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Abstract

We give expressions of some Coble’s hypersurfaces in algebraic explicit forms using
generalised Weierstrass p functions associated to curves of genus two and three.
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1 Introduction

In [5], Coble discussed hypersurfaces which are the singular loci of certain moduli spaces of
algebraic curves. In this paper we seek explicit realisations of such surfaces using generalised
Weierstrass p functions. Our work was inspired by related work [2, 9] expressing the genus
two Kummer surface using such functions.

We first outline some basic notation to describe algebraic curves. Let n and s are positive
integers with n < s. Let & be the algebraic curve defined by

f(z,y) =0,

where
f@,y) =y"+pi(x)y" "+ + pao1y — palz),

and we complete this curve by adding a single point co at infinity. Here, p;(x) is a polynomial
of = of degree |sj/n| of the form

pj(z) = Z fis—knt®, (1Sj<n—1)

k:js—kn>0
pn(x) ="+ :un(é‘*l)xs_l + o s,

where the p;s are constants or parameters belonging to, for instance, the field of complex
numbers C.

Definition 1.1. We define the weight, which is denoted by wt, by the conditions

wt(py) = —j, wi(z) =—n, wit(y) = —s.

Remark 1.2. Using this definition, all the equations in this paper are of homogeneous
weight.

Coble’s results apply only when considering functions related to curves of genus 2 or
3, and in this paper we consider reasonably general examples of such curves, in particular
the three curves (n,s) = (2,5), (2,7), and (3,4). We denote these by %55, 627, €34. In
particular we define

G y° = 4 pax’ + par® + per® + ps + o,
Gor Y = 1T+ pax® + par® + pert + psa® + pnoa® + pox + s,
Ca Y+ (por® + psz + ps)y = &t + per® + pox + 1.

When we discuss analytic issues, we assume these curves to be non-singular. In these cases,
their genera are 2, 3, and 3, respectively; for any such non-singular (n,s) curve we have

g=mn—-1)(s—-1)/2.
In the literature, the curve %55 is often reduced to the so-called Weierstrass form

y? = 2® + pur® + pex® + psa + puo,

which can be achieved by a simple linear transformation in z. We stick to the form given



for €55 since this is the one used by Baker [2] and by Grant [9]. Our results can be reduced
to those for the Weierstrass form by putting po = 0. 657 can be reduced in a similar way.

In the case of €34, we are working directly with the Weierstrass form for conciseness.
The more general (3,4) curve treated in [§]

Y3 4 (x4 pa)y? 4 (per® + pse 4 pg)y = o + psx® 4 pex® 4 pox + piaa,

can be studied in a similar way, and the full results are given at
http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

A defining equation of the Kummer surface which comes from the Jacobian variety of 65 5
(for arbitrary fixed p;) is known from [2]. It is elegantly expressed by using generalizations
of the Weierstrass p-function (see also f; in Theorem 3.5). We extend this idea to get an
explicit expression for the Kummer variety coming from the curve 43 4. This is used to find

the corresponding result when applying Coble’s theory to the moduli space of the curves
63.4.

We first review some basic theory for the generalised o and g functions for these curves,
and then explain Coble’s work, we describing the case for %5 in some detail. In the other
two cases, we only give the main results.

Convention : The ideal generated by some elements is denoted by using ( ).



2 The sigma functions and p-functions

In this Section we recall the o function and g-functions of the curve ¢, which are natural
generalizations of Weierstrass o and p-functions. For simplicity the coefficients of y (of 1st
degree) and one of 57! in f(z,y) are set to be 0.

For each of the three curves under consideration, the spaces of the differential forms of
the first kind as follows:

dx xdx
G5 ¢ wi(T,Y) = ———, wix,y) =7,
0 (@) fo (@) 2(2,) fy(z,y)
dz xdx x2dx
Cor + wi(z,y) = ———, wolz,y) = ——, wi(z,y) = —— v
w i elny) =gy wley) =gy wlnn) =2y
dx xdx ydx

G 0 wi(z,y) = ) wa(x,y) = F@y) w3(z,y) = T @)

Then we define g differential forms of the second kind 7; as follows. Regarding w; and 7,

as elements in

U= @HO(%, dO(k-c0))/dH" (€, lim O(n-00)) ~ HY (%, C),
k k
the set (w1, -+, wy, M, -+, 1n,) forms a symplectic basis with respect to the inner product

(2.1) UxU 3w, n)%w*anogS«/oow)n(OO)),

[e.e]

where Res means taking the residue at oo. Then, we have
o0

(2.2) Wi xM; = —1; *w; = 0; (Kronecker’s 9),
‘ wi*wj:m*nj:(l

Though the choice of n); is not unique, it is easily checked by the generalized Legendre relation
(which follows from (2.1)) that the definition of the function o(u) below is independent of
the choice. Indeed the bilinear form L( , ) defined below, is independent of this choice. For

the curve %55, we choose

(z.1) 323 + 2p01% + p4x
mx,y) = — ’
fy(xay>

1,2

B =y

For the curve %57, a choice of the 7;s are

m(z,y) = — (52" + dpox® + 3pax® + 2462 ) 7

dx x3dx

Ly POV Trny

m(z,y) = — (32 4 2p92® + puya®)



Similarly, for the curve €34, we choose

dx
m(z,y) = —(52®y + pey + poy® + p2’a” + pspip) :
fy(‘ra y)

dz r?dx
e F R A e}

We take a set of closed paths {a; |1 =i < g}, {#;|1 =i = g} on % which form a symplectic
basis of the first homology group H(€,7Z):

@i P =05 a; =10, o-a;=p0- 05 =0.

Using these and the forms {w;}, we define

(o -lfe]

and A = w'Z9 +wW"7Z9. Then A is a lattice in CY. For the Jacobian variety
J=C%/A

of ¥ and each integer 0 < k < g — 1, we have the map from the k-th symmetric product of
¢ to J defined by

k P; P;
Symk%B(Pl,---,Pk)rﬂZ(/ wl,---,/ wg)mod/lEJ.
Jj=1 e

The image of this map is denoted by O], We denote by
k:CI—CI/A

which is the natural map given by modA. Using the {n;}, we define

SRR

J

For any u € CY9, we have uniquely v’ € RY and u” € RY satisfying u = w'v' + w”v”. Then we

define
(2.3) L(u,v) = "u(nv' +n"0").

This L is C-linear in the first variable and R-linear in the second variable. The Riemann
form of € is given by

(2.4) E(u,v) = L(u,v) — L(v,u)



and written as
E(u,v) = 2mi(u'v" —u"0").

This takes values in 274 R and takes values in 2727 on Ax /A. Since, in our cases, the canonical
divisor of % is linearly equivalent to (29 — 2) - 0o, we define the vector that corresponds to
the Riemann constant of €

5:w/5/+w//5// e %/1
Moreover, we define for any ¢ € A
V(0 = exp (2 57— 0+ ).

Now, we define the ¢ function for €.

Proposition 2.5. (Characterization of the o-function) Using the above notation, there
exists a non-zero entire function o(u) on the space C9 which satisfies

(2.6) o(u+0)=x({l)o(u) expL(u+10,0) (ueC9 LeA).

Such a function o(u) is unique up to a non-zero constant factor. (The solution space of (2.6)
is of dimension one over C.) The solution space is independent of the choice of the {a;} and
the {8;}. The function u v+ o(u) has zeroes along k~1(O¥~Y) of order 1 and has no zeros
elsewhere.

By using the corresponding weight as subscripts for the coordinates in the variable u € CY,
where wt(u;) = +7, we can write o(u) explicitly as follows:

o(ug,uy) for €55
o(u) = o(us,us,uy) for €z

o(us, ug,uq) for 4.

Note that this is a different notation than [2, 9] and [8], in those papers the variables are
ordered by the natural numbers and o is written o(uy, us, ... ). Note also that the subscripts
i for the w; denotes a positive weights, whereas the subscripts j for the p; denote negative
weights.

We denote by Q[u][[us,u1]], Qu][[us, us, u1]], and Q[u][[us, ug, u1]], the ring of formal
power series (with coefficients in the ring of polynomials in the coefficients 11,’s) with respect
to the coordinates in u, for the curves 655, 657, and 65 4, respectively. It is known that the
o function has following property:

Lemma 2.7. Up to a multiplicative constant, the function o(u) has following power series
expansion around the origin.
(i) For the curve 6,5, we have

o(ug, ur) = ug — su® + “higher terms in Q[u;]{[us, u1]]”.



(ii) For the curve a7, we have
o (us, ug, u1) = usur — uz® + Susus® + s£us® + “higher terms in Q[puy][us, us, uq]]”.
(iii) For the curve €54, we have
o(us, g, uy) = us — up Up” + % w° + “higher terms in Q[pej][[us, ug, us]]”.
These leading terms are called the Schur-Weierstrass polynomials.

Definition 2.8. We define multivariate p-functions by

0? 0
pij(u) = = ——o(u),  pik(u) = ~9u (u),
iOU;

and similarly for higher derivatives.

Remark 2.9. Taking %55 as an example, we mention here other expressions of p;;(u) and
©ijk(u). For any u = (u3,u;) € C* — A, we have unique pair of points {(z1,41), (z2,%2)} on

©G»5 satisfying
(z1,91) (z2,92)
(ur,u3) = (/ +/ )(WlaWQ)
[ee] [e.e]

for some choice of integration path. Then, using this correspondence between v and {(z1, 1), (z2,92)},
we have

033(0) = (21 + 22)(2122)° + 2p0(2122)* + po(1 + T2) 2122

+ 2p167122 + ps(T1 + T2) + 2p10 — 2U1Y2) (@ — )2
1— T2

@13(U) = —I1T2,
o11(u) = @1 + 9,
Y2 (@1, 22) — y1 Y(22, 21)
(21 — 22)°
V(w1 12) = dping + pe (31 + x2) + 2pew1 (21 + 22) + pazi (21 + 329)
+ Apoz1 Ty 4+ 2129 (371 + 29),

2 2
Y1T2™ — Y21

©333(u) = 2 , where

u)=2"———"""F—,
©133(u) T1 — o
png(u) - _9 Y1To — Y21
xT1 — T2
plll(u) -9 Y1 — Y2 .
Tr1 — X2

See [2] for details of this.



3 The theory for the (2,5)-curve

3.1 Coble’s cubic hypersurface for the (2,5)-curve

For a divisor D on J, we denote by .Z (D) the space of the functions F' on J such that
(F) + D, where (F) is the divisor of F, is an effective divisor, In this Section we denote

o(u) = p11(u)pss(u) — pra(u)®.
Then we have the following.
Proposition 3.1. The spaces £ (nOM)) forn =1, 2, 3 have bases as follows:

z(l) =1,
220 = W) @ Cpii(u) ® Cpis(u) @ Cpss(u),
3(3@[”) = 3(2@[1]) ® Cp111(u) ® Cpr13(u) ® Cprzs(u) ® Cpszsz(u) @ Co(u).

Proof. Tt is easily checked that the functions in the right hand sides are linearly independent
by looking at first few terms of the power series expansion at the origin of o(u)" times the
functions for each corresponding n which are given by (2.7). Then, using the Riemann-Roch
theorem for Abelian varieties ([11])

dime ZmOY) =n? (n=1,2,---),
the formulae are proved. [
Remark 3.2. Defining a Hermitian quadratic form by
H(u,v) = (E(iu,v) + i E(u,v)),
using

X(L+ k) = x(O)x(k) - exp 5 E((, k),

we consider the line bundle
L(H, x).

This is defined on pg. 20 of [11]. On the other hand, we consider for ¢ € A the map defined
by
CxC?3 (z,u) — (zx(ﬁ)expL(u+ %E,E),u —|—€)

The first space corresponds value space of functions on the second space C?, and the second
space is the space of variable u = (us3,u;). The quotient space of this action gives rise to a line
bundle on J, which is equivalent to L(H, x). In [3], Beauville formulated Coble’s theory using
basically the cohomology H O(J, L(H, X)®3). In our result this space is concretely described
as follows.

We set up a projective space of dimension 8 with coordinates corresponding to the 9
functions appearing in (3.1). The locus of these 9 functions is none other than the Jacobian



variety of . The projective space P is defined by

P:{[X0:X22X42X62X32X52X72X92X8]
| X;€Cforj=0,2<5;<9}.

In our situation, any base ring is acceptable. The X; are labeled by their weights according
to the correspondences

Xo ¢+ pu(u), Xg— pi3(u), Xo < ps3(u), Xz pi(u),

X5 «— pus(u), X7+ puss(u), Xo +— pa33(u), Xg— (@( ) + tapr3(u) — pg),
Note that we have modified ¢(u) in the definition of Xg to remain consistent with the
notation of Grant [9]. Other linear modifications are also possible. The parity of j in X;
coincides with the parity of the corresponding p-function. The image of the embedding

C*sur—[o(u) @ *(w)pn(u) @ o*(w)pis(u) @ o*(u)pss(u) : o (u)pi(u) :
o (u)pns(u) © o (w)piz(u) o (w)paaz(u) : 0% (u)5(9(u) + paprz(u) — ps) ] € P

is the Jacobian variety J of %5. The restriction of this map on x~(6M) (C C?) is the
image of O, which is also denoted by ©1. The space V spanned by the 9 functions

03(U) ) 03(14)@11(”) ) 03(u)p13(u), o? u)ps3(u) Ug(“)@ln(u) )
03(“)@113(7«07 ‘73("“)@133(“); ‘73(“)@333(@7 Ug(“)@(“)

coincides with the space of entire functions p(u) satisfying

(3.3)

o(u+0) = x(0) p(u)exp L(3u+ 2¢,0)  for any ¢ € A.

Here L( , ) is the bilinear form defined by (2.3).

For the 3-torsion subgroup h € J[3] of J, we have

o(u+C+h) = x()p(u+ h)exp3L(u+h+ 3(,0)
(0) p(u+ h) exp L(3u + 3h + 30,0)
(0) o(u+ h)exp (L(3u + 20,0) + exp L(3h, 0)).

X
X

Therefore, we have

@(u+ 0+ h)exp L(u+ ¢, —3h) = p(u+ ¢ + h) exp (L(u, —3h) — L(¢, 3h))

= x(0)p(u+ h)exp (L(3u + 2¢,0) + exp L(3h, () exp (L(u, —3h) — L(¢, 3h))
X(O)p(u+ h) exp L(u, —3h) exp L(3u + 2¢,0) exp (L(3h, £) — L(¢,3h))
X(O)p(u+ h) exp L(u, —3h) exp L(3u + 3¢, 0) exp E(3h, ()
X(0)p(u+ h) exp L(u, —3h) exp L(3u + ¢, ¢).

Here E( , ) is the Riemann form of 655 defined at (2.4). From this, the map for h € 34



defined by
V'3 o(u) = ¢(u+ h) exp L(u, —3h)

is a linear transformation of V. Namely, for each h € 3A and any ¢(u) € V, o(u +
h)3 @(u) exp L(u, —3h) is expressed as a linear combination over C, depending on h, of the
9 functions appeared in (3.3). If we denote, for simplicity,

_>
P (u) =[1 pu(u) pi3(u) es(u) pui(u) Eus(u)
p1a3(u) pszz(u) 5(9(w) + paprs(u) — ps)],
there exists, for each h € J[3], a matrix T'(h) of size 9 x 9 independent of u such that
— —
o(u)® exp L(u, —3h)- ¢ (u+ h) =¢ (u) T(h).
We shall denote the projective coordinate corresponding to

(X07X27X47X6aX37X57X7aX97X8)

prpt(X()aXZ) X47 X67 X37 X57 X77 X97 XS)
=[Xo: Xo: Xy Xo: X5: X5 X7 Xo @ Xg.
By the linear transformation, we have projective transformation on P
Th) : Po[Xo:Xo: Xy X X3 X5 X7 Xo @ Xg
L prpt([X()a X27 X47 X67 X37 X57 X77 X97 XS]T(h)> eP.
Here the bracket means a row vector with 9 entries which will be multiplied by T'(h). Since,

for a given h, h and h+ ¢ (¢ € A) give the same transformation, we can regard the group of
the 3-torsion points J[3] ~ $A/A of J acting on P. Now we recall Coble’s theorem.

Theorem 3.4. (Coble [5], pg. 357) There exists a unique hypersurface, say Cb(%zs),
in the 8-dimensional projective space P such that Cb(€s5) is stable under the action of
{T'(h)|h € J[3]} (i.e. any point in Cb(Cas) is transformed to itself); its singular locus
is the image of the Jacobian variety J.

The variety denoted by M4® in pg. 354 of Coble’s paper [5] corresponds to our Jacobian
variety J.

10



3.2 Defining equations of the Jacobian for the (2,5)-curve

Firstly, we recall a result of Grant [9].

Theorem 3.5. (D. Grant [9]) The affine part J — O of J is defined using the coordinates
Xo, X3, X4, X5, X, X7, Xs, Xg of the previous Section as the following system of equations
fi, -+, fz. Here each bracket [ | at the right hand side indicates the weight of the equation.

fi = —nspa® — popo + pspoptz + (papis — p110)Xo — palpspa — pa®) Xy
+ (pspte — papino) Xo + 2(pepe — pa®) Xs + XaX§ + Xo* Xypis
- (,u4,u2 - MG)X4X6 - (/llo + paple — M2M8)X2X4 - (MGMQ - M42)X2X6
+ 114 X0 X4 X — p10Xa" — pop10Xa® — 2us Xy Xs + 2 X516 Xo — 16 X2" X
+ 205 X3 X + X5° — 12X X"
2p10 JI5) —Xg
ps  2(pe +Xe)  pa+ Xy
—Xs pa+Xao 2(pe + Xo) %
A
fo=2Xs — XoXo+ X§ — Xy +ps, [8] f3=X7r— X3Xu+ X5Xo, [7]
Ji= Xo 4+ X5 Xy + paXs + X3 X — 2X0 X7 — 21 X7, [9]
J5 = papts — p1o + peXo — propra Xy + 21 Xg — pops Xo Xy — X2 Xe
+2Xs Xo + Xy X6 + X52 — X2 Xg, [10]
fe = X?,2 - X23 — Xo — Xo Xy — Xy — MQX22 — M6, [6]
fr= —pa Xy + Xg — 1o Xy Xo + X5 X35 — Xy’ X, 8]

—3X4 This is the defin-
Xz ( ing polynomial of the ) [16]

Kummer surface

M\»—tmh—t

Remark 3.6. (1) The equation f = 0 is merely the definition of Xy above.

(2) The equation f; = 0 defines Kummer’s quartic surface (see [10]). The introduction of Xg
has enabled us to write it as a cubic equation ([9]).

(3) The Jacobian J is of course a 6-dimensional variety. The 6 equations fy, - -, f7 defines

it since fl € <f57 f67 f7>7 Indeed,

fi = —2(—2Xg + 4pa® + 32 Xs® — Bpepe + 204Xy — 12 Xo Xy — 4pgXo + 4Xo X357

+ p2? Xo? + p1oXo® + popaXo — 3o Xe — 2X3X5 — 2X2°X4) fo

+ 1 (—Xo + 2006 X3 + 2X2 X7 + 219 X7 — X4 X5 — paXs + 19X3X6 — 20X35°
+ 2002 X2% X3 + 20X23 X3 + 2014 X0 X3 + 20X5 X3X4) f3

(X7 — X3 X4+ XoX5) fa

+ 1(3X9 Xy + 3paXo + 32 Xo? + 3Xo3 + 3X¢ + 3us + 5X3%) f5

+ $(10X3X7 + 5o — 2u2 X3 X5 — 5X4 X + 3pa X2 Xg + pops — 3X2? Xe
+ 8 X2 Xy 4+ 4X9 X3 X5 + 6 X023 Xy + 2u0° X0 Xy + 3X5% — 10X32 X,
+ 8XoX4? + 3us Xo + popaXa — poXoXe + 6p2X4?) f

— 1(2us — 2 X3% + popz + 204Xy + XoXo + 2X42 + 512 X0 X4 + 3u6X2 — 3Xo X3
+ 12" Xo® + App Xo® + 3paXo® + 3Xo" + popa Xo + 1o X + 4X3 X5 + TXo° Xy) fr.

0ol ool

11



3.3 Main result for the (2,5)-Curve

Our main result for the genus two curve 455 is as follows:

Theorem 3.7. Let us define

Sos = X3 X X7 — X3 XuXg + Xy X5 X7 + Xo X5 X9 — Xo X Xg — X572 X6 + X4* X
— XuX6® — XoX7” — pus Xo" Xy + 12 Xa> X + p10X2" — 11aXs® + p16 X2 X4°
+ X7 Xo + Xs® + 11 X5 X7 + popoXa® — p1oXs® — popis Xo Xy — po X7
— 16 X5" — paXaXg + p10XoXa + piope Xa® — peXaXo + ps X3X5
+ pg X + p10 X6 + praprio Xo — papis Xa + plefiio-

Then the projectivization of the hypersurface defined by Sy 5 = 0 gives the Coble’s hyper-
surface Cb(%s5) in the 8-dimensional projective space P.

This polynomial Ss 5 is obtained as follows. The key observation is that it must lie in the ideal
( f2, f3, f1, f5, fe, fr) and must be of constant (finite) weight. Once the weight is known, we
can write the most general element of the ideal by adding products of general polynomials of
suitable weight multiplied by the elements of the Groebner basis of the ideal. These general
polynomials will have undetermined coefficients to be found. We then fix these constants by
requiring that the derivatives of the general element with respect to the X; vanish on the
ideal. In order to guess the correct weight for Sy 5, we note that the minimum weight to
satisfy the derivative conditions is 16, and indeed this turns out to be the weight required.
The resulting calculation is straightforward using a suitable algebraic manipulation system,
such as Maple.

We will check the partial derivatives indeed vanish on J. The polynomial S 5 is rewritten
as follows:

So5 = i(QXs - N2X32 + pephe — 24Xy — pro Xy Xy + M22X22 + M2X23 + popa Xo

+ 19 Xe + 2X3X5 — 2X2°Xy) f

+ £ (9Xg + 1206 X3 — 2X0 X7 — 209 X7 + 9X4 X5 + 9pus X5 + 21X X
— 12X5° — 16 X3 Xy + 1209 X% X5 + 12X5° X3 4+ 169 X5 X5
+ 1204 X0 X3 — 4X3 X4 Xy + 16 X2 X5) f3

+ 1—76(X7 — X3 Xy + X0 X5) f4

= 3(X5" — X537 + X + Xo Xy + paXo + 112X5" + pug) f5

— (510 — 6X7 X3 — 2015 X3 X5 — 5X4 X6 + 3paXo Xy + piopis — 3X2% X
+ 8o X2 Xy — 12X, X3 X5 + 6X5° Xy + 2192 X0 Xy — 5X5% + 6X3%2X,
+ 8XX4® + 3 Xo + piopa Xy — paXoXe + 6112X4°) fo

+ 1208 — 1o X5 + popts + 204Xy + XoXg + 2X4 + 5paXo Xy + 3p16.Xo
—3X32 Xy + 1192 X + 4o Xo® + 31sXo® 43X + piopia X
+ 112 Xe — 4X5 X3 + TX22Xy) fr.

Hence,

Sas € (f2, f3, far [f5: for f7)-

12



The partial derivatives are given by

%52,5 = f3, 3%852,5 = f2 %52,5 = fa,

55525 = (Xo + pa) fo + Xufo — Xofz + Xsfs — fs,

31)(552,5 = Xsfo + (2X0 + 2uaXo + pia + Xu4) fs — 2Xs.fr + Xofs + 2X5 fs,

31)(452,5 = —pafo — (2Xo X3 — X5 + 210 X3) f3 — Xafa — Xo fs
— (2X5 Xy — X6 + 202 X4) fo + (2X4 + pa + 2X0% + 212.X5) f,

%52,5 = —(2X0 X3 — X5 + 212.X3) fo
+ (5X6 + 4pte + 4paXo® + 2Xo Xy + 4pa Xo +4X5% — 20, Xy — 4X57) f
— Xy fs+2X5f5 +4(X7 — X3 Xy + X5X0) fs — 2X5 f7,

%52,5 = (2u2° X — 36 — 3X6 + 202X — 4Xo Xy — 204 Xo + flofis + 3X32)f2
+ (3Xo X5 — X7 — X3 Xy + 210 X5) f3 + X5 fa — (Xa + pa + 209 Xo + 3X2°) f5
— (g + 314Xy — 3Xo X + 4X 4% + 6o X0 Xy — 6X3X5 + 6X27Xy) f
+ (5X6 + 6t + 242Xy + 61 X5% + 10X X, + 614 Xy + 6X5% — 6X3%) £,

Moreover, the partial derivatives with respect to the coefficients are given by

%5275 = fe, 8%8525 = fr, 3%65'2,5 = (Xo + p2)fo — f5,
%5275 = (X2 + o Xo — Xy) fo + Xsfs — Xofs + Xufr,
%52,5 = —(paXo + Xo + s + 2X0 Xy — X3°) fo + (X5 Xo — X7 — X3X4) f3
— X0 fs — (s + paXy — XoXg + 2X4° + 200 X0 Xy — 2X3X5 + 2X5° Xy) fo

4 2( X + pg 4+ praXo? 4+ 2Xo Xy + paXo + X0 — X32) fr.

Note that X6 + M6 + ILLQXQQ + 2X2X4 + ILL4X2 + X23 — X32 = X2X4 — f6-
Theorem 3.8. The radical

\/<8%j82,5 2<529)

15 the defining ideal of the affine part of J.
Proof. From the proof of 3.7, we have

0 o) 0 o) 0 o) 0 o)
[3—)@52,5 TGOS TXO25 TEOZS FRP25 TO25 IXSO25 Fxg 025
—h B fa fs S )M
with some matrix M of size 8 x 6. Consider the points defined by
Xo=2, Xz=1, Xy=1, X5=1, Xe¢=1, =1, pu=1, pg=1, pug=1

the minor obtained from M by removing the first and second rows, and the minor obtained
from M by removing the first and third rows are are

—20X,2 4 2672X; — 281, 144X;% + 2760X, — 6480,
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respectively. Their greatest common divisor is 1. Therefore, all the {32555 |2 < j < 9} are
0 if and only if all the {f; |2 < j < 7} are 0. This completes the proof of the theorem. [

From the results above, we have

Corollary 3.9. The radical ideal of J is given by

85275 85275 882,5 8S275 85275 > .
<8X27 ) an? 6#10’ 8/468’ aMG (_<f27 f37 7f7>)‘

4 The theory for the (3,4)-curve

We discuss here the curve
Ca oy + (1a® + psw + pg)y = (2° + pe” + prox + pa).

We use similar notation as in the previous Section. The Jacobian of €34 is denoted by J,
for example. We shall omit the construction of the function o(u). which is written in [8], for
instance. Note that in [8] we consider the more general (3,4) curve

(4.1) Yo 4 (i + pa)y” + (pax® + s + ps)y = (2" + paa® + per® + prox + pa).

In this paper we consider the Weierstrass form ¢34 in order to keep the results to a man-
ageable size for display. Full results for the curve 4.1 are given at
http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

Let us define

Q1115 = P1115 — 615011,
which belongs to I'(J, 0(20)).

Lemma 4.2. We have

['(J,0(20)) = C1 ® Cp11 ® Cp12 @ Cp1s ® Cpar @ Cpas ® Cpss @ CQu115.

The functions above are even. We prepare projective coordinates
X27 X3a X67 X47 X7a XlOa XS

corresponding to the last 7 functions with wt(X;) = —j. and one more coordinate X
corresponding to the constant function 1. We denote by [P the projective space of dimension
7 with these coordinates. In this situation, the group of 2-torsion points J[2] of J acts on P
through the similarly defined matrix T'(h) with h € J[2] as for the curve %55 in the previous
Section.

The PDEs satisfied by these variables are detailed in [8]. For example we have, in the
present notation,

Pl = X5® =4 Xo%puy — 4 Xo Xy + X% + 4 X,
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Py Prip = 4 X502 X5 — 2 X5 Xapy — 2 Xopis — X3Xy — 2 X7,
4 4 4
P1212 =4X,X5" — §X6,U2 +4 Xope — §H8 + X% — ng,

Note that the r.h.s. of these relations is at most cubic in the X;.

Theorem 4.3. (Coble [6], p.106) There exists unique quartic hypersurface, say Cb(6s.4),
in the space P such that Cb(%€3,4) is stable under the action of {T'(h)|h € J[2]} and its
singular locus is the image of J. The hypersurface Cb(%54) is the Kummer variety of J,
namely, it is the quotient variety of J by identifying points P and [—1|P, where [—1] is
the (—1)-multiplication on J.

Now we explain how to get what we will call a Kummer Relation (KR), a polynomial
identity involving double-pole functions (p;; and Q1115). Most KRs are generated from cross
products of quadratic 3-index g;;, relations. If

A= gk, B = §emn C= §opq> D = §rst,

Then
(AB)(CD) — (AC)(BD) =0,

is a Kummer Relation, since each of the quadratic 3-index g;;; polynomials such as AB can
be written as cubics in the 2-pole functions. More specifically such cross-products can be
divided into three classes:

(A*)(B*) — (AB)* =0, A# B,
(A?)(BC) — (AB)(AC) =0, A, B,C, all different,
(AB)(CD) — (AC)(BD) =0, :

{ (AB)(C'D) — (AD)(BC) =0, A, B,C, D all different.

We see that KRs formed in this way can be at most sextic. Some KRs can be reduced to
quartics or lower by adding suitable multiples of other KRs.

In addition to these KRs, we can find one other polynomial identities in the X; which
cannot be derived from this type of formula. This difference follows from a simple weight
argument, and from examination of the Grobner base representations. How do we find these
extra relations? We take a known bilinear ;i relation and multiply by a suitable @y,p.
After substituting for all known quadratic 3-index products, what we have left should be a
known KR derived from a cross-product equation, or something new.

In the (3,4) case, the first “standard” KR is

3.4) _
K£4 ) = @%11@%12 - (@111@112)2 =0,

which gives a quartic with weight —14. The lowest weight relation of this type is

92559355 - (9555@255)2 =0,
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of weight —54. In addition, there is one “special” KR which cannot be generated from the
quadratic 3-index ;i equations. This extra relation, which is vital to our calculations, is of
weight —12. In the present case we have

Ko = — 3 Xop0? X3% + 12 16 X% 4+ 12 s X2 X5 + 3 X202 X2 — 4 X2 X0 — 12 pe X2 o
— 6 X4 X0 X3 — 6 15 Xopo X3 — 3 119 Xo Xy® + 4 Xopo® Xo + 3 X3 — 3 Xypn X3?
— 4 Xo*Xg — 4 X0 s + 12 X3 X0 X7 — 12 Xopig Xy + 4 Xop1o Xs — 2 Xopispio
— 3 Xous® + 12 X6 X3” + 3 X376 — 3 XuXaps — 3 X7 Xz00 — 3X4" — 6 X2 X9
+ 3 Xapg + 3 X4 Xs + 6 X6 + 6 Xopte — 3 Xrfis + 6 .

The first “standard” KR outlined above, K4, is quintic, but can be reduced to a cubic in
the X; coordinates by the use of K,

Ky = 6M8M2X22 — 3 Xopa X3 X7 + 4 Xy Xo Xgpio — X32X6,u2 + 6X22X10 — 3 X0 X3
-+ X2X4X8 + 4X2,LL8X4 - 6X2X62 + 6X2X6,u6 - 3X2X7,u5 - X32X8 - M8X32
- 3X4X3X7 + 3X6X42 - 4,LL2X62 - 6X2/L12 - 4X6X8 - 4M8X6 - 3X72.

The reduction of K4 from quintic to cubic is carried out by taking the normal form of the
quintic with respect to K75 using graded reverse lexicographic ordering (tdeg(X10,X8,X7,X6,
X4,X3,X2) in Maple). We can then calculate a Grobner basis from { K75, K14} and use it to
reduce the next element from our set of KR, i.e. K5, etc. Proceeding in this way we build
up a set of algebraically independent quartic KR of decreasing weight at weights —12, —14,
—15, —16 (two equations), —17 and —18. Note that there may be more than one KR at
a particular weight, here we find it necessary to use two of weight —16, but only one from
those at weight —17, —18. Hence only 7 KRs are required — all the rest can be shown to
belong to the ideal (Ko, K14, K15, K164, K16p, K17, K15). There are a total of 825 KRs in all,
not counting the special K5 given above.

We can then examine the Grobner basis for this ideal, using the tdeg ordering as in the
genus 2 case. The Grobner basis consists of eight cubics and fourteen quartics, with weights
ranging from —14 to —29. We now attempt to ascertain the weight of the corresponding
Coble quartic. As in the genus two case, we argue that the cubics are formed by the deriva-
tives of the Coble quartic by the variables X;. Since the smallest weight cubic is of weight
—14, and the largest weight X is of weight —10, this suggests the Coble quartic is of weight
—24. We then build up a general quartic using the same techniques as for the cubic in genus
two, and solve for the unknown coefficients by requiring that the quartic and its derivatives
lie in the Kummer variety described above.

As in the (2,5)-curve, we can easily pass to a homogeneous form of the Coble quartic by
introducing a homogenizing coordinate X,. Since we are using a graded mononomial order
in our Grobner base calculations, we can work with homogenized versions of our Grobner
basis (see Cox et al. [7], Chapter 8, Section 4). The calculations for the projective version of
the Coble surface using this basis go through with minor modifications to give the projective
closure of the affine surface given by Theorem 4.4.

Our second main result is as follows:
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Theorem 4.4. The Coble hypersurface Cb(%54) in 4.3 in the 7-dimensional projective
space P is the projectivization of the hypersurface defined by Ss4 = 0, where

S34 = 4Xg® — 108X7% X 10 — 144 X6 Xs X109 + 108 X6* — 108X, X6 X ;>
— 36X X62Xg + 108X42 XX 10 + 108X35X7° 4+ T2X3 X6 X7 Xg — 108 X3X4 X7 X1
— 36X3° Xg X109 — 36 X2 X72 X5 — 216 X2 X2 X109 + 36 X2 X4 X X10 + 108X2% X102
+ 36 o X72 X5 + 36 o X6 X2 — 144 1o X2 X10 — 144 112 X4 X® + 180 pp X3 X2 X7
— 36 upX32 X6 X10 — 36 o Xo X6 X772 + 144 115 X0 X4 X6 X 10 — 108 j12 X2 X3 X7 X 19
+ 36 1122 X6 X7% 4+ 96 1122 X2 Xg — 108 115 X 62 X7 — 36 115 X4 X7 Xg — 12 s X3 X2
— 108 15 X2 X7 X 10 + 108 115 X3 X4 X62 — 108 115 X352 X6 X7 — 108 15 X2 X4 X6 X7
+ 108 p15 X2 X3 X772 + 216 116 X 6> — 108 116 X4 X 72 — 36 116 X4 X6 X5 — 36 116 X3X7 X3
— 12 ue X2 Xg? + 216 16 X2 XX 10 + 108 116 X32 X% — 216 116 X2 X3 X6 X7 + 108 116 X2 X 72
+ 64 o> X% — 36 pops XaXe X7 — 60 pops X3 X6 Xs — 12 ug Xs? — 144 g X6 X10
— 144 pg X4 X62 + 36 ug X412 X + 288 g X3 X6 X7 — 36 g X352 X 10 — 36 pug X2 X712
— 144 s X5 X6 Xs + 144 s X2 X4 X10 — 144 pioi6 X4 X6” — 36 popig X3 X6 X7
— 108 p1s X352 X4 X + 108 g X3° X7 — 108 puofis Xo X7 — 96 pioi6 X2 X6 Xs
+ 108 pg X2 X42 X6 — 108 g X2 X3 X4 X7 — 36 119 X7 Xg + 108 119 X 4% X7 — 324 119 X3 X2
+ 36 119 X3 X4 X5 — 216 119 X2 X6 X7 — 108 119 X2 X3 X 10 — 108 119 X33 X
+ 108 19 X2 X3X4 X + 108 119 X2 X352 X7 — 108 119 Xo? X4 X7 — 48 p1o? 115 X3 X6°
— 72 pgpg X7” — 36 15" X Xg — 48 piopis X X + 144 pop1g X4 X — 108 piopig X3 X4 X7
— 108 115> X2 X6” — 360 popis Xo X + 36 popis XoXaXs + 216 piapis Xo* X1
— 192 192 e X2 X2 — 108 5106 X6 X7 + 72 piopio Xe X7 + 144 piopig X3 X4 X
+ 108 popo Xo X4 X7 + 36 12419 X2 X3 X5 + 216 p112.X6” + 108 p112X4 X5 — 216 112 X2 X10
+ 108 1162 X% — 108 110X 4> + 432 1119 X5% X6 + 432 110 X2 X3 X7 — 144 1119 X% Xg
— 36 pops X6> + 108 12 X3* — 216 1112 X2 X357 Xy + 108 p112X2? X4? + 144 po? g X2 X4 X
— 108 p2? s Xo X3 X7 — 36 ps s Xa X7 + 12 s X3 Xs + 216 5118 X2 X3 X
+ 144 p19° 1o X X3 X — 144 s Xa X + 108 a0 Xa X6 + T2 s X3 X7
— 108 po 112 X3 X7 + 48 pugus Xo Xg — 36 5o Xo Xg + 144 popi10 X2 Xg — 108 paji1o X32 X,y
— 108 piopi12 X2 X4 + 432 pgus Xo* X6 — 216 pspo X2 Xg — 144 piopi12.X2% X
— 108 19 X3 X — 24 projusis X3 Xo — 108 piapispis X2 X7 + 36 p15” Xo® — 144 15 X X
— 24 po e X2 Xe + 72 popispio XoXe + 144 p1n> 1112 X0 X6 — 108 pg? X2 X 32
— 108 12 12 X2 X5% + 72 pgpio X7 — 108 ps 12 X7 + 36 pspro X3 X — 108 ps 12 X3Xy
— 216 pgpig Xo” X3 + 432 s 112 X2” X — 108 19° X6 + 216 prg 12 X — 36 115”118 X
— 48 po g X + 108 pigpr12X3% + 108 192 Xo Xy — 432 pig 10 X0 Xy + 144 popg® X0 Xy
— 108 po® Xo® + 432 pigp12Xo” + 36 puopispo Xo X3 — 216 pops 2 Xo X3 — 144 pspi2 X3
+ 108 pi2p19 Xo? — 432 piapis 12 Xo” + 108 12”115 Xo” + 108 prgp12 X3 + 24 pispus” X3
— 48 118> Xo + 72 pspspio Xo — 108 p5° 112 Xo — 72 piopigpa2Xa + 108 p1o” + 16 p1g”.

Proof. Asin the genus two case, we are working with the tdeg ordering, so we can homogenize
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all affine equations using the variable X, and return to the affine version by setting X, =
1. These transformations can be done before or after taking the Groébner basis and give
the same result. By construction, the affine version of the quartic above lies in the ideal
(K12, K14, K15, K164, K16b, K17, K13) described above. Also the affine version of its partial
first derivatives with respect to X9, X, X7, X, X4, X3, Xo, X are cubics and lie in the
same ideal. The first four correspond to the Kummer relations of weight —14, —16, —17,
—18, derived earlier. In addition, the four partial first derivatives of the generating quartic
with respect to p12, 9, g, are quartics and lie in the same ideal. The first two correspond
to the Kummer relations of weight —12, —15, derived earlier. Moreover we can generate
an ideal from these derivative relations and it gives exactly the Kummer variety generated
earlier (in fact the partial first derivative with respect to pg is not required). Since the Coble
quartic is unique, it must be the polynomial Ss 4. O

The calculation also goes through for the full (3,4)-curve
3 2 2 2 _ 4 3 2
y” + (x + pa)y” + (pex + psx + ps)y” = 4 pusa” + pex” + flox + firo

with the resulting quartic having 461 terms in total. The result is displayed at
http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

Remark 4.5. (1) Alternative formulations for the (3,4)-Kummer. Buchstaber, Enolski and
Leykin [4] (BEL) have put forward a powerful general theory of trigonal curves which is in
principle able to generate many of the PDEs involved in the theory for g > 3. However their
approach appears to be restricted to terms involving only ;, or g, (j > ¢ — 1) so it is
not clear how the relation K5 would emerge from the theory. The variety generated by the
Kummer relations in the BEL theory does not appear to be the same as the one discussed
above. However it is related in an interesting way — if we eliminate the variables Xy, Xg,
and X7 from the two ideals using resultants, we get the same single equation of 1506 terms
in Xo, X3, Xy, Xg, of total degree 15.

(2) The authors do not know if the ideal generated by the partial derivatives is a radical
ideal or not.

5 The theory for the (2,7)-curve

For the hyperelliptic curve %57 of genus 3, we are faced with a degenerate situation in
contrast to the case of €3 4.

We define
Au) = %(@1155 —4p15> — 2011055) ().
We see easily that A(u) € £(2012). Tt is know by [1] that

A(u) = (p13935 — P15033 + @%5 — P11055) ().
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Lemma 5.1. We have

Z(©eP) =ct,
Z(208)) = C1 ® Cpi1 ® Cpr3 ® Cpaz ® Cpis ® Cpzs @ Cpss @ CA.

This can be checked by the expansion o(u) = ujus — uz® + %ugul?’ + ﬁulﬁ’.

As in the earlier Sections, we define the following coordinates:

X2 (H A), X1o (<—> @55)7 X3 (<—> @35)7 X (<—> @33),

(5.2)
Ys (< p15), Xu (& p13), Xo (¢ o11)-

In this case, Coble’s theorem in 4.3 holds in degenerate situation, and there must exist a
cubic or lower degree equation in the functions above. However, checking by Maple in the
case with all y; being 0 for the basis in 5.1, there are neither cubic nor linear relations and
there exists a quadratic relation and no other quadratic ones. The quadratic relation of the
functions gives the hypersurface defined by

(5.3) Xig + Xe Xy — XeYs+ YZ — X10Xo =0

which is given by rewriting A. But, by Coble’s theorem, there must be a quartic equation
in X;s whose partial derivative vanish on the image of the Jacobian J of €5 7. Therefore the
Coble hypersurface in this case must be

(X12 + Xs Xy — XoYs + Y§ — X10X2)? = 0.
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