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1 Introduction

In [5], Coble discussed hypersurfaces which are the singular loci of certain moduli spaces of

algebraic curves. In this paper we seek explicit realisations of such surfaces using generalised

Weierstrass ℘ functions. Our work was inspired by related work [2, 9] expressing the genus

two Kummer surface using such functions.

We first outline some basic notation to describe algebraic curves. Let n and s are positive

integers with n < s. Let C be the algebraic curve defined by

f(x, y) = 0,

where

f(x, y) = yn + p1(x)y
n−1 + · · ·+ pn−1y − pn(x),

and we complete this curve by adding a single point∞ at infinity. Here, pj(x) is a polynomial

of x of degree bsj/nc of the form

pj(x) =
∑

k:js−kn>0

µjs−knx
k, (1 ≦ j ≦ n− 1)

pn(x) = xs + µn(s−1)x
s−1 + · · ·+ µns,

where the µjs are constants or parameters belonging to, for instance, the field of complex

numbers C.

Definition 1.1. We define the weight, which is denoted by wt, by the conditions

wt(µj) = −j, wt(x) = −n, wt(y) = −s.

Remark 1.2. Using this definition, all the equations in this paper are of homogeneous

weight.

Coble’s results apply only when considering functions related to curves of genus 2 or

3, and in this paper we consider reasonably general examples of such curves, in particular

the three curves (n, s) = (2, 5), (2, 7), and (3, 4). We denote these by C2,5, C2,7, C3,4. In

particular we define

C2,5 : y2 = x5 + µ2x
4 + µ4x

3 + µ6x
2 + µ8x+ µ10,

C2,7 : y2 = x7 + µ2x
6 + µ4x

5 + µ6x
4 + µ8x

3 + µ10x
2 + µ12x+ µ14,

C3,4 : y3 + (µ2x
2 + µ5x+ µ8)y = x4 + µ6x

2 + µ9x+ µ12.

When we discuss analytic issues, we assume these curves to be non-singular. In these cases,

their genera are 2, 3, and 3, respectively; for any such non-singular (n, s) curve we have

g = (n− 1)(s− 1)/2.

In the literature, the curve C2,5 is often reduced to the so-called Weierstrass form

y2 = x5 + µ4x
3 + µ6x

2 + µ8x+ µ10,

which can be achieved by a simple linear transformation in x. We stick to the form given
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for C2,5 since this is the one used by Baker [2] and by Grant [9]. Our results can be reduced

to those for the Weierstrass form by putting µ2 = 0. C2,7 can be reduced in a similar way.

In the case of C3,4, we are working directly with the Weierstrass form for conciseness.

The more general (3, 4) curve treated in [8]

y3 + (xµ1x+ µ4)y
2 + (µ2x

2 + µ5x+ µ8)y = x4 + µ3x
3 + µ6x

2 + µ9x+ µ12,

can be studied in a similar way, and the full results are given at

http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

A defining equation of the Kummer surface which comes from the Jacobian variety of C2,5

(for arbitrary fixed µj) is known from [2]. It is elegantly expressed by using generalizations

of the Weierstrass ℘-function (see also f1 in Theorem 3.5). We extend this idea to get an

explicit expression for the Kummer variety coming from the curve C3,4. This is used to find

the corresponding result when applying Coble’s theory to the moduli space of the curves

C3,4.

We first review some basic theory for the generalised σ and ℘ functions for these curves,

and then explain Coble’s work, we describing the case for C2,5 in some detail. In the other

two cases, we only give the main results.

Convention : The ideal generated by some elements is denoted by using 〈 〉.
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2 The sigma functions and ℘-functions

In this Section we recall the σ function and ℘-functions of the curve C , which are natural

generalizations of Weierstrass σ and ℘-functions. For simplicity the coefficients of y (of 1st

degree) and one of xs−1 in f(x, y) are set to be 0.

For each of the three curves under consideration, the spaces of the differential forms of

the first kind as follows:

C2,5 : ω1(x, y) =
dx

fy(x, y)
, ω2(x, y) =

xdx

fy(x, y)
,

C2,7 : ω1(x, y) =
dx

fy(x, y)
, ω2(x, y) =

xdx

fy(x, y)
, ω3(x, y) =

x2dx

fy(x, y)

C3,4 : ω1(x, y) =
dx

fy(x, y)
, ω2(x, y) =

xdx

fy(x, y)
, ω3(x, y) =

ydx

fy(x, y)
.

Then we define g differential forms of the second kind ηj as follows. Regarding ωi and ηj
as elements in

U = lim−→
k

H0(C , dO(k·∞))
/
dH0(C , lim−→

k

O(n·∞)) ' H1(C ,C),

the set (ω1, · · · , ωg, η1, · · · , ηg) forms a symplectic basis with respect to the inner product

(2.1) U × U 3 (ω, η) 7−→ ω ⋆ η = Res
∞

((∫ ∞

∞
ω
)
η(∞)

)
,

where Res
∞

means taking the residue at ∞. Then, we have

(2.2)
ωi ⋆ ηj = −ηj ⋆ ωi = δij (Kronecker’s δ),

ωi ⋆ ωj = ηi ⋆ ηj = 0.

Though the choice of ηj is not unique, it is easily checked by the generalized Legendre relation

(which follows from (2.1)) that the definition of the function σ(u) below is independent of

the choice. Indeed the bilinear form L( , ) defined below, is independent of this choice. For

the curve C2,5, we choose

η1(x, y) = −
3x3 + 2µ2x

2 + µ4x

fy(x, y)
,

η2(x, y) = −
x2

fy(x, y)
.

For the curve C2,7, a choice of the ηjs are

η1(x, y) = −
(
5x5 + 4µ2x

4 + 3µ4x
3 + 2µ6x

2µ8x
) dx

fy(x, y)
,

η2(x, y) = −
(
3x4 + 2µ2x

3 + µ4x
2
) dx

fy(x, y)
, η3(x, y) = −

x3dx

fy(x, y)
.
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Similarly, for the curve C3,4, we choose

η1(x, y) = −
(
5x2y + µ6y + µ2y

2 + µ2
2x2 + µ5µ2x

) dx

fy(x, y)
,

η2(x, y) = −2xy
dx

fy(x, y)
, η3(x, y) = −

x2dx

fy(x, y)
.

We take a set of closed paths {αj | 1 ≦ i ≦ g }, {βj | 1 ≦ i ≦ g } on C which form a symplectic

basis of the first homology group H1(C ,Z):

αi · βj = βj · αi = δij, αi · αj = βi · βj = 0.

Using these and the forms {ωi}, we define

ω′ =

[ ∫
αj

ωi

]
, ω′′ =

[ ∫
βj

ωi

]
,

and Λ = ω′ Zg + ω′′ Zg. Then Λ is a lattice in Cg. For the Jacobian variety

J = Cg/Λ

of C and each integer 0 ≤ k ≤ g − 1, we have the map from the k-th symmetric product of

C to J defined by

SymkC 3 (P1, · · · ,Pk) 7−→
k∑

j=1

(∫ Pj

∞
ω1, · · · ,

∫ Pj

∞
ωg

)
mod Λ ∈ J.

The image of this map is denoted by Θ[k]. We denote by

κ : Cg −→ Cg/Λ

which is the natural map given by modΛ. Using the {ηi}, we define

η′ =

[ ∫
αj

ηi

]
, η′′ =

[ ∫
βj

ηi

]
.

For any u ∈ Cg, we have uniquely u′ ∈ Rg and u′′ ∈ Rg satisfying u = ω′v′ + ω′′v′′. Then we

define

(2.3) L(u, v) = tu (η′v′ + η′′v′′).

This L is C-linear in the first variable and R-linear in the second variable. The Riemann

form of C is given by

(2.4) E(u, v) = L(u, v)− L(v, u)
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and written as

E(u, v) = 2πi(u′v′′ − u′′v′).

This takes values in 2πiR and takes values in 2πiZ on Λ×Λ. Since, in our cases, the canonical

divisor of C is linearly equivalent to (2g − 2) · ∞, we define the vector that corresponds to

the Riemann constant of C

δ = ω′δ′ + ω′′δ′′ ∈ 1
2
Λ.

Moreover, we define for any ℓ ∈ Λ

χ(ℓ) = exp
(
2πi (δ′′ℓ′ − δ′ℓ+ 1

2
ℓ′ℓ′′)

)
.

Now, we define the σ function for C .

Proposition 2.5. (Characterization of the σ-function) Using the above notation, there

exists a non-zero entire function σ(u) on the space Cg which satisfies

(2.6) σ(u+ ℓ) = χ(ℓ)σ(u) expL(u+ 1
2
ℓ, ℓ) (u ∈ Cg, ℓ ∈ Λ).

Such a function σ(u) is unique up to a non-zero constant factor. (The solution space of (2.6)

is of dimension one over C.) The solution space is independent of the choice of the {αj} and
the {βj}. The function u 7→ σ(u) has zeroes along κ−1(Θ[g−1]) of order 1 and has no zeros

elsewhere.

By using the corresponding weight as subscripts for the coordinates in the variable u ∈ Cg,

where wt(uj) = +j, we can write σ(u) explicitly as follows:

σ(u) =


σ(u3, u1) for C2,5

σ(u5, u3, u1) for C2,7

σ(u5, u2, u1) for C3,4.

Note that this is a different notation than [2, 9] and [8], in those papers the variables are

ordered by the natural numbers and σ is written σ(u1, u2, . . . ). Note also that the subscripts

i for the ui denotes a positive weights, whereas the subscripts j for the µj denote negative

weights.

We denote by Q[µ][[u3, u1]], Q[µ][[u5, u3, u1]], and Q[µ][[u5, u2, u1]], the ring of formal

power series (with coefficients in the ring of polynomials in the coefficients µj’s) with respect

to the coordinates in u, for the curves C2,5, C2,7, and C3,4, respectively. It is known that the

σ function has following property:

Lemma 2.7. Up to a multiplicative constant, the function σ(u) has following power series

expansion around the origin.

(i) For the curve C2,5, we have

σ(u3, u1) = u3 − 1
3
u1

3 + “ higher terms in Q[µj ][[u3, u1]]”.
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(ii) For the curve C2,7, we have

σ(u5, u3, u1) = u5u1 − u32 + 1
3
u2u1

3 + 1
45
u1

6 + “ higher terms in Q[µj ][[u5, u3, u1]]”.

(iii) For the curve C3,4, we have

σ(u5, u2, u1) = u5 − u1 u22 + 1
20
u1

5 + “ higher terms in Q[µj ][[u5, u2, u1]]”.

These leading terms are called the Schur-Weierstrass polynomials.

Definition 2.8. We define multivariate ℘-functions by

℘ij(u) = −
∂2

∂ui∂uj
σ(u), ℘ijk(u) = −

∂

∂uk
℘ij(u),

and similarly for higher derivatives.

Remark 2.9. Taking C2,5 as an example, we mention here other expressions of ℘ij(u) and

℘ijk(u). For any u = (u3, u1) ∈ C2 −Λ, we have unique pair of points {(x1, y1), (x2, y2)} on

C2,5 satisfying

(u1, u3) =

(∫ (x1,y1)

∞
+

∫ (x2,y2)

∞

)
(ω1, ω2)

for some choice of integration path. Then, using this correspondence between u and {(x1, y1), (x2, y2)},
we have

℘33(u) =
(
(x1 + x2)(x1x2)

2 + 2µ2(x1x2)
2 + µ2(x1 + x2)x1x2

+ 2µ6x1x2 + µ8(x1 + x2) + 2µ10 − 2y1y2
) 1

(x1 − x2)2
,

℘13(u) = −x1x2,
℘11(u) = x1 + x2,

℘333(u) = 2
y2 ψ(x1, x2)− y1 ψ(x2, x1)

(x1 − x2)3
, where

ψ(x1, x2) = 4µ10 + µ8(3x1 + x2) + 2µ6x1(x1 + x2) + µ4x1
2(x1 + 3x2)

+ 4µ2x1
3x2 + x1

3x2(3x1 + x2),

℘133(u) = 2
y1x2

2 − y2x12

x1 − x2
,

℘113(u) = −2
y1x2 − y2x1
x1 − x2

,

℘111(u) = 2
y1 − y2
x1 − x2

.

See [2] for details of this.
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3 The theory for the (2, 5)-curve

3.1 Coble’s cubic hypersurface for the (2, 5)-curve

For a divisor D on J , we denote by L (D) the space of the functions F on J such that

(F ) +D, where (F ) is the divisor of F , is an effective divisor, In this Section we denote

℘̃(u) = ℘11(u)℘33(u)− ℘13(u)
2.

Then we have the following.

Proposition 3.1. The spaces L (nΘ[1])) for n = 1, 2, 3 have bases as follows:

L (Θ[1]) = C1,
L (2Θ[1]) = L (Θ[1])⊕ C℘11(u)⊕ C℘13(u)⊕ C℘33(u),

L (3Θ[1]) = L (2Θ[1])⊕ C℘111(u)⊕ C℘113(u)⊕ C℘133(u)⊕ C℘333(u)⊕ C℘̃(u).

Proof. It is easily checked that the functions in the right hand sides are linearly independent

by looking at first few terms of the power series expansion at the origin of σ(u)n times the

functions for each corresponding n which are given by (2.7). Then, using the Riemann-Roch

theorem for Abelian varieties ([11])

dimC L (nΘ[1]) = n2 (n = 1, 2, · · · ),

the formulae are proved.

Remark 3.2. Defining a Hermitian quadratic form by

H(u, v) = 1
π

(
E(iu, v) + iE(u, v)

)
,

using

χ(ℓ+ k) = χ(ℓ)χ(k) · exp 1
2
E(ℓ, k),

we consider the line bundle

L(H,χ).

This is defined on pg. 20 of [11]. On the other hand, we consider for ℓ ∈ Λ the map defined

by

C× C2 3 (z, u) 7−→
(
z χ(ℓ) expL(u+ 1

2
ℓ, ℓ), u+ ℓ

)
The first space corresponds value space of functions on the second space C2, and the second

space is the space of variable u = (u3, u1). The quotient space of this action gives rise to a line

bundle on J , which is equivalent to L(H,χ). In [3], Beauville formulated Coble’s theory using

basically the cohomology H0
(
J, L(H,χ)⊗3

)
. In our result this space is concretely described

as follows.

We set up a projective space of dimension 8 with coordinates corresponding to the 9

functions appearing in (3.1). The locus of these 9 functions is none other than the Jacobian
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variety of C . The projective space P is defined by

P =
{
[X0 : X2 : X4 : X6 : X3 : X5 : X7 : X9 : X8 ]∣∣ Xj ∈ C for j = 0, 2 ≦ j ≦ 9

}
.

In our situation, any base ring is acceptable. The Xi are labeled by their weights according

to the correspondences

X2 ←→ ℘11(u), X4 ←→ ℘13(u), X6 ←→ ℘33(u), X3 ←→ ℘111(u),

X5 ←→ ℘113(u), X7 ←→ ℘133(u), X9 ←→ ℘333(u), X8 ←→ 1
2
(℘̃(u) + µ4℘13(u)− µ8),

Note that we have modified ℘̃(u) in the definition of X8 to remain consistent with the

notation of Grant [9]. Other linear modifications are also possible. The parity of j in Xj

coincides with the parity of the corresponding ℘-function. The image of the embedding

C2 3 u 7−→ [ σ3(u) : σ3(u)℘11(u) : σ3(u)℘13(u) : σ3(u)℘33(u) : σ3(u)℘111(u) :

σ3(u)℘113(u) : σ3(u)℘133(u) : σ3(u)℘333(u) : σ
3(u)1

2
(℘̃(u) + µ4℘13(u)− µ8) ] ∈ P

is the Jacobian variety J of C2,5. The restriction of this map on κ−1(Θ[1]) (⊂ C2) is the

image of Θ[1], which is also denoted by Θ[1]. The space V spanned by the 9 functions

(3.3)
σ3(u) , σ3(u)℘11(u) , σ

3(u)℘13(u) , σ
3(u)℘33(u) , σ

3(u)℘111(u) ,

σ3(u)℘113(u) , σ
3(u)℘133(u) , σ

3(u)℘333(u) , σ
3(u)℘̃(u)

coincides with the space of entire functions φ(u) satisfying

φ(u+ ℓ) = χ(ℓ)φ(u) expL(3u+ 3
2
ℓ, ℓ) for any ℓ ∈ Λ.

Here L( , ) is the bilinear form defined by (2.3).

For the 3-torsion subgroup h ∈ J [3] of J , we have

φ(u+ ℓ+ h) = χ(ℓ)φ(u+ h) exp 3L(u+ h+ 1
2
ℓ, ℓ)

= χ(ℓ)φ(u+ h) expL(3u+ 3h+ 3
2
ℓ, ℓ)

= χ(ℓ)φ(u+ h) exp
(
L(3u+ 3

2
ℓ, ℓ) + expL(3h, ℓ)

)
.

Therefore, we have

φ(u+ ℓ+ h) expL(u+ ℓ,−3h) = φ(u+ ℓ+ h) exp
(
L(u,−3h)− L(ℓ, 3h)

)
= χ(ℓ)φ(u+ h) exp

(
L(3u+ 3

2
ℓ, ℓ) + expL(3h, ℓ)

)
exp

(
L(u,−3h)− L(ℓ, 3h)

)
= χ(ℓ)φ(u+ h) expL(u,−3h) expL(3u+ 3

2
ℓ, ℓ) exp

(
L(3h, ℓ)− L(ℓ, 3h)

)
= χ(ℓ)φ(u+ h) expL(u,−3h) expL(3u+ 3

2
ℓ, ℓ) expE(3h, ℓ)

= χ(ℓ)φ(u+ h) expL(u,−3h) expL(3u+ ℓ, ℓ).

Here E( , ) is the Riemann form of C2,5 defined at (2.4). From this, the map for h ∈ 1
3
Λ
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defined by

V 3 φ(u) 7→ φ(u+ h) expL(u,−3h)

is a linear transformation of V . Namely, for each h ∈ 1
3
Λ and any φ(u) ∈ V , σ(u +

h)3 φ(u) expL(u,−3h) is expressed as a linear combination over C, depending on h, of the

9 functions appeared in (3.3). If we denote, for simplicity,

→
℘ (u) = [ 1 ℘11(u) ℘13(u) ℘33(u) ℘111(u) ℘113(u)

℘133(u) ℘333(u)
1
2
(℘̃(u) + µ4℘13(u)− µ8) ],

there exists, for each h ∈ J [3], a matrix T (h) of size 9× 9 independent of u such that

σ(u)3 expL(u,−3h)·
→
℘ (u+ h) =

→
℘ (u)T (h).

We shall denote the projective coordinate corresponding to

(X0 , X2 , X4 , X6 , X3 , X5 , X7 , X9 , X8 )

by
prpt(X0 , X2 , X4 , X6 , X3 , X5 , X7 , X9 , X8 )

= [X0 : X2 : X4 : X6 : X3 : X5 : X7 : X9 : X8 ].

By the linear transformation, we have projective transformation on P

T (h) : P 3 [X0 :X2 : X4 : X6 : X3 : X5 : X7 : X9 : X8 ]

7−→ prpt
(
[X0 , X2 , X4 , X6 , X3 , X5 , X7 , X9 , X8 ]T (h)

)
∈ P.

Here the bracket means a row vector with 9 entries which will be multiplied by T (h). Since,

for a given h, h and h+ ℓ (ℓ ∈ Λ) give the same transformation, we can regard the group of

the 3-torsion points J [3] ' 1
3
Λ/Λ of J acting on P. Now we recall Coble’s theorem.

Theorem 3.4. (Coble [5], pg. 357) There exists a unique hypersurface, say Cb(C2,5),

in the 8-dimensional projective space P such that Cb(C2,5) is stable under the action of

{T (h) |h ∈ J [3] } (i.e. any point in Cb(C2,5) is transformed to itself); its singular locus

is the image of the Jacobian variety J .

The variety denoted by M18
2 in pg. 354 of Coble’s paper [5] corresponds to our Jacobian

variety J .
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3.2 Defining equations of the Jacobian for the (2, 5)-curve

Firstly, we recall a result of Grant [9].

Theorem 3.5. (D. Grant [9]) The affine part J −Θ[1] of J is defined using the coordinates

X2, X3, X4, X5, X6, X7, X8, X9 of the previous Section as the following system of equations

f1, · · · , f7. Here each bracket [ ] at the right hand side indicates the weight of the equation.

f1 = −µ8µ4
2 − µ6µ10 + µ8µ6µ2 + (µ2µ8 − µ10)X6 − µ4(µ6µ2 − µ4

2)X4

+ (µ8µ6 − µ4µ10)X2 + 2(µ6µ2 − µ4
2)X8 +X4X

2
6 +X2

2X4µ8

− (µ4µ2 − µ6)X4X6 − (µ10 + µ4µ6 − µ2µ8)X2X4 − (µ6µ2 − µ4
2)X2X6

+ µ4X2X4X6 − µ10X2
3 − µ2µ10X2

2 − 2µ4X4X8 + 2X8µ6X2 − µ6X2
2X6

+ 2µ2X8X6 +X8
2 − µ2X2X6

2

=

∣∣∣∣∣∣∣∣∣
2µ10 µ8 −X6 − 1

2X4

µ8 2(µ6 +X6) µ4 +X4 − 1
2X2

−X6 µ4 +X4 2(µ2 +X2)
1
2

− 1
2X4 − 1

2X2
1
2 0

∣∣∣∣∣∣∣∣∣
( This is the defin-

ing polynomial of the

Kummer surface

)
[16]

f2 = 2X8 −X2X6 +X2
4 − µ4X4 + µ8, [8] f3 = X7 −X3X4 +X5X2, [7]

f4 = X9 +X5X4 + µ4X5 +X3X6 − 2X2X7 − 2µ2X7, [9]

f5 = µ2µ8 − µ10 + µ8X2 − µ2µ4X4 + 2µ2X8 − µ2µ4X2X4 −X2X6

+ 2X8X2 +X4X6 +X5
2 −X2

2X6, [10]

f6 = X3
2 −X2

3 −X6 −X2X4 − µ4X2 − µ2X2
2 − µ6, [6]

f7 = −µ4X4 +X8 − µ2X4X2 +X5X3 −X2
2X4. [8]

Remark 3.6. (1) The equation f2 = 0 is merely the definition of X8 above.

(2) The equation f1 = 0 defines Kummer’s quartic surface (see [10]). The introduction of X8

has enabled us to write it as a cubic equation ([9]).

(3) The Jacobian J is of course a 6-dimensional variety. The 6 equations f2, · · · , f7 defines

it since f1 ∈ 〈f5, f6, f7〉, Indeed,

f1 = −1
4(−2X8 + 4µ4

2 + 3µ2X3
2 − 3µ6µ2 + 2µ4X4 − µ2X2X4 − 4µ6X2 + 4X2X3

2

+ µ2
2X2

2 + µ2X2
3 + µ2µ4X2 − 3µ2X6 − 2X3X5 − 2X2

2X4)f2

+ 1
16(−X9 + 20µ6X3 + 2X2X7 + 2µ2X7 −X4X5 − µ4X5 + 19X3X6 − 20X3

3

+ 20µ2X2
2X3 + 20X2

3X3 + 20µ4X2X3 + 20X2X3X4)f3

+ 1
16(X7 −X3X4 +X2X5)f4

+ 1
8(3X2X4 + 3µ4X2 + 3µ2X2

2 + 3X2
3 + 3X6 + 3µ6 + 5X3

2)f5

+ 1
8(10X3X7 + 5µ10 − 2µ2X3X5 − 5X4X6 + 3µ4X2X4 + µ2µ8 − 3X2

2X6

+ 8µ2X2
2X4 + 4X2X3X5 + 6X2

3X4 + 2µ2
2X2X4 + 3X5

2 − 10X3
2X4

+ 8X2X4
2 + 3µ8X2 + µ2µ4X4 − µ2X2X6 + 6µ2X4

2)f6

− 1
4(2µ8 − µ2X3

2 + µ6µ2 + 2µ4X4 +X2X6 + 2X4
2 + 5µ2X2X4 + 3µ6X2 − 3X2X3

2

+ µ2
2X2

2 + 4µ2X2
3 + 3µ4X2

2 + 3X2
4 + µ2µ4X2 + µ2X6 + 4X3X5 + 7X2

2X4)f7.
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3.3 Main result for the (2, 5)-Curve

Our main result for the genus two curve C2,5 is as follows:

Theorem 3.7. Let us define

S2,5 = X3X6X7 −X3X4X9 +X4X5X7 +X2X5X9 −X2X6X8 −X5
2X6 +X4

2X8

−X4X6
2 −X2X7

2 − µ8X2
2X4 + µ2X4

2X6 + µ10X2
3 − µ4X4

3 + µ6X2X4
2

+X7X9 +X8
2 + µ4X5X7 + µ2µ10X2

2 − µ10X3
2 − µ2µ8X2X4 − µ2X7

2

− µ6X5
2 − µ4X4X8 + µ10X2X4 + µ2µ6X4

2 − µ6X4X6 + µ8X3X5

+ µ8X8 + µ10X6 + µ4µ10X2 − µ4µ8X4 + µ6µ10.

Then the projectivization of the hypersurface defined by S2,5 = 0 gives the Coble’s hyper-

surface Cb(C2,5) in the 8-dimensional projective space P.

This polynomial S2,5 is obtained as follows. The key observation is that it must lie in the ideal

〈 f2, f3, f4, f5, f6, f7 〉 and must be of constant (finite) weight. Once the weight is known, we

can write the most general element of the ideal by adding products of general polynomials of

suitable weight multiplied by the elements of the Groebner basis of the ideal. These general

polynomials will have undetermined coefficients to be found. We then fix these constants by

requiring that the derivatives of the general element with respect to the Xi vanish on the

ideal. In order to guess the correct weight for S2,5, we note that the minimum weight to

satisfy the derivative conditions is 16, and indeed this turns out to be the weight required.

The resulting calculation is straightforward using a suitable algebraic manipulation system,

such as Maple.

We will check the partial derivatives indeed vanish on J . The polynomial S2,5 is rewritten

as follows:

S2,5 =
1
4
(2X8 − µ2X3

2 + µ6µ2 − 2µ4X4 − µ2X4X2 + µ2
2X2

2 + µ2X2
3 + µ2µ4X2

+ µ2X6 + 2X3X5 − 2X2
2X4)f2

+ 1
16
(9X9 + 12µ6X3 − 2X2X7 − 2µ2X7 + 9X4X5 + 9µ4X5 + 21X3X6

− 12X3
3 − 16µ2X3X4 + 12µ2X2

2X3 + 12X2
3X3 + 16µ2X2X5

+ 12µ4X2X3 − 4X3X4X2 + 16X2
2X5)f3

+ 7
16
(X7 −X3X4 +X2X5)f4

− 3
8
(X2

3 −X3
2 +X6 +X2X4 + µ4X2 + µ2X2

2 + µ6)f5

− 1
8
(5µ10 − 6X7X3 − 2µ2X3X5 − 5X4X6 + 3µ4X2X4 + µ2µ8 − 3X2

2X6

+ 8µ2X2
2X4 − 12X2X3X5 + 6X2

3X4 + 2µ2
2X2X4 − 5X5

2 + 6X3
2X4

+ 8X2X4
2 + 3µ8X2 + µ2µ4X4 − µ2X2X6 + 6µ2X4

2)f6

+ 1
4
(2µ8 − µ2X3

2 + µ2µ6 + 2µ4X4 +X2X6 + 2X4
2 + 5µ2X2X4 + 3µ6X2

− 3X3
2X2 + µ2

2X2
2 + 4µ2X2

3 + 3µ4X2
2 + 3X2

4 + µ2µ4X2

+ µ2X6 − 4X5X3 + 7X2
2X4)f7.

Hence,

S2,5 ∈ 〈 f2, f3, f4, f5, f6, f7 〉.

12



The partial derivatives are given by

∂
∂X9

S2,5 = f3,
∂

∂X8
S2,5 = f2,

∂
∂X7

S2,5 = f4,

∂
∂X6

S2,5 = (X2 + µ2)f2 +X4f6 −X2f7 +X3f3 − f5,
∂

∂X5
S2,5 = X3f2 + (2X2

2 + 2µ2X2 + µ4 +X4)f3 − 2X3f7 +X2f4 + 2X5f6,

∂
∂X4

S2,5 = −µ4f2 − (2X2X3 −X5 + 2µ2X3)f3 −X3f4 −X2f5

− (2X2X4 −X6 + 2µ2X4)f6 + (2X4 + µ4 + 2X2
2 + 2µ2X2)f7,

∂
∂X3

S2,5 = −(2X2X3 −X5 + 2µ2X3)f2

+ (5X6 + 4µ6 + 4µ2X2
2 + 2X2X4 + 4µ4X2 + 4X2

3 − 2µ2X4 − 4X3
2)f3

−X4f4 + 2X3f5 + 4(X7 −X3X4 +X5X2)f6 − 2X5f7,
∂

∂X2
S2,5 = (2µ2

2X2 − 3µ6 − 3X6 + 2µ2X2
2 − 4X2X4 − 2µ4X2 + µ2µ4 + 3X3

2)f2

+ (3X2X5 −X7 −X3X4 + 2µ2X5)f3 +X5f4 − (X4 + µ4 + 2µ2X2 + 3X2
2)f5

− (3µ8 + 3µ4X4 − 3X2X6 + 4X4
2 + 6µ2X2X4 − 6X3X5 + 6X2

2X4)f6

+ (5X6 + 6µ6 + 2µ2X4 + 6µ2X2
2 + 10X2X4 + 6µ4X2 + 6X2

3 − 6X3
2)f7.

Moreover, the partial derivatives with respect to the coefficients are given by

∂
∂µ10

S2,5 = f6,
∂

∂µ8
S2,5 = f7,

∂
∂µ6

S2,5 = (X2 + µ2)f2 − f5,
∂

∂µ4
S2,5 = (X2

2 + µ2X2 −X4)f2 +X5f3 −X2f5 +X4f7,

∂
∂µ2

S2,5 = −(µ4X2 +X6 + µ6 + 2X2X4 −X3
2)f2 + (X5X2 −X7 −X3X4)f3

−X2
2f5 − (µ8 + µ4X4 −X2X6 + 2X4

2 + 2µ2X2X4 − 2X3X5 + 2X2
2X4)f6

+ 2(X6 + µ6 + µ2X2
2 + 2X2X4 + µ4X2 +X2

3 −X3
2)f7.

Note that X6 + µ6 + µ2X2
2 + 2X2X4 + µ4X2 +X2

3 −X3
2 = X2X4 − f6.

Theorem 3.8. The radical √〈
∂

∂Xj
S2,5

∣∣∣ 2 ≦ j ≦ 9
〉

is the defining ideal of the affine part of J .

Proof. From the proof of 3.7, we have[
∂

∂X2
S2,5

∂
∂X3

S2,5
∂

∂X4
S2,5

∂
∂X5

S2,5
∂

∂X6
S2,5

∂
∂X7

S2,5
∂

∂X8
S2,5

∂
∂X9

S2,5

]
=
[
f2 f3 f4 f5 f6 f7

]
tM

with some matrix M of size 8× 6. Consider the points defined by

X2 = 2, X3 = 1, X4 = 1, X5 = 1, X6 = 1, µ2 = 1, µ4 = 1, µ6 = 1, µ8 = 1

the minor obtained from M by removing the first and second rows, and the minor obtained

from M by removing the first and third rows are are

−20X7
2 + 2672X7 − 281, 144X7

2 + 2760X7 − 6480,
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respectively. Their greatest common divisor is 1. Therefore, all the { ∂
∂Xj

S2,5 | 2 ≦ j ≦ 9} are
0 if and only if all the {fj | 2 ≦ j ≦ 7} are 0. This completes the proof of the theorem.

From the results above, we have

Corollary 3.9. The radical ideal of J is given by〈
∂S2,5

∂X2

, · · · , ∂S2,5

∂X9

,
∂S2,5

∂µ10

,
∂S2,5

∂µ8

,
∂S2,5

∂µ6

〉 (
= 〈 f2, f3, · · · , f7 〉

)
.

4 The theory for the (3, 4)-curve

We discuss here the curve

C3,4 : y3 + (µ2x
2 + µ5x+ µ8)y = (x4 + µ6x

2 + µ9x+ µ12).

We use similar notation as in the previous Section. The Jacobian of C3,4 is denoted by J ,

for example. We shall omit the construction of the function σ(u). which is written in [8], for

instance. Note that in [8] we consider the more general (3, 4) curve

(4.1) y3 + (µ1x+ µ4)y
2 + (µ2x

2 + µ5x+ µ8)y = (x4 + µ3x
3 + µ6x

2 + µ9x+ µ12).

In this paper we consider the Weierstrass form C3,4 in order to keep the results to a man-

ageable size for display. Full results for the curve 4.1 are given at

http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

Let us define

Q1115 = ℘1115 − 6℘15℘11,

which belongs to Γ(J,O(2Θ)).

Lemma 4.2. We have

Γ(J,O(2Θ)) = C1⊕ C℘11 ⊕ C℘12 ⊕ C℘15 ⊕ C℘22 ⊕ C℘25 ⊕ C℘55 ⊕ CQ1115.

The functions above are even. We prepare projective coordinates

X2, X3, X6, X4, X7, X10, X8

corresponding to the last 7 functions with wt(Xj) = −j. and one more coordinate X0

corresponding to the constant function 1. We denote by P the projective space of dimension

7 with these coordinates. In this situation, the group of 2-torsion points J [2] of J acts on P
through the similarly defined matrix T (h) with h ∈ J [2] as for the curve C2.5 in the previous

Section.

The PDEs satisfied by these variables are detailed in [8]. For example we have, in the

present notation,

P 2
111 = X2

3 − 4X2
2µ2 − 4X2X4 +X3

2 + 4X6,
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P111P112 = 4X2
2X3 − 2X2X3µ2 − 2X2µ5 −X3X4 − 2X7,

P 2
112 = 4X2X3

2 − 4

3
X6µ2 + 4X2µ6 −

4

3
µ8 +X4

2 − 4

3
X8,

. . . = . . .

Note that the r.h.s. of these relations is at most cubic in the Xi.

Theorem 4.3. (Coble [6], p.106) There exists unique quartic hypersurface, say Cb(C3,4),

in the space P such that Cb(C3,4) is stable under the action of {T (h) |h ∈ J [2] } and its

singular locus is the image of J . The hypersurface Cb(C3,4) is the Kummer variety of J ,

namely, it is the quotient variety of J by identifying points P and [−1]P , where [−1] is
the (−1)-multiplication on J .

Now we explain how to get what we will call a Kummer Relation (KR), a polynomial

identity involving double-pole functions (℘ij and Q1115). Most KRs are generated from cross

products of quadratic 3-index ℘ijk relations. If

A = ℘ijk, B = ℘ℓmn, C = ℘opq, D = ℘rst,

Then

(AB)(CD)− (AC)(BD) = 0,

is a Kummer Relation, since each of the quadratic 3-index ℘ijk polynomials such as AB can

be written as cubics in the 2-pole functions. More specifically such cross-products can be

divided into three classes:

(A2)(B2)− (AB)2 = 0, A 6= B,

(A2)(BC)− (AB)(AC) = 0, A,B,C, all different,{
(AB)(CD)− (AC)(BD) = 0,

(AB)(CD)− (AD)(BC) = 0,
A,B,C,D all different.

We see that KRs formed in this way can be at most sextic. Some KRs can be reduced to

quartics or lower by adding suitable multiples of other KRs.

In addition to these KRs, we can find one other polynomial identities in the Xj which

cannot be derived from this type of formula. This difference follows from a simple weight

argument, and from examination of the Gröbner base representations. How do we find these

extra relations? We take a known bilinear ℘ijk℘ℓm relation and multiply by a suitable ℘nop.

After substituting for all known quadratic 3-index products, what we have left should be a

known KR derived from a cross-product equation, or something new.

In the (3,4) case, the first “standard” KR is

K
(3,4)
14 ≡ ℘2

111℘
2
112 − (℘111℘112)

2 = 0,

which gives a quartic with weight −14. The lowest weight relation of this type is

℘2
555℘

2
255 − (℘555℘255)

2 = 0,
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of weight −54. In addition, there is one “special” KR which cannot be generated from the

quadratic 3-index ℘ijk equations. This extra relation, which is vital to our calculations, is of

weight −12. In the present case we have

K12 ≡− 3X2µ2
2X3

2 + 12µ6X2
3 + 12µ5X2

2X3 + 3X2
2X4

2 − 4X2
2X6µ2 − 12µ6X2

2µ2

− 6X4X2X3
2 − 6µ5X2µ2X3 − 3µ2X2X4

2 + 4X2µ2
2X6 + 3X3

4 − 3X4µ2X3
2

− 4X2
2X8 − 4X2

2µ8 + 12X3X2X7 − 12X2µ6X4 + 4X2µ2X8 − 2X2µ8µ2

− 3X2µ5
2 + 12X6X3

2 + 3X3
2µ6 − 3X4X3µ5 − 3X7X3µ2 − 3X4

3 − 6X2X10

+ 3X3µ9 + 3X4X8 + 6X6
2 + 6X6µ6 − 3X7µ5 + 6µ12.

The first “standard” KR outlined above, K14, is quintic, but can be reduced to a cubic in

the Xi coordinates by the use of K12

K14 ≡ 6µ8µ2X2
2 − 3X2µ2X3X7 + 4X4X2X6µ2 −X3

2X6µ2 + 6X2
2X10 − 3X2X3µ9

+X2X4X8 + 4X2µ8X4 − 6X2X6
2 + 6X2X6µ6 − 3X2X7µ5 −X3

2X8 − µ8X3
2

− 3X4X3X7 + 3X6X4
2 − 4µ2X6

2 − 6X2µ12 − 4X6X8 − 4µ8X6 − 3X7
2.

The reduction of K14 from quintic to cubic is carried out by taking the normal form of the

quintic with respect toK12 using graded reverse lexicographic ordering (tdeg(X10,X8,X7,X6,

X4,X3,X2) in Maple). We can then calculate a Gröbner basis from {K12, K14} and use it to

reduce the next element from our set of KR, i.e. K15, etc. Proceeding in this way we build

up a set of algebraically independent quartic KR of decreasing weight at weights −12, −14,
−15, −16 (two equations), −17 and −18. Note that there may be more than one KR at

a particular weight, here we find it necessary to use two of weight −16, but only one from

those at weight −17, −18. Hence only 7 KRs are required — all the rest can be shown to

belong to the ideal 〈K12, K14, K15, K16a, K16b, K17, K18〉. There are a total of 825 KRs in all,

not counting the special K12 given above.

We can then examine the Gröbner basis for this ideal, using the tdeg ordering as in the

genus 2 case. The Gröbner basis consists of eight cubics and fourteen quartics, with weights

ranging from −14 to −29. We now attempt to ascertain the weight of the corresponding

Coble quartic. As in the genus two case, we argue that the cubics are formed by the deriva-

tives of the Coble quartic by the variables Xi. Since the smallest weight cubic is of weight

−14, and the largest weight Xi is of weight −10, this suggests the Coble quartic is of weight
−24. We then build up a general quartic using the same techniques as for the cubic in genus

two, and solve for the unknown coefficients by requiring that the quartic and its derivatives

lie in the Kummer variety described above.

As in the (2, 5)-curve, we can easily pass to a homogeneous form of the Coble quartic by

introducing a homogenizing coordinate X0. Since we are using a graded mononomial order

in our Gröbner base calculations, we can work with homogenized versions of our Gröbner

basis (see Cox et al. [7], Chapter 8, Section 4). The calculations for the projective version of

the Coble surface using this basis go through with minor modifications to give the projective

closure of the affine surface given by Theorem 4.4.

Our second main result is as follows:
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Theorem 4.4. The Coble hypersurface Cb(C3,4) in 4.3 in the 7-dimensional projective

space P is the projectivization of the hypersurface defined by S3,4 = 0, where

S3,4 = 4X8
3 − 108X7

2X10 − 144X6X8X10 + 108X6
4 − 108X4X6X7

2

− 36X4X6
2X8 + 108X4

2X6X10 + 108X3X7
3 + 72X3X6X7X8 − 108X3X4X7X10

− 36X3
2X8X10 − 36X2X7

2X8 − 216X2X6
2X10 + 36X2X4X8X10 + 108X2

2X10
2

+ 36µ2X7
2X8 + 36µ2X6X8

2 − 144µ2X6
2X10 − 144µ2X4X6

3 + 180µ2X3X6
2X7

− 36µ2X3
2X6X10 − 36µ2X2X6X7

2 + 144µ2X2X4X6X10 − 108µ2X2X3X7X10

+ 36µ2
2X6X7

2 + 96µ2
2X6

2X8 − 108µ5X6
2X7 − 36µ5X4X7X8 − 12µ5X3X8

2

− 108µ5X2X7X10 + 108µ5X3X4X6
2 − 108µ5X3

2X6X7 − 108µ5X2X4X6X7

+ 108µ5X2X3X7
2 + 216µ6X6

3 − 108µ6X4X7
2 − 36µ6X4X6X8 − 36µ6X3X7X8

− 12µ6X2X8
2 + 216µ6X2X6X10 + 108µ6X3

2X6
2 − 216µ6X2X3X6X7 + 108µ6X2

2X7
2

+ 64µ2
3X6

3 − 36µ2µ5X4X6X7 − 60µ2µ5X3X6X8 − 12µ8X8
2 − 144µ8X6X10

− 144µ8X4X6
2 + 36µ8X4

2X8 + 288µ8X3X6X7 − 36µ8X3
2X10 − 36µ8X2X7

2

− 144µ8X2X6X8 + 144µ8X2X4X10 − 144µ2µ6X4X6
2 − 36µ2µ6X3X6X7

− 108µ8X3
2X4X6 + 108µ8X3

3X7 − 108µ2µ6X2X7
2 − 96µ2µ6X2X6X8

+ 108µ8X2X4
2X6 − 108µ8X2X3X4X7 − 36µ9X7X8 + 108µ9X4

2X7 − 324µ9X3X6
2

+ 36µ9X3X4X8 − 216µ9X2X6X7 − 108µ9X2X3X10 − 108µ9X3
3X6

+ 108µ9X2X3X4X6 + 108µ9X2X3
2X7 − 108µ9X2

2X4X7 − 48µ2
2µ5X3X6

2

− 72µ2µ8X7
2 − 36µ5

2X6X8 − 48µ2µ8X6X8 + 144µ2µ8X4
2X6 − 108µ2µ8X3X4X7

− 108µ5
2X2X6

2 − 360µ2µ8X2X6
2 + 36µ2µ8X2X4X8 + 216µ2µ8X2

2X10

− 192µ2
2µ6X2X6

2 − 108µ5µ6X6X7 + 72µ2µ9X6X7 + 144µ2µ9X3X4X6

+ 108µ2µ9X2X4X7 + 36µ2µ9X2X3X8 + 216µ12X6
2 + 108µ12X4X8 − 216µ12X2X10

+ 108µ6
2X6

2 − 108µ12X4
3 + 432µ12X3

2X6 + 432µ12X2X3X7 − 144µ12X2
2X8

− 36µ2µ5
2X6

2 + 108µ12X3
4 − 216µ12X2X3

2X4 + 108µ12X2
2X4

2 + 144µ2
2µ8X2X4X6

− 108µ2
2µ8X2X3X7 − 36µ5µ8X4X7 + 12µ5µ8X3X8 + 216µ5µ8X2X3X6

+ 144µ2
2µ9X2X3X6 − 144µ6µ8X4X6 + 108µ5µ9X4X6 + 72µ6µ8X3X7

− 108µ2µ12X3X7 + 48µ6µ8X2X8 − 36µ5µ9X2X8 + 144µ2µ12X2X8 − 108µ2µ12X3
2X4

− 108µ2µ12X2X4
2 + 432µ6µ8X2

2X6 − 216µ5µ9X2
2X6 − 144µ2µ12X2

2X6

− 108µ6µ9X3X6 − 24µ2µ5µ8X3X6 − 108µ2µ5µ8X2X7 + 36µ8
2X4

2 − 144µ8
2X2X6

− 24µ2µ6µ8X2X6 + 72µ2µ5µ9X2X6 + 144µ2
2µ12X2X6 − 108µ8

2X2X3
2

− 108µ2
2µ12X2X3

2 + 72µ8µ9X7 − 108µ5µ12X7 + 36µ8µ9X3X4 − 108µ5µ12X3X4

− 216µ8µ9X2
2X3 + 432µ5µ12X2

2X3 − 108µ9
2X6 + 216µ6µ12X6 − 36µ5

2µ8X6

− 48µ2µ8
2X6 + 108µ6µ12X3

2 + 108µ9
2X2X4 − 432µ6µ12X2X4 + 144µ2µ8

2X2X4

− 108µ9
2X2

3 + 432µ6µ12X2
3 + 36µ2µ8µ9X2X3 − 216µ2µ5µ12X2X3 − 144µ8µ12X2

2

+ 108µ2µ9
2X2

2 − 432µ2µ6µ12X2
2 + 108µ2

2µ8
2X2

2 + 108µ9µ12X3 + 24µ5µ8
2X3

− 48µ6µ8
2X2 + 72µ5µ8µ9X2 − 108µ5

2µ12X2 − 72µ2µ8µ12X2 + 108µ12
2 + 16µ8

3.

Proof. As in the genus two case, we are working with the tdeg ordering, so we can homogenize
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all affine equations using the variable X0, and return to the affine version by setting X0 =

1. These transformations can be done before or after taking the Gröbner basis and give

the same result. By construction, the affine version of the quartic above lies in the ideal

〈K12, K14, K15, K16a, K16b, K17, K18〉 described above. Also the affine version of its partial

first derivatives with respect to X10, X8, X7, X6, X4, X3, X2, X0 are cubics and lie in the

same ideal. The first four correspond to the Kummer relations of weight −14, −16, −17,
−18, derived earlier. In addition, the four partial first derivatives of the generating quartic

with respect to µ12, µ9, µ6, are quartics and lie in the same ideal. The first two correspond

to the Kummer relations of weight −12, −15, derived earlier. Moreover we can generate

an ideal from these derivative relations and it gives exactly the Kummer variety generated

earlier (in fact the partial first derivative with respect to µ6 is not required). Since the Coble

quartic is unique, it must be the polynomial S3,4.

The calculation also goes through for the full (3, 4)-curve

y3 + (µ1x+ µ4)y
2 + (µ2x

2 + µ5x+ µ8)y
2 = x4 + µ3x

3 + µ6x
2 + µ9x+ µ12

with the resulting quartic having 461 terms in total. The result is displayed at

http://www.ma.hw.ac.uk/Weierstrass/Trig34/.

Remark 4.5. (1) Alternative formulations for the (3, 4)-Kummer. Buchstaber, Enolski and

Leykin [4] (BEL) have put forward a powerful general theory of trigonal curves which is in

principle able to generate many of the PDEs involved in the theory for g ≥ 3. However their

approach appears to be restricted to terms involving only ℘ig or ℘ijg (j ≥ g − 1) so it is

not clear how the relation K12 would emerge from the theory. The variety generated by the

Kummer relations in the BEL theory does not appear to be the same as the one discussed

above. However it is related in an interesting way — if we eliminate the variables X10, X8,

and X7 from the two ideals using resultants, we get the same single equation of 1506 terms

in X2, X3, X4, X6, of total degree 15.

(2) The authors do not know if the ideal generated by the partial derivatives is a radical

ideal or not.

5 The theory for the (2, 7)-curve

For the hyperelliptic curve C2,7 of genus 3, we are faced with a degenerate situation in

contrast to the case of C3,4.

We define

∆(u) = 1
2
(℘1155 − 4℘15

2 − 2℘11℘55)(u).

We see easily that ∆(u) ∈ L (2Θ[2]). It is know by [1] that

∆(u) = (℘13℘35 − ℘15℘33 + ℘2
15 − ℘11℘55)(u).
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Lemma 5.1. We have

L (Θ[2])) = C1,
L (2Θ[2])) = C1⊕ C℘11 ⊕ C℘13 ⊕ C℘33 ⊕ C℘15 ⊕ C℘35 ⊕ C℘55 ⊕ C∆.

This can be checked by the expansion σ(u) = u1u5 − u32 + 1
3
u3u1

3 + 1
45
u1

6.

As in the earlier Sections, we define the following coordinates:

(5.2)
X12 (↔ ∆), X10 (↔ ℘55), X8 (↔ ℘35), X6 (↔ ℘33),

Y6 (↔ ℘15), X4 (↔ ℘13), X2 (↔ ℘11).

In this case, Coble’s theorem in 4.3 holds in degenerate situation, and there must exist a

cubic or lower degree equation in the functions above. However, checking by Maple in the

case with all µj being 0 for the basis in 5.1, there are neither cubic nor linear relations and

there exists a quadratic relation and no other quadratic ones. The quadratic relation of the

functions gives the hypersurface defined by

(5.3) X12 +X8X4 −X6Y6 + Y 2
6 −X10X2 = 0

which is given by rewriting ∆. But, by Coble’s theorem, there must be a quartic equation

in Xjs whose partial derivative vanish on the image of the Jacobian J of C2,7. Therefore the

Coble hypersurface in this case must be

(X12 +X8X4 −X6Y6 + Y 2
6 −X10X2)

2 = 0.
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