Θ + 2(2`1 −m1) · ε∗1Θ.

Furthermore if 2`0 −m0 + 2 and 2`1 −m1 ∈ Z, then we have

(b+ ζj)∗Θ ∼ (2`0 −m0 + 2) ·Θ + (2`1 −m1) · ε∗1Θ.

Hence the statement is also true for b+ ζj . Similarly, if the statement is true for b
and b+ ζj then it is true for b− ζj . Therefore we have shown the assertion for all
b. �
4.4. Further generalization of psi functions.
Here we construct a generarized Weber’s psi function.

Lemma 4.4.1. Let b be an element of Z[dζe]. Under the notation of 4.3.1 or 4.3.3,
the function

φb(u) =
σ(bu)

σ(u)`0σ(ε1u)`1 · · ·σ(εnu)`n

on Cg satisfies
φb(u+ `) = ±φb(u)

for all u ∈ Cg and ` ∈ Λ. Here the signature ± is independent of u. Moreover if C
is not of 2-primary type or is defined by y2 = x5 − x, then

φb(u+ `) = φb(u)

for all u ∈ Cg and ` ∈ Λ.

The author can not follow the proof of [9, Section 3] for C defined by y2 = x5+ 1
4 .

Here we give another proof.

Proof. As is shown in 4.3.1 or 4.3.3,

E(bu, bv) = `0E(u, v) + `1E(ε1u, ε1v) + · · ·+ `nE(εnu, εnv).

Because of this and i(bu) = b(iu) for all u ∈ Cg, we have

L(bu, bv) = `0L(u, v) + `1L(ε1u, ε1v) + · · ·+ `nL(εnu, εnv).

Hence

σ(b(u+ `)) =σ(bu+ b`)

=χ(b`)σ(bu) exp[L(b(u+
1

2
`), b`)]

=χ(b`)σ(bu) exp[`0L(u+
1

2
`, `) exp[`1L(ε1(u+

1

2
`), ε1`)]

· · · exp[`nL(εn(u+
1

2
`), εn`)]
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by 3.1.1. On the other hand, we have

σ(εj(u+ `)) = χ(ε`)σ(εju) exp[L(εj(u+
1

2
`), εj`)]

for j = 1, · · · , n by 3.1.1. Since χ(λ) = ±1 for λ ∈ Λ, we get φb(u+`) = ±φb(u) for
all u ∈ Cg and ` ∈ Λ. As φb(u+ `)/φb(u) is a meromorphic function, the signature
± must be determined by `. Now we assume that C is not of 2-primary type or the
curve defined by y2 = x5 − x. Then 4.3.1 and 4.3.3 imply that the divisor of φb(u)
is the pull-back of a divisor of a function with respect to the map κ : Cg → Cg/Λ.
Thus we can write φb(u) = f(u)e(u), where f(u) is periodic with the periods Λ and
e(u) is a trivial theta function with respect to the lattice Λ (see [10, p.82]). Then
we have

e(u+ `) = ±e(u).

As in the proof of 4.2.5, if M is the maximum of e(u) on the domain




u = ω′



u′1
...
u′g


+ ω′′



u′′1
...
u′′g


 ; 0 ≤ u′j ≤ 1, 0 ≤ u′′j ≤ 1 for j = 1, · · ·g




,

then e(u) ≤M for all u ∈ Cg. Thus Liouville’s theorem says that e(u) is a constant
function. Hence the signature must be +. So we have completed the proof. �

Since the function φb(u) has poles along the pull-back of Θ, we modify it as in
[9].

Definition-Proposition 4.4.2. Let b ∈ Z[dζe]. Let

ψb(u) =
σ(bu)

σ(u)`0
if g = 1 and

ψb(u) =
σ(bu)

σ2(u)`0σ(ε1u)`1 · · ·σ(εnu)`n
if g = 2 or 3,

under the same situation of 4.3.1 or 4.3.2. Then ψb(u + `) = ±ψb(u) for all u ∈
κ−1ι(C) and ` ∈ Λ. Here the signature ± is independent of u. Moreover, if C is of
genus 1 or not of 2-primary type except the curve defined by y2 = x5 − x, then

ψb(u+ `) = ψb(u)

for all u ∈ κ−1ι(C) and ` ∈ Λ.

Proof. The proof can be given by a similar fashion as in 3.2.1 by looking at the
parity of `0. �
Remark 4.4.3. In the rest of this paper we treat only the case b1+ρ = `0 ∈ Z. So
we need not choose {εj} explicitly. We see that, in this case, ψb(u) is a polynomial
of x(u) or a such polynomial multiplied by y(u) by 3.2.2.
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II. Complex Multiplication Formulae

We mention here conventions for the following three Sections. We freely use the
notation of the part I. Let ϕ(u) be an element of the ring

Q[℘ij(u), ℘ijk(u), ℘ijk`(u)
∣∣i, j, k, `, · · ·= 1, · · · , g].

Let b ∈ Z[dζe]. Then 1.4.1 and 1.6.2 shows that ϕ(u)|u∈ι(C) can be expressed in
the form

ϕ(bu)|u∈ι(C) =
P (x(u), y(u))

Q(x(u), y(u))
,

where P (X,Y ) and Q(X,Y ) ∈ Q(ζ)[X,Y ]. Especially we have shown the state-
ments about the coefficients in Theorems 5.1.3, 5.2.3, 6.1.6, and 7.1.6 below.

From now on we assume C is a curve of cyclotomic type. We fix a special point
P0 such that x(P0) = 0: if C is defined by the affine equation y2 = x2g+1 + 1

4 then

P0 is the point (0, 1
2
), if C is defined by y2 = x2g+1 − x then without saying P0 is

the point (0, 0).
Suppose we have labeled the roots of f(x) as in (1.1.1). Such labels are described

in the begining of each Subsection below. By applying the argument of our proof
of 4.2.3, with the same notation, for the integrals along the paths α(1) and β(1), we
can write the entries of ω′, ω′′, η′, and η′′ by Kj ’s and Hj ’s.

We choose and fix a point in Cg whose image of the map κ : C → Cg/Λ = J
is P0. We denote such a point also by P0. Throughout Sections 5, 6, and 7 such a
point is assumed to be given by taking the integral (2.3.1) along the line on which
the x-coordinate is real negative (resp. positive) and the y-coordinate has negative
imaginary part or is real positive if the curve C is defined by y2 = x2g+1 + 1

4 (resp.

y2 = x2g+1 − x). Then the coordinates of dζjeP0’s can be written explicitely, as
we describe in each of following Subections, in the form dζjeP0 = ω′u′ + ω′′u′′ by
taking care that the integral from∞ to (−41/2g+1, 0) (resp. to (1, 0)) along negative
(resp. positive) part of the real axis of x is half of the one along α(1).

In the Sections, we give explicitly the highest and lowest term of P (X,Y ) for
each of special functions ϕ(u).

In Section 5 we write u1 as u, K1 as K, and H1 as H.
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§5. Elliptic curves of cyclotomic type

5.1. The curve defined by y2 = x3 + 1
4 .

We here give a version of the product formula of Eisenstein (see Section 8) for the
curve C defined by y2 = x3 + 1

4 . According to 4.1.1(1) the ring Z[dζe] is isomorphic
to the ring Z[ζ] by dζe 7→ ζ. So we may identify Z[dζe] and Z[ζ].

We let c = −4−
1
3 , a1 = −4−

1
3 ζ, c1 = −4−

1
3 ζ2 in (1.1.1). Then we have

ω′ = 2K(ζ − ζ2), ω′′ = 2K(ζ − 1), η′ = 2H(ζ2 − ζ), η′′ = 2H(ζ2 − 1),

and

(5.1.1) P0 = K(−ζ2 + ζ)−K =
1

3
ω′ +

1

3
ω′′.

Proposition 5.1.1. σ(P0)3 = − exp 3
2L(P0, P0).

Proof. Because of y(P0) = 1
2 , it is obtained from 3.2.4(1) and (2) that σ(2P0) =

−σ(P0)4, On the other hand, from 3.1.1, we get

σ(2P0) = σ(−P0 + 3P0) = − exp[
3

2
L(P0, P0)]σ(−P0) = exp[

3

2
L(P0, P0)]σ(P0).

Here we used that σ(−u) = −σ(u) and that χ(3P0) = −1 which is calculated by
(5.1.1). Hence the statement. �
Proposition 5.1.2. Let b be an element of Z[ζ]. If b ≡ 1 mod (1− ζ)2, then

σ(b(v + P0)) = (−1)(Nb−1)/3χ((b− 1)P0)σ(P0)Nb−1σ(bv + P0)(1 + (d◦ ≥ 1)).

Proof. Since Nb− 1 ≡ 0 mod 3, the statement follows from 4.2.8(1) and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ(P0)Nb−1

which is a result of 5.1.1. �
Theorem 5.1.3. (Eisenstein) Let b ∈ Z[ζ] and assume b ≡ 1 mod (1−ζ)2. Then
ψb(u)2℘(bu) is of the form

ψb(u)2℘(bu) = x(u)
∑

0≤j≤Nb−1
j≡0 mod 3

γjx(u)j

with γj ∈ Q(ζ). Moreover γ0 = b and γNb−1 = 1.

Proof. At First, we look at the Laurent expansion at u = O. By 2.1.1(1), we have

℘(bu)(ψb(u))2 =
σ′(bu)2 − σ′′(bu)σ(bu)

σ(u)2Nb

=
(1 + · · · )2 − (d◦ ≥ 0)(bu+ · · · )

(u+ · · · )2Nb

=
1

u2Nb
+ · · · .
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Since σ(u) is an odd function and has only zeros at u ∈ Λ by 2.2.1(1), we know that
℘(bu)ψb(u)2 is a polynomial of x(u). Thus we have ℘(bu)ψb(u)2 = x(u)Nb + · · ·
by 2.3.1. Secondly, we look at the Laurent expansion at u = P0. Since b − 1 ≡ 0
mod (1− ζ)2,

℘(b(v + P0))(ψb(v + P0))2/℘(v + P0)

=
σ(b(v + P0))2

σ(v + P0)2Nb
· ℘(b(v + P0))

℘(v + P0)

=
(−1)2(Nb−1)/3χ((b− 1)P0)2σ(P0)2Nb−2σ(bv + P0)2

σ(v + P0)2Nb−2σ(v + P0)2
· ℘(bv + P0)

℘(v + P0)
+ (d◦ ≥ 1)

(by using 5.1.2)

=
σ(bv + P0)2

σ(v + P0)2
· b℘

′(bv + P0)

℘′(v + P0)
+ (d◦ ≥ 1) ( since σ(P0) 6= 0 )

=b+ (d◦ ≥ 1) ( since ℘′(bP0) = ℘′(P0) 6= 0).

Because 2.2.1(1) states the function ψb(u)2℘(bu) has only pole at u = O the coeffi-
cient of the lowest term must be b. Since ψb(−ζu)2℘(−ζbu) = ζNbψb(u)2℘(bu) be-
cause of 4.2.5(1), the function must be a polynomial of x(u)3 multiplied by x(u). �
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5.2. The curve defined by y2 = x3 − x.

Here we assume that the curve C is defined by y2 = x3 − x. For this curve the
ring Z[die] is also isomorphic to the ring Z[i] by die 7→ i. So we identify Z[die] and
Z[i]. In this subsection, we write u1 as u. We let c = 1, a1 = 0, and c1 = −1, in
the notation of 1.1.1. The argument in the proof of 4.2.3 applied for the integrals
along the paths α(1) and β(1) gives

ω′ = 2K, ω′′ = 2Ki, η′ = 2H, η′′ = −2Hi.

As in the previous subsection we take a point in C whose image of the map κ :
C→ C/Λ = J = C is P0 and denote it by P0.

Similar path as in (5.1.1) gives

(5.2.1) P0 = iK −K = −1

2
ω′ +

1

2
ω′′.

Proposition 5.2.1. σ(P0)4 = exp[2L(P0, P0)].

Proof. After differentiating the formula of 3.2.4(1), by setting u = P0, we have
−2σ(P0)4 = 2σ′(2P0). On the other hand, we get σ(u+2P0) = χ(2P0)σ(u) exp[L(u+
P0, 2P0)] from 3.1.1. After differentiating this, by setting u = 0, we have σ′(2P0) =
− exp(2L(P0, P0)) because of σ′(0) = 1 and σ(0) = 0. Here we have used the fact
χ(2P0) = −1 which is obtained by (5.2.1). Hence σ(P0)4 = exp[2L(P0, P0)]. �

Proposition 5.2.2. Let b be an element of Z[i]. If b ≡ 1 mod 4, then

σ(b(v + P0)) = χ((b− 1)P0)σ(P0)Nb−1σ(bv + P0)(1 + (d◦ ≥ 1)).

Proof. Since b ≡ 1 mod 4, we have Nb ≡ 1 mod 4. The statement follows from
4.2.8(1) and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ(P0)Nb−1

which is given by 5.2.1. �

Theorem 5.2.3. (Eisenstein) Let b ∈ Z[i] and assume b ≡ 1 mod 4. Then
ψb(u)2℘(bu) is of the form

ψb(u)2℘(bu) = x(u)
∑

0≤j≤Nb−1
j≡0 mod 2

γjx(u)j

with γj ∈ Q(i). Moreover γ0 = b2 and γNb−1 = 1.

Proof. As in the proof of 5.1.3 we have that ℘(bu)ψb(u)2 =
1

u2Nb
+ · · · , that

℘(bu)ψb(u)2 is a polynomial of x(u) with coefficients in Q(i), and that ℘(bu)ψb(u)2 =
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x(u)Nb + · · · . For the Laurent expansion at u = P0, since b − 1 ≡ 0 mod 4 and
℘(u) has a double order zero at P0,

℘(b(v + P0))(ψb(v + P0))2/℘(v + P0)

=
σ(b(v + P0))2

σ(v + P0)2Nb
· ℘(b(v + P0))

℘(v + P0)

=
χ((b− 1)P0)2σ(P0)2Nb−2σ(bv + P0)2

σ(v + P0)2Nb−2σ(v + P0)2
· ℘(bv + P0)

℘(v + P0)
+ (d◦ ≥ 1) (by 5.2.2)

=
σ(bv + P0)2

σ(v + P0)2
· b

2℘′′(bv + P0)

℘′′(v + P0)
+ (d◦ ≥ 1) ( since σ(P0) 6= 0 )

=b2 + (d◦ ≥ 1) ( since ℘′(bP0) = ℘′(P0) 6= 0).

Since ψb(iu)2℘(ibu) = (−1)Nbψb(u)2℘(bu) because of 4.2.5(1), the function must
be a polynomial of x(u)2 multiplied by x(u). �
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§6. Genus two curves of cyclotomic type

6.1. The curve defined by y2 = x5 + 1
4 .

Now let us consider Grant’s original case. So the curve C is defined by y2 = x5 + 1
4
.

According to the isomorphism of 4.1.1(1) the ring Z[dζe] can be identified with Z[ζ]
by dζe 7→ ζ. The endomorphism d−ζje on C2 is described as

(6.1.1) d−ζje(u1, u2) = (−ζju1,−ζ2ju2).

We let c = −4−
1
5 , a1 = −4−

1
5 ζ, c1 = −4−

1
5 ζ2, a2 = −4−

1
5 ζ3, c2 = −4−

1
5 ζ4, in

(1.1.1). Then we have

ω′ =

[
2K1(ζ3 − ζ4) 2K1(ζ − ζ2)
2K2(ζ − ζ3) 2K2(ζ2 − ζ4)

]
,

ω′′ =

[
2K1(−1 + ζ − ζ2 + ζ3) 2K1(ζ − 1)
2K2(−1 + ζ2 − ζ4 + ζ) 2K2(ζ2 − 1)

]
,

η′ =

[
2H1(ζ2 − ζ) 2H1(ζ4 − ζ3)
2H2(ζ4 − ζ2) 2H2(ζ3 − ζ)

]
,

η′′ =

[
2H1(−1 + ζ4 − ζ3 + ζ2) 2H1(ζ4 − 1)
2H2(−1 + ζ3 − ζ + ζ4) 2H2(ζ3 − 1)

]
.

The point P0 is

(6.1.2) P0 =

[
K1(ζ − ζ2 + ζ3 − ζ4)−K1

K2(ζ2 − ζ4 + ζ − ζ3)−K2

]
= ω′

[
2
5
1
5

]
+ ω′′

[
1
5
1
5

]
.

Then dζjeP0 are given by (6.1.1) as follows:

(6.1.3)

dζeP0 =

[
ζK1(ζ − ζ2 + ζ3 − ζ4 − 1)
ζ2K2(ζ2 − ζ4 + ζ − ζ3 − 1)

]
= ω′

[− 3
5

− 4
5

]
+ ω′′

[
1
5
1
5

]
,

dζ2eP0 =

[
ζ2K1(ζ − ζ2 + ζ3 − ζ4 − 1)
ζ4K2(ζ2 − ζ4 + ζ − ζ3 − 1)

]
= ω′

[
2
5
1
5

]
+ ω′′

[
1
5

− 4
5

]
,

dζ3eP0 =

[
ζ3K1(ζ − ζ2 + ζ3 − ζ4 − 1)
ζK2(ζ2 − ζ4 + ζ − ζ3 − 1)

]
= ω′

[− 3
5

1
5

]
+ ω′′

[
1
5
1
5

]
,

dζ4eP0 =

[
ζ4K1(ζ − ζ2 + ζ3 − ζ4 − 1)
ζ3K2(ζ2 − ζ4 + ζ − ζ3 − 1)

]
= ω′

[
2
5

− 4
5

]
+ ω′′

[
1
5
1
5

]
.

Now let us compute the Taylor expansion at u = P0 explicitly. Since

(6.1.4) (dζe − 1)P0 = ω′
[
−1
−1

]
+ ω′′

[
0
0

]

by (6.1.2) and (6.1.3), we have χ((dζe − 1)P0) = 1. After substituting this to
4.2.8(2) and differentiating it by v2, by setting v = O, we have

σ2(dζeP0) = σ2(P0) exp
1

2
L((dζe − dζe)P0, P0),
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where we have used that σ(P0) = 0. Because of 4.2.5(1) and σ2(P0) 6= 0 (see
2.2.1(2)), it must be

exp
1

2
L((dζe − dζe)P0, P0) = ζ4.

Therefore 4.2.8(2) gives rise to

(6.1.5) σ(v + dζeP0) = ζ4σ(v + P0) exp[L(v, (dζe − 1)P0)].

After operating ∂2

∂ui∂uj
to (6.1.5), by setting v = O, we have

(6.1.6) σij(dζeP0) = ζ4σij(P0) + σi(P0)(−η′1j − η′2j)ζ4 + σj(P0)(−η′1i − η′2i)ζ4

by (6.1.4). For the case i = j = 1, (6.1.6) is of no use because σ1(P0) = 0. But
2.2.1 gives σ11(P0) = 2

√
λ0σ2(P0) = σ2(P0). Set i = 1 and j = 2 in (6.1.6), then

σ12(P0) = 2H1(ζ2 + ζ4)σ2(P0). By a similar fashion, we get σ22(P0) = 4H2(ζ4 +
ζ3)σ2(P0) by setting i = j = 2 in (6.1.6). Although these explicit values are
unnecessary to prove 6.1.6 below, we mention this here to make 6.1.1 below clean.
The Taylor expansion at O is given by 2.1.1(2). Thus we have arrived at

Proposition 6.1.1. Assume C be defined by y2 = x5 + 1
4 . Let P0 be the point

whose coordinate is given by (6.1.2). Then

σ(u) =u1 −
1

3
u3

2 + (d◦ ≥ 5),(1)

σ(v + P0) =σ2(P0)
(
v2 +

1

2
v2

1 + γ12v1v2 +
γ22

2
v2

2 +
γ12

2
v3

1(2)

+ (
γ22

4
+
γ2

12

2
)v2

1v2 +
γ12γ22

2
v1v

2
2 +

γ2
22

8
v3

2 + (d◦ ≥ 3)
)
,

where γ12 = 2H1(ζ2 + ζ4) and γ22 = 4H2(ζ3 + ζ4).

Proposition 6.1.2. σ2(P0)5 = exp 5
2
L(P0, P0).

Proof. Because of y(P0) = 1
2
, it is obtained from 3.2.4(1) and (2) that

σ(2P0) = σ2(P0)4, σ(3P0) = σ2(P0)9.

On the other hand, from 3.1.1, we get

σ(3P0) = σ(−2P0 + 5P0) = − exp[
5

2
L(P0, P0)]σ(2P0).

Here we used that σ(−u) = −σ(u) and that χ(5P0) = 1 which is given by (6.1.2).
Therefore we obtain

−σ2(P0)9 = − exp[
5

2
L(P0, P0)]σ2(P0)4

and the statement. �
We denote by τ the element of Gal(Q(ζ)/Q) such that ζτ = ζ2. Then 1 + τ is

a type norm (see 4.2.7) in Z[Gal(Q(ζ)/Q)].
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Lemma 6.1.3. If b ∈ Z[ζ] and b ≡ 1 mod (1−ζ), then χ((b1+τ−1−1)P0)Nb−1 = 1.

Proof. If Nb is odd, the statement is trivial. So we assume Nb is even. For ` ∈ Λ,
it is easily verified from the definition that the value χ(`) is determined only by

` mod 2Λ. By the assumption of b, we may write b1+τ−1

= (a1ζ + a2ζ
2 + a3ζ

3 +
a4ζ

4)(1 − ζ) + 1. Since 2 is a prime in Z[ζ], we have b ≡ 0 mod 2 and hence

b1+τ−1 ≡ 0 mod 2. By simple calculation, we see that a1 ≡ a3 ≡ 1 mod 2 and
a2 ≡ a4 ≡ 0 mod 2. Therefore

χ((b1+τ−1 − 1)P0) =χ((ζ + ζ3)(1− ζ)P0)

=χ((ζ − ζ2 + ζ3 − ζ4)P0)

=1

because of

(ζ − ζ2 + ζ3 − ζ4)P0 = ω′
[
−2
−1

]
+ ω′′

[
1
1

]

which is obtained from (6.1.3). �

Proposition 6.1.4. Let b be an element of Z[ζ]. If b ≡ 1 mod (1− ζ)2, then

σ(b1+τ−1

(v + P0)) = σ2(P0)Nb−1χ((b1+τ−1 − 1)P0)σ(b1+τ−1

v + P0)(1 + (d◦ ≥ 1)).

Proof. The statement follows from 4.2.8(1) and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ2(P0)Nb−1

which is given by 6.1.2. �

Lemma 6.1.5. Let ϕ(u) denote the function (℘2
12 − ℘22℘11)(u). Then it has the

following properties.
(1) ϕ(dζeu) = ζ4ϕ(u),
(2) ϕ(u) ∈ Γ(J,O(3Θ)),
(3) the Taylor expansions of σ(u)3ϕ(u) at O and P0 are of the form

σ(u)3ϕ(u) = 2u2 + (d◦(u1, u2) ≥ 2) and

σ(v + P0)3ϕ(v + P0) = σ2(P0)3(−1 + (d◦(v1, v2) ≥ 1)).

Proof. The statement (1) follows from 4.2.5 and the definition of ℘-functions. The
statement (2) follows from

(σ3ϕ)(u) = −σ2(u)2σ11(u)− σ1(u)2σ22(u)− 2σ1(u)σ2(u)σ12(u) + σ12(u)2σ(u).

The statement (3) is easily derived from a calculation by using the equation above
and 6.1.1. �
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Theorem 6.1.6. (Grant[9]) Let ϕ(u) := (℘2
12 − ℘22℘11)(u). Let b ∈ Z[ζ] and

assume b ≡ 1 mod (1− ζ)2. Then ψb1+τ−1 (u)3ϕ(b1+τ−1

u) is of the form

ψb1+τ−1 (u)3ϕ(b1+τ−1

u) = 2y(u)
∑

0≤j≤3(Nb−1)
j≡0 mod 5

γjx(u)j

with every γj ∈ Q(ζ). Moreover γ3(Nb−1) = (−1)Nbb1+τ and γ0 = −1.

Proof. At first, we look at the Laurent expansion at u = O. By 6.1.5(3) and
6.1.1(1), we have

ψb1+τ−1 (u)3ϕ(b1+τ−1

u)
∣∣∣
u∈κ−1ι(C)

=
σ(b1+τ−1

u)3ϕ(b1+τ−1

u)

σ2(u)3Nb

=
2(b1+τ−1

)τu2 + (d◦(u2) ≥ 2)

(−u2
2 + (d◦(u2) ≥ 4))3Nb

= (−1)Nb2bτ+1 1

u6Nb−1
2

+ · · ·

= (−1)Nb2bτ+1−1

u5
2

(
1

u2
2

)3(Nb−1)

+ · · ·

= (−1)Nb2bτ+1y(u)(x(u)3(Nb−1) + “lower terms of power of x(u)5”).

Here we used 2.3.1 and the fact that ψb1+τ−1 (u)ϕ(b1+τ−1

u)
∣∣∣
u∈κ−1ι(C)

is a polynomial

of x(u) multiplied by y(u), which is deduced from that this function is odd and σ2

has only zeroes at u ∈ Λ by the first statement of 2.2.1(2). Secondly, we look at
the Laurent expansion at u = P0 (κ(P0) = ι(0, 1

2
)). Since b ≡ 1 mod (1 − ζ)2 we

have bτ+1 ≡ 1 mod (1 − ζ)2. Because of (1 − ζ)P0 ∈ Λ and ϕ(u) being periodic,

we have ϕ(b1+τ−1

(v+P0)) = ϕ(b1+τ−1

v+P0). Consequently, 6.1.4, 6.1.1, 6.1.5 and
6.1.3 imply

ψb1+τ−1 (v + P0)3ϕ(b1+τ−1

(v + P0))|v+P0∈κ−1ι(C)

=
σ(b1+τ−1

(v + P0))3ϕ(b1+τ−1

(v + P0))

σ2(b1+τ−1(v + P0))3Nb
|v+P0∈κ−1ι(C)

=
σ2(P0)3(Nb−1)σ(b1+τ−1

v + P0)3χ((b1+τ−1 − 1)P0)3(1 + (d◦(v2) ≥ 1))ϕ(b1+τ−1

v + P0)

[σ2(b1+τ−1v + P0)χ((b1+τ−1 − 1)P0)(1 + (d◦(v2) ≥ 1))]3Nb

=
σ2(P0)3(Nb−1)σ2(P0)3(−1 + (d◦(v1) ≥ 1))

σ2(b1+τ−1v + P0)3Nb
χ((b1+τ−1 − 1)P0)3(1−Nb)

=− 1 + (d◦(v1) ≥ 1)

=− 2y(u)(1 + (d◦(x(u)) ≥ 2)).

Furthermore, since ψb1+τ−1 (d−ζeu)3ϕ(b1+τ−1d−ζeu) = −ζ2Nb−2ψb1+τ−1 (u)3ϕ(b1+τ−1u)

by 4.2.5(1), the function must be a polynomial of x(u)5 multiplied by y(u). �
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6.2. The curve defined by y2 = x5 − x.
We treat here the other genus two curve C defined by y2 = x5−x. The ring Z[dζe]
can also be identified with Z[ζ] by 4.1.1(2). The endomorphism d−ζje acts as

d−ζje(u1, u2) = (−ζju1,−ζ3ju2)

because dζeω(1) = ζω(1) and dζeω(2) = ζ2ω(2). We let c = 1, a1 = i, c1 = −1,
a2 = −i, c2 = 0, in (1.1.1). In this case

ω′ =

[
−2K1ζ

3 2K1(ζ2 − ζ)
−2K2ζ 2K2(ζ6 − ζ3)

]
,

ω′′ =

[
2K1(ζ2 − ζ + 1) 2K1(−ζ + 1)
2K2(ζ6 − ζ3 + 1) 2K2(−ζ3 + 1)

]
,

η′ =

[
−2H1ζ

5 2H1(ζ6 − ζ7)
−2H2ζ

7 2H2(ζ2 − ζ5)

]
,

η′′ =

[
2H1(ζ6 − ζ7 + 1) 2H1(−ζ7 + 1)
2H2(ζ2 − ζ5 + 1) 2H2(−ζ5 + 1)

]
.

Our choice of P0 in C2 gives

(6.2.1) P0 =

[
K1(ζ − ζ2 + ζ3)−K1

K2(ζ3 − ζ6 + ζ)−K2

]
= ω′

[
− 1

2
0

]
+ ω′′

[
− 1

2
0

]
,

and

(6.2.2) dζeP0 =

[
ζK1(ζ − ζ2 + ζ3 − 1)
ζ3K2(ζ3 − ζ6 + ζ − 1)

]
= ω′

[
1
2
1

]
+ ω′′

[
− 1

2
0

]
.

Taking care of the fact χ((dζe − 1)P0) = 1 deduced from

(6.2.3) (dζe − 1)P0 = ω′
[

1
1

]
+ ω′′

[
0
0

]

which is given by (6.2.1) and (6.2.2), we have by similar argument to Subsection
6.1

(6.2.4) σ(v + dζeP0) = ζ6σ(v + P0) exp[L(v, (dζe − 1)P0)].

instead of (6.1.5). After operating ∂2

∂ui∂uj
to (6.2.4), by setting v = O, we have

(6.2.5) σij(dζeP0) = ζ6σij(P0) + σi(P0)(η′1j + η′2j)ζ
6 + σj(P0)(η′1i + η′2i)ζ

6

by (6.2.3). Instead of (6.1.6), we here use (6.2.5). Then we have σ12(P0) = H1(−1−
(
√

2− 1)i)σ2(P0) and σ22(P0) = 2H2(−1 +
√

2 + i)σ2(P0). From 2.2.1(2) we have
σ11(P0) = 2

√
λ0σ2(P0) = 0. Summing up with 2.1.1(2), we arrived at
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Proposition 6.2.1. Assume C be defined by y2 = x5 − x. Let P0 be the point
whose coordinate is given by (6.2.1). Then

σ(u) = u1 −
1

3
u3

2 + (d◦ ≥ 5),(1)

σ(v + P0) = σ2(P0)(v2 + γ12v1v2 +
γ22

2
v2

2 −
1

3
v3

1 +
γ2

12

2
v2

1v2(2)

+
γ12γ22

2
v1v

2
2 +

γ2
22

8
v3

2 + (d◦ ≥ 4)),

where γ12 = H1(−1− (
√

2− 1)i) and γ22 = 2H2(−1 +
√

2 + i).

Proposition 6.2.2. σ2(P0)4 = exp 2L(P0, P0).

Proof. Take y = y(u) as a local parameter at P0 along κ−1ι(C). By 3.2.2(1), we
have 2y(u)σ2(u)4 = σ(2u). After differentiating this with respect to y, by setting
u = P0, we get 2σ2(P0)4 = 2σ1(2P0) because of y(P0) = 0 and σ(2P ) = 0 which is
led from the fact 2P0 ∈ Λ. Moreover, after differentiating with respect to u1 the
equation σ(u + 2P0) = χ(2P0)σ(u) expL(u + P0, 2P0), by settting u = P0, we get
σ1(2P0) = exp 2L(P0, P0) because σ(O) = 0, σ1(O) = 1 and χ(2P0) = 1. Here the
last is obtained from (6.2.1) and the definition of χ( ). Thus, we have proved the
statement. �

We denote by τ the element of Gal(Q(ζ)/Q) such that ζτ = ζ3. Then 1 + τ is
a type norm (see 4.2.7) in Z[Gal(Q(ζ)/Q)].

Proposition 6.2.3. Let b be an element of Z[ζ]. If b ≡ 1 mod 4, then

σ(b1+τ(v + P0)) = σ2(P0)Nb−1σ(b1+τv + P0)(1 + (d◦ ≥ 1)).

Proof. By the assumption, b1+τ − 1 ≡ 0 mod 4 and hence (b1+τ − 1)P0 ∈ 2Λ. So
χ((b1+τ − 1)P0) = 1. Moreover Nb − 1 ≡ 0 mod 4 and 2P0 ∈ Λ, the statement
follows from 4.2.8(1) and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ2(P0)Nb−1

which is given by 6.2.2. �
Lemma 6.2.4. Let

ϕ(u) :=

(
1

8
(℘2222 − 6℘2

22)℘111 +
1

4
(℘1112 − 6℘11℘12)℘222)

)
(u).

Then it has the following properties.
(1) ϕ(dζeu) = ζ3ϕ(u),
(2) ϕ(u) ∈ Γ(J,O(5Θ)),
(3) the Taylor expansions of σ(u)5ϕ(u) at O and P0 are of the form

σ(u)5ϕ(u) = u2
2 + c1u

2
1 + c2u1u2 + (d◦(u1, u2) ≥ 4) for some constants c1 and c2,

σ(v + P0)5ϕ(v + P0) = σ2(P0)5(1 + (d◦(v1, v2) ≥ 1)).
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Proof. The statement (1) follows from 4.2.5(1) and the definition of ℘-functions.
Since

σ(u)2(℘2222 − 6℘2
22)(u) = (−σ2222σ + 4σ222σ2 − 3σ2

22)(u),

σ(u)3℘111(u) = (−2σ3
1 + 3σ1σ11σ − σ111σ

2)(u),

σ(u)2(℘1112 − 6℘11℘
2
12)(u) = (−σ1112σ + 3σ112σ1 + σ111σ2 − 3σ11σ12)(u),

σ(u)3℘222(u) = (−2σ3
2 + 3σ2σ22σ − σ222σ

2)(u)

the statement (2) holds. The expansion in 6.2.1(1) gives

(−σ2222σ + 4σ222σ2 − 3σ2
22)(u)

=− (d◦ ≥ 1)(u1 + (d◦ ≥ 3)) + 4(−2 + (d◦ ≥ 1))(−u2
2 + (d◦ ≥ 4))− 3(−2u2 + (d◦ ≥ 3))2

=− 4u2
2 + c′1u

2
1 + c′2u1u2 + (d◦ ≥ 4) for some constants c′1 and c′2,

(−2σ3
1 + 3σ1σ11σ − σ111σ

2)(u)

=− 2(1 + (d◦ ≥ 1))3 + 3(1 + (d◦ ≥ 1))(d◦ ≥ 3)(d◦ ≥ 1)− (d◦ ≥ 3)(d◦ ≥ 1)2

=− 2 + (d◦ ≥ 2),

(−σ1112σ + 3σ112σ1 − 3σ111σ2 − 3σ11σ12)(u)

=− (d◦ ≥ 1)(u1 + (d◦ ≥ 3)) + 3(d◦ ≥ 2)(d◦ ≥ 4) + (d◦ ≥ 2)(d◦ ≥ 2)− 3(d◦ ≥ 3)(d◦ ≥ 3)

=(d◦ ≥ 2),

(−2σ3
2 + 3σ2σ22σ − σ222σ

2)(u)

=− 2(d◦ ≥ 2)3 + 3(d◦ ≥ 2)(d◦ ≥ 1)(d◦ ≥ 1)− (d◦ ≥ 0)(d◦ ≥ 1)2

=(d◦ ≥ 2).

Therefore
σ(u)5ϕ(u) = u2

2 + c1u
2
1 + c2u1u2 + (d◦ ≥ 4)

for some constants c1 and c2. Similarly, 6.2.1(2) gives

(−2σ3
1 + 3σ1σ11σ − σ111σ

2)(v + P0)

=σ2(P0)3[−2(d◦ ≥ 2)3 + 3(d◦ ≥ 2)(d◦ ≥ 1)(d◦ ≥ 1)− (d◦ ≥ 0)(d◦ ≥ 1)2]

=(d◦ ≥ 2),

(−σ1112σ + 3σ112σ1 + σ111σ2 − 3σ11σ12)(v + P0)

=σ2(P0)2[−(d◦ ≥ 0)(d◦ ≥ 1) + 3(d◦ ≥ 0)(d◦ ≥ 2)

+ (−2 + (d◦ ≥ 1))(1 + (d◦ ≥ 1))− 3(d◦ ≥ 1)(d◦ ≥ 0)]

=σ2(P0)2(−2 + (d◦ ≥ 1)),

(−2σ3
2 + 3σ2σ22σ − σ222σ

2)(v + P0)

=σ2(P0)3[−2(1 + (d◦ ≥ 1))3 + 3(1 + (d◦ ≥ 1))(d◦ ≥ 0)(d◦ ≥ 1)− (d◦ ≥ 0)(d◦ ≥ 1)2

=σ2(P0)3(−2 + (d◦ ≥ 1)).

Hence
σ(u)5ϕ(v + P0) = σ2(P0)5(1 + (d◦ ≥ 1)).

This is (3). �
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Theorem 6.2.5. Let ϕ(u) be as in 6.2.4. Let b ∈ Z[ζ] and assume b ≡ 1 mod 4.
Then ψb1+τ (u)5ϕ(b1+τu) is of the form

ψb1+τ (u)5ϕ(b1+τu) =
∑

0≤j≤5Nb−1
j≡0 mod 4

γjx(u)j

with γj ∈ Q(ζ). Moreover γ5Nb−1 = b2(1+τ) and γ0 = 1.

Proof. We look at the Laurent expansion at u = O. By 6.2.4(3) and 6.2.1(1), we
have

ψb1+τ (u)ϕ(b1+τu)
∣∣∣
u∈κ−1ι(C)

=
σ(b1+τu)5ϕ(b1+τu)

σ2(u)5Nb

=
−(b1+τ )2τu2

2 + (d◦(u2) ≥ 4)

(−u2
2 + (d◦(u2) ≥ 4))5Nb

= b2(τ+1) 1

u10Nb−2
2

+ · · ·

= b2(τ+1)

(
1

u2
2

)5Nb−1

+ · · ·

= b2(τ+1)x(u)5Nb−1 + “lower terms of power of x(u)”.

Here we used 2.3.1 and the fact that ψb1+τ (u)ϕ(b1+τu)
∣∣
u∈κ−1ι(C)

is a polynomial of

x(u), which is deduced from that this function is even and σ2 has only zeroes at u ∈
Λ by the first statement of 2.2.1(2). So we look at the Laurent expansion at u = P0

(κ(P0) = ι(0, 0)). Since b ≡ 1 mod 4 we have bτ+1 ≡ 1 mod 4. Hence, because of
(1− ζ)P0 ∈ Λ and ϕ(u) being periodic, we have ϕ(b1+τ (v + P0)) = ϕ(b1+τv + P0).
Therefore, 6.2.3, 6.2.1 and 6.2.4 imply

ψb1+τ (v + P0)5ϕ(b1+τ (v + P0))|v+P0∈κ−1ι(C)

(6.2.7)

=
σ(b1+τ(v + P0))5ϕ(b1+τ (v + P0))

σ2(b1+τ (v + P0))5Nb

∣∣∣
v+P0∈κ−1ι(C)

=
σ2(P0)5(Nb−1)σ(b1+τv + P0)5χ((b1+τ − 1)P0)5(1 + (d◦(v1) ≥ 1))ϕ(b1+τv + P0)

σ2(P0)5Nb(1 + (d◦ ≥ 1))χ((b1+τ − 1)P0)5Nb

=
σ2(P0)5(Nb−1)σ2(P0)5(1 + (d◦(v1) ≥ 1))χ((b1+τ − 1)P0)5(1−Nb)

σ2(P0)5Nb(1 + (d◦ ≥ 1))

=χ(b1+τ − 1)5(1−Nb)(1 + (d◦(v1) ≥ 1)).

Since b1+τ − 1 is divisible by 4, χ((b1+τ − 1)P0) = 1. Hence continuing the last of
(6.2.7) is equal to

1 + (d◦(x(u)) ≥ 2).

According to 4.2.5(1), ψb1+τ (dζeu)5ϕ(b1+τdζeu) = ζ3(5Nb−1)ψb1+τ (u)5ϕ(b1+τu), and
hence the function must be a polynomial of x(u)4. �
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§7. Genus three curves of cyclotomic type

7.1. The curve defined by y2 = x7 + 1
4 .

Let us treate genus three case. First example is the curve C defined by y2 = x7 + 1
4
.

As in Sections 5 and 6 the ring Z[dζe] is isomorphic to Z[ζ]. Then d−ζje acts such
as

d−ζje(u1, u2) = (−ζju1,−ζ2ju2,−ζ3ju3).

We let c = −4−
1
7 , a1 = −4−

1
7 ζ, c1 = −4−

1
7 ζ2, a2 = −4−

1
7 ζ3, c2 = −4−

1
7 ζ4,

a3 = −4−
1
7 ζ5, c3 = −4−

1
7 ζ6, in (1.1.1). Then

ω′ =




2K1(ζ5 − ζ4) 2K1(ζ3 − ζ4) 2K1(ζ − ζ2)
2K2(ζ3 − ζ) 2K2(ζ6 − ζ) 2K2(ζ2 − ζ4)
2K3(ζ − ζ5) 2K3(ζ2 − ζ5) 2K3(ζ3 − ζ6)


 ,

ω′′ =




2K1(ζ5 − ζ4 + ζ3 − ζ2 + ζ − 1) 2K1(ζ3 − ζ2 + ζ − 1) 2K1(ζ − 1)
2K2(ζ3 − ζ + ζ6 − ζ4 + ζ2 − 1) 2K2(ζ6 − ζ4 + ζ2 − 1) 2K2(ζ2 − 1)
2K3(ζ − ζ5 + ζ2 − ζ6 + ζ3 − 1) 2K3(ζ2 − ζ6 + ζ3 − 1) 2K3(ζ3 − 1)


 ,

η′ =




2H1(ζ2 − ζ3) 2H1(ζ4 − ζ3) 2H1(ζ6 − ζ5)
2H2(ζ4 − ζ6) 2H2(ζ − ζ6) 2H2(ζ5 − ζ3)
2H3(ζ6 − ζ2) 2H3(ζ5 − ζ2) 2H3(ζ4 − ζ)


 ,

η′′ =




2H1(ζ2 − ζ3 + ζ4 − ζ5 + ζ6 − 1) 2H1(ζ4 − ζ5 + ζ6 − 1) 2H1(ζ6 − 1)
2H2(ζ4 − ζ6 + ζ − ζ3 + ζ5 − 1) 2H2(ζ − ζ3 + ζ5 − 1) 2H2(ζ5 − 1)
2H3(ζ6 − ζ2 + ζ5 − ζ + ζ4 − 1) 2H3(ζ5 − ζ + ζ4 − 1) 2K3(ζ4 − 1)


 .

The point P0 in C3 is given by

(7.1.1) P0 =



K1(ζ − ζ2 + ζ3 − ζ4 + ζ5 − ζ6)−K1

K2(ζ2 − ζ4 + ζ6 − ζ + ζ3 − ζ5)−K2

K3(ζ3 − ζ6 + ζ2 − ζ5 + ζ − ζ4)−K3


 = ω′




3
7
2
7
1
7


+ ω′′




1
7
1
7
1
7


 .

Then

(7.1.2)

dζeP0 = ω′



− 4

7

− 5
7

− 6
7


+ ω′′




1
7
1
7
1
7


 , dζ2eP0 = ω′




3
7
2
7
1
7


+ ω′′




1
7
1
7

− 6
7


 ,

dζ3eP0 = ω′



− 4

7

− 5
7

1
7


+ ω′′




1
7
1
7
1
7


 , dζ4eP0 = ω′




3
7
2
7
1
7


+ ω′′




1
7

− 6
7

1
7


 ,

dζ5eP0 = ω′



− 4

7
2
7
1
7


+ ω′′




1
7
1
7
1
7


 , dζ6eP0 = ω′




3
7
2
7
1
7


+ ω′′



− 6

7
1
7
1
7


 .

The Taylor expansion at u = P0 is computed as follows. Taking care of the fact
χ((dζe − 1)P0) = 1 deduced from

(7.1.3) (dζe − 1)P0 = ω′



−1
−1
−1


+ ω′′




0
0
0
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which is given by (7.1.1) and (7.1.2), and the fact σ2(dζeP0) = ζ2σ2(P0) 6= 0
deduced from 4.2.5(2), instead of (6.1.5) we can deduce

(7.1.4) σ(v + dζeP0) = ζ2σ(v + P0) exp[L(v, (dζe − 1)P0)].

from 4.2.8(2). After operating ∂2

∂ui∂uj
to (7.1.4), by setting v = O, we have

(7.1.5)
σij(dζeP0) = ζ4σij(P0) + σi(P0)(−η′1j − η′2j − η′3j)ζ2 + σj(P0)(−η′1i − η′2i − η′3i)ζ2

by using (7.1.3). Similar argument to Subsection 6.1 gives

σ11(P0) =2
√
λ0σ2(P0) = σ2(P0) 6= 0, σ12(P0) =2H1(−ζ3 + ζ4 + ζ6)σ2(P0),

σ22(P0) =4H2(ζ4 + ζ + ζ5)σ2(P0), σ13(P0) =0,

σ23(P0) =2H2(−ζ2 + ζ5 + ζ4)σ2(P0), σ33(P0) =0

provided (6.1.6) is replaced by (7.1.5). Since the Taylor expansion at O is given by
2.1.1(3), we have obtained the following.

Proposition 7.1.1. Assume C be defined by y2 = x7 + 1
4

. Let P0 be the point
whose coordinate is given by (7.1.1). Then

σ(u) =u1u3 − u2
2 −

1

12
u4

1 −
1

3
u2u

3
3 + (d◦ ≥ 6),(1)

σ(v + P0) =σ2(P0)
(
v2 +

1

2
v2

1 + γ12v1v2 +
γ22

2
v2

2 +
(γ12

6
− 1

3

)
v3

1

(2)

+
(γ22

8
+
γ2

12

4

)
v2

1v2 +
γ12γ22

4
v1v

2
2 +

γ2
22

8
v3

2 +
γ23

4
v2

1v3

+ γ22γ12v1v2v3 + γ22γ23v
2
2v3 +

γ2
23

4
v2v

2
3 −

1

3
v3

3 + (d◦ ≥ 4)
)
,

where γ12 = 2H1(−ζ3+ζ4+ζ6), γ22 = 4H2(ζ4+ζ+ζ5) and γ23 = 2H2(−ζ2+ζ5+ζ4).

Proposition 7.1.2. σ2(P0)7 = exp 7
2L(P0, P0).

Proof. Because of y(P0) = 1
2
, it is obtained from 3.2.4(2) and (3) that

σ(3P0) = σ2(P0)9 and σ(4P0) = σ2(P0)16,

respectively. On the other hand, from 3.1.1 we get

σ(4P0) = σ(−3P0 + 7P0) = − exp[
7

2
L(P0, P0)]σ(3P0).

Here we have used that σ(−3P0) = σ(3P0) and (7.1.1) which implies χ(7P0) = 1.
Therefore we obtain

σ2(P0)16 = exp[
7

2
L(P0, P0)]σ2(P0)9

and the statement. �
We denote by τ the element of Gal(Q(ζ)/Q) such that ζτ = ζ3. Then 1 + τ is

a type norm (see 4.2.7) in Z[Gal(Q(ζ)/Q)].
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Lemma 7.1.3. If b ∈ Z[ζ] and ≡ 1 mod (1− ζ), then χ((b1+τ−1+τ−2−1)P0)Nb−1 =
1.

Proof. If Nb is odd, the statemnt is trivial. So we assume Nb is even. For ` ∈ Λ,
it is easily verified from the definition that the value χ(`) is determined only by `

mod 2Λ. By the assumption of b, we may write b1+τ−1+τ−1

= (a1ζ+ a2ζ
2 + a3ζ

3 +
a4ζ

4 + a5ζ
5 + a6ζ

6)(1− ζ) + 1 with integers aj . Since 2 is a prime in Z[ζ], we have

b ≡ 0 mod 2 and hence b1+τ−1+τ−2 ≡ 0 mod 2. By simple calculation, we see that
a1 ≡ a3 ≡ a5 ≡ 1 mod 2 and a2 ≡ a4 ≡ a6 ≡ 0 mod 2. Therefore

χ((b1+τ−1+τ−2 − 1)P0) =χ((ζ + ζ3 + ζ5)(1− ζ)P0)

=χ((ζ − ζ2 + ζ3 − ζ4 + ζ5 − ζ6)P0)

=1

because of

(ζ − ζ2 + ζ3 − ζ4 + ζ5 − ζ6)P0 = ω′



−3
−2
−1


+ ω′′




1
1
1




which is obtained from (7.1.2). �
Proposition 7.1.4. Let b be an element of Z[ζ]. If b ≡ 1 mod (1− ζ)2, then

σ(b1+τ−1+τ−2

(v + P0)) = χ((b1+τ−1+τ−2 − 1)P0)σ2(P0)Nb−1

σ(b1+τ−1+τ−2

v + P0)(1 + (d◦ ≥ 1)).

Proof. The statement follows from 4.2.8 and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ2(P0)Nb−1

which is given by 7.1.2. �
Lemma 7.1.5. Let

ϕ(u) := (℘2
12 − ℘22℘11)(u).

Then it has the following properties.
(1) ϕ(dζeu) = ζ6ϕ(u),
(2) ϕ(u) ∈ Γ(J,O(3Θ)),
(3) the Taylor expansions of σ(u)3ϕ(u) at O and P0 are of the form

σ(u)3ϕ(u) = 2u2
3 + (d◦(u1, u2, u3) ≥ 4) and

σ(v + P0)3ϕ(v + P0) = −σ2(P0)3(1 + (d◦(v1, v2, v3) ≥ 1)).

Proof. The statement (1) follows from 4.2.5(2) and the definition of ℘-functions.
The statement (2) follows from

(σ3ϕ)(u) = −σ2(u)2σ11(u)− σ1(u)2σ22(u) + 2σ1(u)σ2(u)σ12(u) + σ12(u)2σ(u).

The statement (3) is easily derived from the equation above and 7.1.1. �
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Theorem 7.1.6. Let ϕ(u) = (℘2
12−℘22℘11)(u) as above. Let b ∈ Z[ζ] and assume

b ≡ 1 mod (1− ζ)2.

(1) If Nb is odd then ϕb1+τ−1+τ−2 (u)3ϕ(b1+τ−1

u) is of the form

ψb1+τ−1+τ−2 (u)3ϕ(b1+τ−1+τ−1

u) = 2y(u)
∑

0≤j≤ 9(Nb−1)
2

j≡0 mod 7

γjx(u)j

with γj ∈ Q. Moreover γ 9(Nb−1)
2

= b2(τ+1+τ−1) and γ0 = −1.

(2) If Nb is even then ϕb1+τ−1+τ−2 (u)3ϕ(b1+τ−1

u) is of the form

ψb1+τ−1+τ−2 (u)3ϕ(b1+τ−1+τ−2

u) =
∑

0≤j≤ 9Nb−2
2

j≡0 mod 7

γjx(u)j

with γj ∈ Q(ζ). Moreover γ 9Nb−2
2

= 2b2(τ+1+τ−1) and γ0 = −1.

Proof. At First, we look at the Laurent expansion at u = O. By 7.1.5(3) and
7.1.1(1), we have

ψb1+τ−1+τ−2 (u)3ϕ(b1+τ−1+τ−2

u)
∣∣∣
u∈κ−1ι(C)

=
σ(b1+τ−1+τ−2

u)3ϕ(b1+τ−1+τ−2

u)

σ2(u)3Nb

(7.1.5)

=
2(b1+τ−1+τ−2

)2τu2
3 + (d◦ ≥ 4)

(−2u2 − 1
3u

3
3 + (d◦ ≥ 5))3Nb

=
2(b2(τ+1+τ−1))u2

3 + (d◦ ≥ 4)

(−u3
3 + (d◦ ≥ 5))3Nb

= (−1)Nb2b2(τ+1+τ−1) 1

u9Nb−2
3

+ · · · .

This function ψb1+τ−1+τ−2 (u)3ϕ(b1+τ−1+τ−2

u)
∣∣∣
u∈κ−1ι(C)

is odd or even and σ2 has

only zeroes at u ∈ Λ by the first statement of 2.2.1(3), accordingly is a polynomial
of x(u) multiplied by y(u) or a polynomial of x(u). If Nb is odd, then, the last of
(7.1.6) is

= 2b2(τ+1+τ−1)−1

u7
3

(
1

u2
3

)9(Nb−1)/2

+ · · ·

= 2y(u)(b2(τ+1+τ−1)x(u)9(Nb−1)/2 + “lower terms of power of x(u)”)

by 2.3.1 and 2.3.2. If Nb is even, then the last of (7.1.6) is

= 2b2(τ+1+τ−1)

(
1

u2
3

)(9Nb−2)/2

+ · · ·

= 2b2(τ+1+τ−1)x(u)(9Nb−2)/2) + “lower terms of power of x(u)”
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by 2.3.1 and 2.3.2. Secondly, we look at the Laurent expansion at u = P0 (κ(P0) =

ι(0, 1
2)). Since b ≡ 1 mod (1 − ζ)2 we have b1+τ−1+τ−2 ≡ 1 mod (1 − ζ)2. Be-

cause of (1− ζ)P0 ∈ Λ and ϕ(u) being periodic, we have ϕ(b1+τ−1+τ−2

(v + P0)) =

ϕ(b1+τ−1+τ−2

v + P0). Therefore, 7.1.3, 7.1.1, 7.1.4 and 7.1.5 imply
(7.1.7)

ψb1+τ−1+τ−2 (v + P0)3ϕ(b1+τ−1+τ−2

(v + P0))|v+P0∈κ−1ι(C)

=
σ(b1+τ−1+τ−2

(v + P0))3ϕ(b1+τ−1+τ−2

(v + P0))

σ2(b1+τ−1+τ−2(v + P0)3Nb
|v+P0∈κ−1ι(C)

=
{
σ2(P0)3(Nb−1)σ(b1+τ−1+τ−2

v + P0)3χ((b1+τ−1+τ−2 − 1)P0)3(1 + (d◦(v1) ≥ 1))

ϕ(b1+τ−1+τ−2

v + P0)
}

/
{
σ2(b1+τ−1+τ−2

(v + P0)3Nbχ((b1+τ−1+τ−2 − 1)P0)3Nb
}

=
σ2(P0)3(Nb−1)σ2(P0)3(−1 + (d◦(v1) ≥ 1))

σ2(P0)3Nb(1 + (d◦ ≥ 1))
(by 7.1.3)

=− 1 + (d◦(v1) ≥ 1)

=

{ −2y(u)(1 + (d◦(x(u)) ≥ 1)) if Nb is odd,

−1 + (d◦(x(u)) ≥ 1) if Nb is even.

Furthermore, since

ψb1+τ−1+τ−2 (d−ζeu)ϕ(b1+τ−1+τ−2d−ζeu) = (−1)Nbψb1+τ−1+τ−2 (u)ϕ(b1+τ−1+τ−2

u)

by 4.2.5(2), the function must be a polynomial of x(u)7 if Nb even, or one multiplied
by y(u) if Nb is odd. �
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7.2. The curve defined by y2 = x7 − x.
Second example of genus three is the curve C defined by y2 = x7 − x. The ring
Z[dζe] is isomorphic to the ring Z[i] ⊕ Z[ζ] by dζje 7→ ij ⊕ ζj by 4.1.1(2). The
endomorphism dζje acts such as

(7.2.1) dζje(u1, u2, u3) = (ζju1, i
ju2, ζ

5ju3)

because dζeω(j) = ζjω(j) for j = 1, 2, 3. We let c = 1, a1 = ζ2, c1 = ζ4, a2 = ζ6,
c2 = ζ8, a3 = ζ10, c3 = 0, in (1.1.1).

As in the previous Subsections, we have

ω′ =



−2K1ζ

5 2K1(ζ4 − ζ3) 2K1(ζ2 − ζ)
−2K2ζ

3 2K2(ζ + ζ3) 2K2(−1− ζ3)
−2K3ζ 2K3(−ζ2 − ζ3) 2K3(−ζ4 − ζ5)


 ,

ω′′ =




2K1(ζ4 − ζ3 + ζ2 − ζ + 1) 2K1(−ζ3 + ζ2 − ζ + 1) 2K1(−ζ + 1)
2K2 0 2K2(−ζ3 + 1)

2K3(−ζ2 − ζ3 − ζ4 − ζ5 + 1) 2K3(−ζ3 − ζ4 − ζ5 + 1) 2K3(−ζ5 + 1)


 ,

η′ =




2H1ζ 2H1(−ζ2 + ζ3) 2H1(−ζ3 + ζ5)
2H2ζ

3 2H2(−ζ5 − ζ3) 2H2(−1 + ζ3)
2H3ζ

5 2H3(ζ4 + ζ3) 2H3(ζ2 + ζ)


 ,

η′′ =




2H1(−ζ2 + ζ3 − ζ4 + ζ5 + 1) 2H1(+ζ3 − ζ4 + ζ5 + 1) 2H1(ζ5 + 1)
2H2 0 2H2(ζ3 + 1)

2H3(ζ4 + ζ3 + ζ2 + ζ + 1) 2H3(−ζ3 + ζ2 + ζ + 1) 2H3(ζ + 1)


 .

Furthermore

(7.2.2) P0 =



K1(ζ − ζ2 + ζ3 − ζ4 + ζ5)−K1

K2(ζ3 + 1− ζ3 − 1 + ζ3)−K2

K3(ζ5 + ζ4 + ζ3 + ζ2 + ζ)−K3


 = ω′



− 1

2
0
0


+ ω′′



− 1

2
0
0


 .

and, by (7.2.1),

(7.2.3)

dζeP0 =



ζK1(−1 + ζ − ζ2 + ζ3 − ζ4 + ζ5 − 1)
ζ3K2(−1 + ζ3 + 1− ζ3 − 1 + ζ3 − 1)
ζ5K3(−1− ζ5 + ζ4 + ζ3 + ζ2 + ζ − 1)




= ω′




1
2
1
1


+ ω′′



− 1

2
0
0


 .

Let us compute the Taylor expansion at u = P0 explicitly. Taking care of the
fact χ((dζe − 1)P0) = 1 deduced from

(7.2.4) (dζe − 1)P0 = ω′




1
1
−1


+ ω′′




0
0
0
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which is given by (7.2.2) and (7.2.3), and the fact σ2(dζeP0) = ζ3σ2(P0) 6= 0
deduced from 4.2.5(3), we have from 4.2.8(2) by similar argument to Subsection
6.1

(7.2.5) σ(v + dζeP0) = ζ3σ(v + P0) exp[L(v, (dζe − 1)P0)].

instead of (6.1.5). After operating
∂2

∂ui∂uj
to (7.2.5), by setting v = O, we have

(7.2.6) σij(dζeP0) = ζ3σij(P0)+σi(P0)(η′j1+η′j2+η′j3)ζ3+σj(P0)(η′i1+η′i2+η′i3)ζ3.

by using (7.2.4). Similar argument to Subsection 6.1 gives

σ11(P0) =0, σ12(P0) =H1(−1− (2−
√

3)i)σ2(P0),

σ22(P0) =H2(−1− i)σ2(P0), σ13(P0) =0,

σ23(P0) =H1(−1− (
√

3 + 2)i)σ2(P0), σ33(P0) =0,

provided (6.1.6) is replaced by (7.2.6). Summing up these results and 2.2.1(3), we
arrived at

Proposition 7.2.1. Assume C be defind by y2 = x7−x. Let P0 be the point whose
coordinate is given by (7.2.1). Then

σ(u) =u1u3 − u2
2 −

1

12
u4

1 −
1

3
u2u

3
3 + (d◦ ≥ 6),(1)

σ(v + P0) =σ2(P0)(v2 + γ12v1v2 +
γ22

2
v2

2 + γ13v1v3 + γ23v2v3 −
1

3
v3

1(2)

+
γ2

12

4
v2

1v2 +
γ12γ22

4
v1v

2
2 + γ12γ23v1v2v3 +

γ2
22

8
v3

2

+
γ22γ23

4
v2

2v3 +
γ2

23

4
v2v

2
3 −

1

3
v3

3 + (d◦ ≥ 4)),

where γ12 = H1(−1− (2−
√

3)i), γ22 = H2(−1− i) and γ23 = H1(−1− (
√

3 + 2)i).

Proposition 7.2.2. σ2(P0)8 = exp 4L(P0, P0).

Proof. Take y = y(u) as a local parameter at P0 along κ−1ι(C). By 3.2.4(2), we

have 8y(u)σ2(u)9 = σ(3u). After operating d3

dy3 to this, by setting u = P0, we get

(7.2.7) 27σ111(3P0) + 6σ2(3P0) = −48σ2(P0)9

because of y(P0) = 0 and 2.3.2(3). Moreover, we have the equation

(7.2.8) σ(u+ 3P0) = χ(2P0)σ(u+ P0) expL(u+ P0 + P0, 2P0)

given by 3.1.1. After operating ∂3

∂u3
1

to (7.2.8), by putting u = 0, we get σ111(3P0) =

−σ111(P0) exp 2L(P0, P0) because of σ(O) = 0, σ1(O) = 1 and χ(2P0) = 1. The
last is obtained by (7.2.2) and definition of χ( ). Similarly, after differentiating
(7.2.8) with respect to u2, by setting u = 0, we get

(7.2.9) σ2(3P0) = σ2(P0) exp 4L(P0, P0).

Summing up (7.2.7), (7.2.8) and (7.2.9), we arrive at the statement. �
We denote by τ the element of Gal(Q(ζ)/Q) such that ζτ = ζ5. Then 1 + τ is

a type norm (see 4.2.7) in Z[Gal(Q(ζ)/Q)].
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Proposition 7.2.3. Let b be an element of Z[dζe]. If b ≡ 1 mod 8, then

σ(b1+τ(v + P0)) = σ2(P0)Nb−1σ(b1+τv + P0)(1 + (d◦ ≥ 1)).

Proof. Note that 2P0 ∈ Λ. By the assumption, b1+τ − 1 is divisible by 8. So
χ((b1+τ − 1)P0) = 1. Moreover Nb− 1 is divisible by 8, the statement follows from
4.2.8 and

exp[
1

2
(Nb− 1)L(P0, P0)] = σ2(P0)Nb−1

which is given by 7.2.2. �
Lemma 7.2.4. Let

ϕ(u) := [
1

24
(℘2222 − 6℘2

22)℘111 +
1

2
(℘1112 − 6℘11℘22)℘222](u).

Then it has the following properties.
(1) ϕ(dζeu) = ζ3ϕ(u),
(2) ϕ(u) ∈ Γ(J,O(5Θ)),
(3) the Taylor expansions of σ(u)5ϕ(u) at O and P0 are of the form

σ(u)5ϕ(u) = −u3
3 + (d◦(u1, u2, u3) ≥ 5)

σ(v + P0)5ϕ(v + P0) = σ2(P0)5(−1 + (d◦(v1, v2, v3) ≥ 1)).

Proof. The statement (1) follows from 4.2.5(3) and the definition of ℘-functions.
Since

σ(u)2(℘2222 − 6℘2
22)(u) =(−σ2222σ + 4σ222σ2 − 3σ2

22)(u),

σ(u)3℘111(u) =(−2σ3
1 + 3σ1σ11σ − σ111σ

2)(u),

σ(u)2(℘1112 − 6℘11℘
2
22)(u) =(−σ1112σ + 3σ112σ1 − σ111σ2 − 3σ11σ12)(u),

σ(u)3℘222(u) =(−2σ3
2 + 3σ2σ22σ − σ222σ

2)(u).

the statement (2) holds. The expansion in 7.2.1(1) gives

(−σ2222σ + 4σ222σ2 − 3σ2
22)(u)

=− (d◦ ≥ 2)(d◦ ≥ 2) + 4(d◦ ≥ 2)(d◦ ≥ 2)− 3(−2 + (d◦ ≥ 2))2

=12 + (d◦ ≥ 2),

(−2σ3
1 + 3σ1σ11σ − σ111σ

2)(u)

=− 2(u3 + (d◦ ≥ 3))3 + 3(d◦ ≥ 1)(d◦ ≥ 2)(d◦ ≥ 2)− (d◦ ≥ 1)(d◦ ≥ 2)2

=− 2u3
3 + (d◦ ≥ 4),

(−σ1112σ + 3σ112σ1 − σ111σ2 − 3σ11σ12)(u)

=− (d◦ ≥ 0)(d◦ ≥ 2) + 3(d◦ ≥ 1)(d◦ ≥ 1) + (d◦ ≥ 0)(d◦ ≥ 1)− 3(d◦ ≥ 2)(d◦ ≥ 2)

=(d◦ ≥ 2),
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(−2σ3
2 + 3σ2σ22σ − σ222σ

2)(u)

=− 2(d◦ ≥ 1)3 + 3(d◦ ≥ 1)(d◦ ≥ 1)(d◦ ≥ 2)− (d◦ ≥ 3)(d◦ ≥ 2)2

=(d◦ ≥ 3).

Therefore

σ(u)5ϕ(u) = −u3
3 + (d◦ ≥ 5).

Similarly, 7.2.1(2) gives

(−2σ3
1 + 3σ1σ11σ − σ111σ

2)(v + P0)

=− 2(d◦ ≥ 1)3 + 3(d◦ ≥ 1)(d◦ ≥ 1)(d◦ ≥ 1)− (d◦ ≥ 0)(d◦ ≥ 1)2

=(d◦ ≥ 2),

(−σ1112σ + 3σ112σ1 + σ111σ2 − 3σ11σ12)(v + P0)

=σ2(P0)2[−(d◦ ≥ 0)(d◦ ≥ 1) + 3(d◦ ≥ 0)(d◦ ≥ 1)

+ (1 + (d◦ ≥ 1))(1 + (d◦ ≥ 1))− 3(d◦ ≥ 1)(d◦ ≥ 0)]

=σ2(P0)2(1 + (d◦ ≥ 1)),

(−2σ3
2 + 3σ2σ22σ − σ222σ

2)(v + P0)

=σ2(P0)3[−2(1 + (d◦ ≥ 1))3 + 3(d◦ ≥ 0)(d◦ ≥ 0)(d◦ ≥ 1)− (d◦ ≥ 0)(d◦ ≥ 1)2]

=σ2(P0)3(−2 + (d◦ ≥ 1)).

Hence

σ(u)5ϕ(v + P0) = σ2(P0)5(1 + (d◦ ≥ 1)).

So (3) is proved. �

Theorem 7.2.5. Let ϕ(u) be as in 7.2.4. Let b ∈ Z[dζe] and assume b ≡ 1 mod 8.
Then ϕb1+τ (u)5ϕ(b1+τu) is of the form

ψb3(1+τ)(u)5ϕ(b1+τu) =
∑

0≤j≤ 15Nb−3
2

j≡0 mod 6

γjx(u)j

with γj ∈ Q(ζ). Moreover γ 15Nb−3
2

= b3(1+τ) and γ0 = 1.

Proof. At first, we look at the Laurent expansion at u = O. By 7.2.4(3) and
7.2.1(1), we have

ψb1+τ (u)5ϕ(b1+τu)
∣∣∣
u∈κ−1ι(C)

=
σ(b1+τu)5ϕ(b1+τu)

σ2(u)5Nb

=
−(b1+τ )3τu3

3 + (d◦(u2) ≥ 4)

(−2u2 − 1
3
u3

3 + (d◦(u3) ≥ 4))5Nb
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=b3(τ+1) 1

u15Nb−3
3

+ · · ·

=b3(τ+1)

(
1

u2
3

)(15Nb−3)/2

+ · · ·

=b3(τ+1)(x(u)(15Nb−3)/2 + “lower terms of power of x(u)”).

Here we used 2.3.1, 2.3.2 and the fact that ψb1+τ (u)5ϕ(b1+τu)
∣∣∣
u∈κ−1ι(C)

which fact

is deduced from that this function is even and σ2 has only zeroes at u ∈ Λ by the
first statement of 2.2.1(3). Secondly, we look at the Laurent expansion at u = P0

(ι(P0 mod Λ) = (0, 0)). Since b ≡ 1 mod 8 we have bτ+1 ≡ 1 mod 8. Because
of 2P0 ∈ Λ and ϕ(u) being periodic, we have ϕ(b1+τ (v + P0)) = ϕ(b1+τv + P0).
Consequently, 7.2.3, 7.2.1 and 7.2.4 imply

ψb1+τ (v + P0)5ϕ(b1+τ (v + P0))|v+P0∈κ−1ι(C)

=
σ(b1+τ (v + P0))5ϕ(b1+τ (v + P0))

σ2(b1+τ (v + P0))5Nb
|v+P0∈κ−1ι(C)

=
σ2(P0)5(Nb−1)σ(b1+τv + P0)5(1 + (d◦(v1) ≥ 1))ϕ(b1+τv + P0)

σ2(P0)5Nb(−1 + (d◦ ≥ 1))

=
σ2(P0)5(Nb−1)σ2(P0)5(1 + (d◦(v1) ≥ 1))

σ2(P0)5Nb(1 + (d◦ ≥ 1))

=− 1 + (d◦(v1) ≥ 1)

=− 1 + (d◦(x(u)) ≥ 1).

Furthermore, since ψb1+τ (d−ζeu)5ϕ(b1+τd−ζeu) = −ζ3(Nb−1)ψb1+τ (u)5ϕ(b1+τu) by
4.2.5(3), the function must be a polynomial of x(u)6. �
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§8. Some remarks and comments

1. As is mentioned in the beginning of the part II, in each formula in 5.1.3,
5.2.3, 6.1.6, 6.2.6, 7.1.6 and 7.2.6, the coefficients of the right hand side, which
side is a polynomial expression in x(u) and y(u), are contained in the field Q(ζ).
Furthermore we can prove that the coefficients of the right hand side of the each
formula of 5.1.3 and 5.2.3 are contained in Z[e2πi/3] and Z[i], respectively. The
coefficients of the right hand side of the formula of 6.1.6 are also contained in
Z[e2πi/5] (see [9] or [17, p.46]). For each of the other three formulae, its coefficients
seem also to be contained in the ground integer ring.

2. Theorem 5.1.3 implies
∏

P∈b∗(℘)0,
(1−ζ)P0 6=O

/±1

x(P ) = (−1)Nb−1b.

Theorem 5.2.3 implies
∏

P∈b∗(℘)0,
(1+i)P0 6=O

/±1

x(P ) = (−1)Nb−1b2.

These are versions of the product formula of Eisenstein.
3. Theorem 6.1.6 (Grant’s formula) implies

∏

P∈ι(C)·(b1+τ−1
)∗(ϕ)

2P 6=O
/±1

x(P ) =
1

b1+τ
,

where · denotes an intersection of cycles in J . In fact the cycle ι(C) · (b1+τ−1

)∗(ϕ)0

contains only five 2-torsion points (−4
1
5 ζj , 0) with j = 0, · · · , 4 (See [9, p.131]).

Theorem 6.2.6 also implies that the product of roots x(u) of the right hand side

of the formula of 6.2.6 is equal to
1

b2(1+τ)
. Similarly Theorem 7.1.6 states that

the product of roots x(u) of the right hand side of the formula in 7.1.6 is equal to
±1

b2(τ+1+τ−1)
or

±1

2b2(τ+1+τ−1)
, and Theorem 7.2.6 states that the product of roots

x(u) of the right hand side of the formula above is equal to
1

b3(1+τ)
. These are

generalizations of the product formula of Eisenstein.
4. The polynomial of x(u) in the right hand side of each of the formula of

5.1.3 and 5.2.3 is known to be irreducible over the ground ring when b is a prime
element. It is unknown whether the other polynomials of 6.1.6, 6.2.6, 7.1.6 and
7,2,6 are irreducible.

5. The roots of each polynomial of x(u) generate a finite algebraic extension over
the ground field. For the genus one case, such extensions are known to be abelian.
Contrarily, the extensions in higher genus case seem not to be abelian but to have
very large Galois groups. For Grant’s original formula, some numerical examples
are given in [17].
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