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1. Preface

In the theory of elliptic functions, there are two kinds of determinantal formulae of

Frobenius-Stickelberger [6] and of Kiepert [7], both of which connect the function

σ(u) with ℘(u) and its (higher) derivatives through an determinantal expression.

These formulae were naturally generalized to hyperelliptic functions by the papers

[11], [12], and [13]. Avoiding generality, we restrict the story only for the simplest

purely trigonal curve y3 = x4 + · · · , where the right hand side is a monic biquadratic

polynomial of x. Our main results Theorem 5.3 and Corollary 6.2 are quite natural

generalization of those determinantal formulae for such the curves. For more general

purely trigonal curve, or for any purely d-gonal curve (d = 4, 5, · · · ), the author

would like to publish in other papers, including formulae of Cantor-type (see [13]).

In the case of hyperelliptic functions, we considered only the hyperellptic curves

ramified at infinity in [13]. The theta divisor of the Jacobian variety of such a curve is

symmetric with respect to the origin of the Jacobian variety. Each of purely trigonal

curves considered in this paper is also completely ramified at infinity and it is acted

by the third roots of unity. Hence, the theta divisor of the Jacobian variety of a

purely trigonal curve has third order symmetry with respect to the origin. Similar

symmetry is also possessed by any purely d-gonal curve.

On the other hand, any curve that is not purely d-gonal does not have symmetry

with respect to the origin at all. Since this fact is very serious, the author do not

imagine whether generalizations of Frobenius-Stickelberger type and of Kiepert type

exist or not.

The first two sections are devoted to describe general theory of trigonal curves

of genus three. The rest sections are restricted to purely trigonal case.
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Conventions. We denote the ring of integers by Z, the field of real numbers by R,

the field of complex numbers by C. The transpose of a vector u is denoted by tu.

The symbol d◦(z1, · · · , zm) = d means a power series whose all terms with respect

to the specified variables z1, · · · , zm are of total degree bigger than d. This symbol

does not mean that it is a power series which contains only the variables z1, · · · ,
zm.
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2. Preliminaries

This and the next Sections are devoted for preliminaries under more general situa-

tion than the sections later. Let C be a complete projective algebraic curve defined

by

f(x, y) = 0, where

f(x,y) = y3 − (λ1x+ λ4)y2 − (λ2x
2 + λ5x+ λ8)y

− (x4 + λ3x
3 + λ6x

2 + λ9x+ λ12) (λj are constants),

(2.1)

with the unique point ∞ at infinity. The genus of C is 3 if C is non-singular. The

three forms of the first kind

ω1 =
dx

∂
∂yf(x, y)

, ω2 =
xdx

∂
∂yf(x, y)

, ω3 =
ydx

∂
∂yf(x, y)

(2.2)

form a basis of the space of holomorphic 1-forms. We denote the vector whose

coordinates are (2.2) by

ω = (ω1, ω2, ω3). (2.3)

The general theory of Abelian integrals shows that the integrals

u = (u1, u2, u3)

=

∫ (x1,y1)

∞
ω +

∫ (x2,y2)

∞
ω +

∫ (x3,y3)

∞
ω

(2.4)

with respect to all the path from∞ to three variable points (x1, y1), (x2, y2), (x3, y3)

on C fill the whole space C3. In this paper, we denote by the letters u, v, u(j)

various points in C3, and the same letters with subscripts (u1, u2, u3), (v1, v2, v3),

(u
(j)
1 , u

(j)
2 , u

(j)
3 ) denote their canonical coordinates of C3. We denote by Λ all the

values of the integral above with respect to all the closed paths. Then Λ is a lattice
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of C3. The C-valued points of the Jacobian variety of C is C3/Λ. We denote this

by J . The canonical map given by modulo Λ is denoted by κ:

κ : C3 → C3/Λ = J. (2.5)

Obviously, Λ = κ−1
(
(0, 0, 0)

)
. We have the standard embedding of C into J given

by

ι : C ↪→ J

P 7→
∫ P

∞
ω mod Λ.

(2.6)

Then κ−1ι(C) is a universal Abelian covering of C. More generally, for 0 5 k 5 3,

the image of the kth symmetric product Symk(C) of C by the map

ι : Symk(C)→ J

(P1, · · · , Pk) 7→
(∫ P1

∞
ω + · · ·+

∫ Pk

∞
ω
)

mod Λ
(2.7)

is denoted by W [k]. Especially, W [0] = (0, 0, 0), W [1] = ι(C), W [3] = J . We denote

by d−1e the multiplication by (−1) in J , namely

d−1e(u1, u2, u3) = (−u1,−u2,−u3). (2.8)

We define by using this operation d−1e that

Θ[k] = W [k] ∪ d−1eW [k]. (2.9)

We call Θ[k] the standard theta subvarieties of J . Especially, we have Θ[0] = (0, 0, 0)

and Θ[3] = J . Note that we have Θ[1] 6= W [1], Θ[2] 6= W [2] as our case is different

from the case of hyperelliptic curves.

Lemma 2.1. Suppose u = (u1, u2, u3) ∈ κ−1ι(C) be near the origin (0, 0, 0). Then

u1 and u2 are expanded as a power series with respect to u3 of the forms

u1 = 1
5u3

5 + · · · , u2 = 1
2u3

2 + · · · .

Proof. Taking a local parameter t = 1/ 3
√
x on C at ∞, we compute the integral

uj =

∫ (x,y)

∞
ωj , (2.10)

then we have

u1 = 1
5 t

5 + · · · , u2 = 1
2 t

2 + · · · , u3 = t+ · · · . (2.11)

Hence the statement.

The result above shows that u3 is a local parameter on κ−1ι(C) at the point

(0, 0, 0). Now we consider the integral

u = (u1, u2, u3) =

∫ (x,y)

∞
ω, (2.12)



February 16, 2008 11:3 WSPC/INSTRUCTION FILE det34˙ijm06

4 Yoshihiro Ônishi

and we denote its inverse function on κ−1ι(C) by

u 7→
(
x(u), y(u)

)
. (2.13)

Lemma 2.2. If u = (u1, u2, u3) ∈ κ−1ι(C), then x(u) and y(u) are expanded as

power series with respect to u3 as follows :

x(u) =
1

u3
3

+ · · · , y(u) =
1

u3
4

+ · · · . (2.14)

Proof. This is proved similarly with Lemma 2.1.

Definition 2.3. We define a weight called Sato weight for appeared constants and

variables as follows. The Sato weight of variables u1, u2, u3 are 5, 2, 1, respectively,

the Sato weight of each the coefficient λj in (1.1) is −j, The Sato weight of x(u)

and y(u) are −3 and −4, respectively. Under this convention, the formulae in this

paper are of homogeneous weight.

We define the discriminant of C. Let

R1 = rsltx
(
rslty

(
f(x, y), ∂∂xf(x, y)

)
, rslty

(
f(x, y), ∂∂yf(x, y)

))
,

R2 = rslty
(
rsltx

(
f(x, y), ∂∂xf(x, y)

)
, rsltx

(
f(x, y), ∂∂yf(x, y)

))
,

(2.15)

where rsltz is the resultant of Sylvester with respect to the variable z. We define

discriminant D of C by

D =
[

gcd(R1, R2)]1/2. (2.16)

Then it is very likely that

D ∈ Z[λ1, λ2, λ3, λ4, λ5, λ6, λ8, λ9, λ12] (2.17)

by regarding λjs indeterminates. Namely, gcd(R1, R2) seems to be a square in the

ring above. While this is not obvious, we do not mention about this anymore because

of less importance in this paper.

3. Sigma function (General case)

We now define the sigma function

σ(u) = σ(u1, u2, u3) (3.1)

associating to C by following [3]. We choose a set of generators

αi, αj (1 5 i, j 5 3) (3.2)

of H1(C,Z) such that their intersection numbers are αi · αj = βi · βj = δij and

αi · βj = 0. We denotes the period matrix obtained from the differentials (2.2) by

[ω′ ] =

[∫

αi

ωj

]

i,j=1,2,3

, [ω′′ ] =

[∫

βi

ωj

]

i,j=1,2,3

. (3.3)
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For indeterminates X , Y , Z, and W , we consider that

Ω
(
(X,Y ), (Z,W )

)
=

1

(X − Z) ∂
∂Y f(X,Y )

3∑

k=1

Y 3−k
[
f(Z,W )

W k−1

]

W

, (3.4)

where [ ]W means taking only the terms of non-negative powers with respect to w.

Let
(
(x, y), (z, w)

)
7→ R

(
(z, w), (x, y)

)
dzdx (3.5)

be a 2-form on C × C satisfying

lim
(x,y)→(z,w)

(z − x)2R
(
(z, w), (x, y)

)
= 1, (3.6)

having poles only along the tiagonal {(x, y) = (z, w)} in C × C. The 2-form R is

expressed in the form

R
(
(x, y), (z, w)

)
=

d

dx
Ω
(
(z, w), (x, y)

)
+

3∑

j=1

ωj(z, w)

dz

ηj(x, y)

dx
. (3.7)

Here ωjs are differentials of the first kind in (2.2), Ω the meromorphic function on

C × C given in (3.4), and ηj = ηj(x, y) (j = 1, 2, 3) are some differential forms of

the second kind on C with poles only at ∞. Moreover the derivation is one with

respect to (x, y) ∈ C.

Definition 3.1. If a 2-form R
(
(x, y), (z, w)

)
satisfying (3.6) is of homogeneous Sato

weight (hence weight 6), and has the symmetricity

R
(
(z, w), (x, y)

)
= R

(
(x, y), (z, w)

)
, (3.8)

then such a 2-form is called a (Klein’s) fundamental 2-form of the second kind.

Lemma 3.2. Assume R
(
(x, y), (z, w)

)
in (3.7) be a Klein’s fundamental 2-form of

the second kind. Then the set {ηj} satisfying (3.7) exists and is uniquely determined

modulo the space spanned by {ωj}.

Proof. Under assuming existence of {ηj}, we see the differential (3.7) satisfies

the condition on poles. Indeed, we see that, regarding (3.7) as a function of (x, y),

it has only pole at (x, y) = (z, w) by 2.2; and that it is similar as a function of

(z, w) by (3.8). A fundamental 2-forms of the second kind is obtained similarly as

[2], pp.3617–3618 (see also [1], around p.194).

In the sequel, we merely consider a Klein’s fundamental 2-form R
(
(x, y), (z, w)

)

of the second kind. It is easily seen that the ηj in (3.2) is written as

ηj(x, y) =
hj(x, y)
∂
∂yf(x, y)

dx where hj(x, y) ∈ Q[µ1, · · · , µ12][[x, y]], and

hj is of homogeneous weight.

(3.9)
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Now we finally define ηj uniquely by requiring

the number of terms in hj(x, y) is as minimal as possible we could (3.10)

(see [2], p.3618). While it is possible to write down the explicit form of ηjs, we do

not need such the expressions in this paper. Under the situation above, if we write

the 2-form as

R
(
(x, y), (z, w)

)
=

F
(
(x, y), (z, w)

)

(x− z)2 ∂
∂yf(x, y) ∂

∂wf(z, w)
, (3.11)

we see that F
(
(x, y), (z, w)

)
is a polynomial of homogeneous Sato weight −8. We

define the period matrices of {ηj} by

[ η′ ] =

[ ∫

αi

ηj

]

i,j=1,2,3

, [ η′′ ] =

[ ∫

βi

ηj

]

i,j=1,2,3

. (3.12)

We concatenate this with (3.3) as

M =

[
ω′ ω′′

η′ η′′

]
. (3.13)

Then, M satisfies

M

[ −13

13

]
tM = 2π

√
−1

[ −13

13

]
(3.14)

(see [1], p.97(c), [5], Chap.III, [3], p.11, (1.15); Lemma 2.0.1). This is the generalized

Legendre relation (set of the Weierstrass relations). Especially, we see ω ′−1ω′′ is a

symmetric matrix. It is well-known that

Im (ω′
−1
ω′′) is positive definite (3.15)

(see [5], Chap.III, for instance). It is known by (2.2) that the canonical divisor class

is represented by 4∞. Hence any theta characteristic is given by a 2-torsion point

in J ([9], 3.9 and 3.10), because our base point is ∞. Therefore, if

ω′δ′ + ω′′δ′′ (3.16)

is the theta characteristic giving the Riemann constant in the sense of Corollary

3.11 in p.166 of [9] for our case, namely with repsect to the base point ∞ ∈ C and

to the basis (2.2) of the forms of the first kind (see also [3], p.15, (1.18)), then

δ =
[δ′
δ′′

]
(3.17)
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is an element in
(

1
2Z
)6

. Under the preparation above, we definea

σ(u) = σ(u;M) = σ(u1, u2, u3;M)

= c exp(− 1
2uη

′ω′
−1 tu)ϑ[δ] (ω′

−1 tu; ω′
−1
ω′′)

= c exp(− 1
2uη

′ω′
−1 tu)

∑

n∈Z3

exp
[
2π
√
−1
{

1
2
t(n+ δ′)ω′

−1
ω′′(n+ δ′)

+ t(n+ δ′)(ω′
−1
u+ δ′′)

}]
,

(3.18)

where

c =
1

8
√
D

(
π3

|ω′|

)1
2

. (3.19)

The series in (3.18) converges by (3.15). Here D is the discriminant defined by

(2.16) and (2.17), π = 3.1415 · · · , and |ω′| is the determinant of the period matrix

ω′ defined in (3.4). The roots of (3.19) are explained in 3.6 latter. In this paper, for

u ∈ C3, we denote by u′ and u′′ the unique vectors in R3 such that

u = ω′u′ + ω′′u′′. (3.20)

We define

L(u, v) = tu(η′v′ + η′′v′′),

χ(`) = exp
{

2π
√
−1
(
t`′δ′′ − t`′′δ′ + 1

2
t`′`′′

)}
(∈ {1,−1})

(3.21)

for u, v ∈ C3 and for ` (= ω′`′ + ω′′`′′) ∈ Λ.

The following properties are quite important:

Lemma 3.3. For all u ∈ C3, ` ∈ Λ, and γ ∈ Sp(6,Z), we have the following :

(1) σ(u+ `;M) = χ(`)σ(u;M) expL(u+ 1
2`, `),

(2) σ(u; γM) = σ(u;M),

(3) u 7→ σ(u;M) has zeroes on Θ[2] of order 1,

(4) σ(u;M) = 0 ⇐⇒ u ∈ Θ[2].

Proof. The assertion (1) is a special case of [1], p.286, `.22. The assertion (2) is

shown by investigating how the transform of M by γ corresponds to a change of

paths αjs and βjs in (2.2) of period integrals. For details, see [3], pp.10–15. The

statements (3) and (4) is described in [1], p.252, and partially in [3], p.12, Theorem

1.1 and p.15.

Remark 3.4. Let M is a matrix satisfying (3.14) and (3.15). Since the Pfaffian of

the Riemann form given by L( , ) is 1 as is seen similarly to [10], Lemma 3.1.2, we see

that the entire functions satisfying the equation 3.3(1) form one dimensional space

aIf we redefine σ(u) by using another fundamental 2-form of second kind of 3.2 different from that
fixed by (3.10), the σ(u) is changed only by the multiplication of exponential of a binary form of
ujs.
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by [8], p.93, Th.4.1. Any such non-trivial solution has properties 3.3(2), (3), and

(4). Namely, 3.3(1) characterizes the sigma function up to a non-zero multiplicative

constant.

Using 3.3(1), (3), (4), we have the following equality




σ

(∫ (x,y)

∞
ω −

3∑

i=1

∫ (xi,yi)

∞
ω

)

σ

(∫ (x,y)

∞
ω −

3∑

i=1

∫ (zi,wi)

∞
ω

)







σ

(∫ (z,w)

∞
ω −

3∑

i=1

∫ (xi,yi)

∞
ω

)

σ

(∫ (z,w)

∞
ω −

3∑

i=1

∫ (zi,wi)

∞
ω

)




−1

= exp

[∫ (x,y)

(z,w)

( 3∑

i=1

∫ (xi,yi)

(zi,wi)

R
(
(x, y), (z, w)

)
dz

)
dx

]

(3.22)

by a similar method in [3], p.36. We define

℘ij(u) = − ∂2

∂ui∂uj
logσ(u), ℘ijk(u) = − ∂3

∂ui∂uj∂uk
logσ(u), · · · . (3.23)

By 3.3(1), these are periodic functions with the periods lattice Λ. Therefore, we can

regard these functions as functions on J . By (3.22), we see that

3∑

i=1

3∑

j=1

℘ij

(∫ (x,y)

∞
ω −

3∑

k=1

∫ (xk,yk)

∞
ω

)
ωi(x, y)

dx

ωj(xk , yk)

dxk

=
F
(
(x, y), (xk , yk)

)

(x− xk)2 ∂
∂yf(x, y) ∂

∂yk
f(xk, yk)

, (k = 1, 2, 3).

(3.24)

Taking a local parameter t at ∞ such that x = 1/t3, and expanding both sides of

(3.24) as power series of t, we know several equations on ℘j1j2···jn(u)s. By using

such equations we see the following fact.

Lemma 3.5. (with Definition) The power series expansion of σ(u) at u = (0, 0, 0)

with respect to u1, u2, u3 is of homogeneous Sato weight 5, and it is of the form

σ(u) = ε
(
u1 − u3u2

2 + 1
20u3

5
)

+ (d◦(λ1, · · · , λ12) = 1),

where ε is a non-zero constant. We redefine precisely σ(u) such as ε = 1 and

proportional to (3.18).

Proof. This is proved in Theorem 7.1 in [4].

Remark 3.6. It is very plausible that the constant ε in 3.5 is an 8th root of 1.

Namely, it seems to correspond only the choice of roots in (2.16) and (3.19).

Lemma 3.7. The function σ(u) is an odd function. Namely, we have

σ(d−1eu) = −σ(u). (3.25)
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Proof. For the period lattice, we have d−1eΛ = Λ. This is seen by considering the

integral of ` ∈ Λ in the opposite directions. Adding this with 3.4, we see that there

is a constant K such that

σ(d−1eu) = Kσ(u). (3.26)

Since the weight 5 is an odd integer, 3.5 implies K = −1.

In the sequel, we write simply

σj(u) =
∂

∂uj
σ(u), σij(u) =

∂2

∂ui∂uj
σ(u). (3.27)

Lemma 3.8. Let u, u(1), u(2), v ∈ κ−1ι(C). Then we have the following :

(1) σ(u(1) + u(2)) = 0 ;

(2) The expansion of v 7→ σ(u(1) + u(2) + v) with respect to v3 is of the form

σ(u(1) + u(2) + v) = σ3(u(1) + u(2))v3 + (d◦(v3) = 2);

(3) σ3(u) = 0 ;

(4) The expansion of v 7→ σ3(u+ v) with respect to u3 is of the form

σ3(u+ v) = σ33(u)v3 + (d◦(v3) = 2);

(5) The expansion of v 7→ σ33(v) with respect to v3 is of the form

σ33(v) = v3
3 + (d◦(v3) = 4).

Proof. The assertions (1) and (2) are repetition of 3.3(3). For the expansion of (2),

by taking u(2) close to (0, 0, 0), we seeb σ3(u(1)) = 0 because of σ(u(1) + v) = 0 by

(1). The assertion (4) is obviously follows from (3). By 3.5, we see that, for u ∈ C3,

σ33(u) = u3
3 + (d◦(λ1, · · · , λ12) = 1). (3.28)

Since this is still of homogeneous Sato weight, the assertion (5) follows.

Lemma 3.9. We have the following translational relations :

(1) For u ∈ κ−1(Θ[2]), we have

σ3(u+ `) = χ(`)σ3(u) expL(u+ 1
2`, `);

(2) For u ∈ κ−1(Θ[1]), we have

σ33(u+ `) = χ(`)σ33(u) expL(u+ 1
2`, `).

Proof. Differentiating both sides of 3.3(1) by u3 once or twice, we see the assertions

by using 3.8.

bIn this situation, for given point P ∈ C (6=∞), the rank of the Brill-Noether matrix B(P +∞)
of the divisor P +∞ on C is rankB(P +∞) = 2, and dim Γ(C,O(P )) = 1. It is impossible to show
directly σ3(u) = 0 (u ∈ κ−1ι(C)) from Riemann singularity theorem.
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Lemma 3.10. The function u 7→ σ33(u) on κ−1ι(C) has only zero of order 3 at

u = (0, 0, 0) modulo Λ, and no zeroes elsewhere.

Proof. Our proof here is the standard way as in p.149–150 in [9]. Taking into

account the equation in 3.9(2), by integrating the form dσ33(u)/σ33(u) around a

regular polygon of the Riemann surface given by C, the standard argument using

the principle of arguments shows the total of orders of zeroes of the claimed function

is 3, the genus of C. Hence, 3.8(5) implies the assertion.

4. The sigma functions (Purely trigonal case)

In the rest of this paper, we treat only the curve C

y3 = x4 + λ3x
3 + λ6x

2 + λ9x+ λ12 (λj are constants) (4.1)

that specializing (1.1). Then (1.2) is given by

ω1 =
dx

3y2
, ω2 =

xdx

3y2
, ω2 =

ydx

3y2
=
dx

3y
; (4.2)

and (2.4) is

Ω
(
(x, y), (x′, y′)

)
=
y2 + yy′ + y′2

(x − x′)3y2
. (4.3)

Using the above, we define σ(u) as in the previous section. Let ζ = e2π
√−1/3. Since

C has an automorphism defined by (x, y) 7→ (x, ζy), ζj acts for u = (u1, u2, u3) ∈ C3

by

dζjeu = (ζju1, ζ
ju2, ζ

2ju3). (4.4)

We see that W [k] and Θ[k] are stable under the action by ζj . Under this situation,

the function σ(u) = σ(u;M) has the following special property.

Lemma 4.1. We have

σ(dζeu) = ζσ(u).

Proof. This follows from 3.4, the fact dζeΛ = Λ, and 3.5.

The following lemma is the key for our main result.

Lemma 4.2. For u ∈ κ−1ι(C), the function v 7→ σ3(u+ dζev) (resp. v 7→ σ3(u+

dζ2ev)) on κ−1ι(C) has only 3 zeroes (0, 0, 0), u, dζ2eu (resp. dζeu ) of order 1

modulo Λ, and has no zeroes elsewhere. Its power series expansion at (0, 0, 0) with

respect to v3 is of the form

σ3(u+ dζev) = ζ2σ33(u)v3 + (d◦(v3) = 2)
(
resp. σ3(u+ dζ2ev) = ζσ33(u)v3 + (d◦(v3) = 2)

)
.
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Proof. Remark 3.7 shows that u 7→ σ3(u) is an even function. Becase u+ dζeu+

dζ2eu = (0, 0, 0), we have for u ∈ κ−1ι(C)

σ3(u+ dζeu) = σ3(−dζ2eu) = σ3(dζ2eu) = ζ2σ3(u) = 0 (4.5)

by 3.8(3) and 4.1. The remaining assertions follows from 3.8(4).

The following lemma is used in 6.1.

Lemma 4.3. For u ∈ κ−1ι(C), we have :

σ3(2u)

σ33(u)4
= 3y(u)2.

Proof. Because of 3.5 and 2.1, we have that

σ3(2u) = 1
4 (2u3)4 −

(
2( 1

2u3
2 + · · · )

)2
+ · · · = 3u3

4 + · · · ,
so that

σ3(2u)

σ33(u)4
=

3u3
4 + · · ·

(
u3

3 + · · ·
)4 =

3

u3
8

+ · · · . (4.6)

The left hand side of this is a periodic function with respect to Λ by 3.9. Therefore,

its pole is only at (0, 0, 0) modulo Λ by 3.10. By 4.1 we see

σ3(dζe2u)

σ33(dζeu)4
= ζ2 σ3(2u)

σ33(u)4

and that the right hand side of (4.6) should be 3y(u)2.

5. Frobenius-Stickelberger-Type Formula

The initial case of our Frobenius-Stickelberger-type formula for the purely trigonal

curve C defined by (4.1) is as follows:

Proposition 5.1. For u, v ∈ κ−1ι(C) we have :

σ3(u+ v)σ3(u+ dζev)σ3(u+ dζ2ev)

σ33(u)3σ33(v)3
=
(
(x(u) − x(v)

)2
=

∣∣∣∣
1 x(u)

1 x(v)

∣∣∣∣
2

.

Proof. Lemma 3.9 shows the left hand side is a periodic function of v (resp. u)

with the periods Λ. Now, we regard the left hand side as a function of v. Lemma

4.2 states that the second and third factors vanish at v = u modulo Λ, namely the

left hand side has zero of order 2 there, and has two zeroes of order 1 at dζeu and

dζ2eu modulo Λ. It has no zero elsewhere. Its only pole is at v = (0, 0, 0) modulo Λ

by 3.10. The order is 3× 3− 3 = 6. These situations are exactly the same for the

right hand side. Therefore the two sides coincide up to a multiplicative constant

depending only on u. If we expand both sides with respect to v3 we see that the

coefficients of the least terms of the two sides coincide exactly by using 3.8 and 2.2.

Thus, the proof has completed.
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Remark 5.2. Note that −u 6∈ κ−1ι(C) for u ∈ κ−1ι(C) in general. This fact is

a reason why the initial formula above is different from the initial formula for the

case of hyperelliptic functions (Lemma 8.1 of [13]).

Theorem 5.3. (Frobenius-Stickelberger-type formula) Let n = 3 be an integer. Let

σ(u), x(u), and y(u) are those defined for the purely trigonal curve C : y3 = x4 +· · ·
as above. Assume u(1), · · · , u(n) are points on κ−1ι(C). Then we have :

σ(u(1) + u(2) + · · ·+ u(n))
∏
i<j σ3(u(i) + dζeu(j))σ3(u(i) + dζ2eu(j))

σ33(u(1))2n−1 · · ·σ33(u(n))2n−1

=

∣∣∣∣∣∣∣∣∣

1 x(u(1)) y(u(1)) x2(u(1)) yx(u(1)) y2(u(1)) x3(u(1)) yx2(u(1)) y2x(u(1)) · · ·
1 x(u(2)) y(u(2)) x2(u(2)) yx(u(2)) y2(u(2)) x3(u(2)) yx2(u(2)) y2x(u(2)) · · ·
...

...
...

...
...

...
...

...
...

. . .

1 x(u(n)) y(u(n)) x2(u(n)) yx(u(n)) y2(u(n)) x3(u(n)) yx2(u(n)) y2x(u(n)) · · ·

∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) · · · xn−1(u(1))

1 x(u(2)) x2(u(2)) · · · xn−1(u(2))
...

...
...

. . .
...

1 x(u(n)) x2(u(n)) · · · xn−1(u(n))

∣∣∣∣∣∣∣∣∣
.

Remark 5.4. The each row of the first determinant consists of monomials of x and

y (they have a pole only at (0, 0, 0)) displayed according to their order of the pole,

and their orders are

0, 3, 4, 6, 7, 8, 9, · · ·
respectively.

Proof. We prove the formula by induction. First of all, we see by 3.10 that the

left hand side is a periodic function of u and of v with the periods Λ.

(1) For the case n = 3, the formula is proved similarly to the case n = 4 below (or

to [12], p.309). So, we omit the proof of this case.

(2) Suppose n = 4. Let u = u(n). We regards both sides as functions of u.

(2-a) We know the divisors of the two sides by 3.10, 3.3(3),(4), 4.2 as follows:

The left hand side. The numerator of the left hand side has zeroes of order 2 at

(n− 1) points

u(j) modulo Λ (j = 1, · · · , n− 1),

zeroes of order 1 at 2(n− 1) points

dζeu(j), dζ2eu(j) modulo Λ (j = 1, · · · , n− 1),

and zeroes of order 2(n−1) at u = (0, 0, 0). It has no zeroes elsewhere. The denom-

inator has only zero at u = (0, 0, 0) of order 3(2n− 1) = 6n− 3. Therefore the left

hand side has only pole at (0, 0, 0) of order (6n− 3)− 2(n− 1) = 4n− 1. There are

(4n− 1)− 2(n− 1)− 2(n− 1) = 3 unknown zeroes of the left hand side.
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The right hand side. Both determinants vanish at

u(j) modulo Λ (j = 1, · · · , n− 1),

and only the second determinant vanishes at

dζeu(j), dζ2eu(j) modulo Λ (j = 1, · · · , n− 1).

The deepest pole comes from (n, n)-entries of the two determinants. The sum of the

pole orders is (n− 2) + 3(n− 1) = 4n− 1.

(2-b) We let α, β, γ ∈ C3 modulo Λ be the unknown zeroes of the right hand side.

Then the Abel-Jacobi theorem shows

2(u(1) + · · ·+ u(n−1)) + (dζeu(1) · · ·+ dζeu(n−1)) + (dζ2eu(1) · · ·+ dζ2eu(n−1))

+ α+ β + γ ∈ Λ.

Since u(j) + dζeu(j) + dζ2eu(j) = (0, 0, 0), we see

u(1) + · · ·+ u(n−1) + α+ β + γ ∈ Λ,

so that

u(1) + · · ·+ u(n−1) + u(n) ≡ u− α− β − γ mod Λ.

Observing the first factor in the numerator of the left hand side, we see the left

hand side has zeroes of order 1 at α, β, γ, too. Thus the two sides coincide up to

multiplicative constant.

(2-c) The coefficients of the lowest term in the Laurent expansion with respect to

u, is just the hypothesis of induction, and they coincide exactly. Hence the proof

has completed.

6. Kiepert-Type Formula

We prove the following fundamental formula.

Lemma 6.1. We have

lim
v→u

σ3(u+ dζev)σ3(u+ dζ2ev)

σ33(u)σ33(v)(u3 − v3)2
= 3.

Proof. Lemma 4.3 and Proposition 5.1 show

3y(u)2

(
lim
v→u

σ3(u+ dζev)σ3(u+ dζ2ev)

σ33(u)σ33(v)(u3 − v3)2

)

= lim
v→u

σ3(u+ v)σ3(u+ dζev)σ3(u+ dζ2ev)

σ33(u)3σ33(v)3(u3 − v3)2

= lim
v→u

(x(u)− x(v)

u3 − v3

)2

=
( dx
du3

(u)
)2

=
(
3y(u)

)2
.
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Here the last equality is seen by (4.2). This yields our desired formula.

Corollary 6.2. (Kiepert-type formula) Suppose n = 3 and u ∈ κ−1ι(C). We have

ψn(u) :=
σ(nu)

σ33(u)n2 = yn(n−1)/2(u)×
∣∣∣∣∣∣∣∣∣

x′ y′ (x2)′ (yx)′ (y2)′ (x3)′ (yx2)′ (y2x)′ · · ·
x′′ y′′ (x2)′′ (yx)′′ (y2)′′ (x3)′′ (yx2)′′ (y2x)′′ · · ·
...

...
...

...
...

...
...

...
. . .

x(n−1) y(n−1) (x2)(n−1) (yx)(n−1) (y2)(n−1) (x3)(n−1) (yx2)(n−1) (y2x)(n−1) · · ·

∣∣∣∣∣∣∣∣∣
(u),

where ′ means d
du3

and the determinant is of size (n− 1)× (n− 1).

Proof. Each factor x(u(i))− x(u(j)) of the Vandermonde determinant gives

lim
v→u

x(u)− x(v)

u3 − v3
=

dx

du3
(u) = 3y(u)

by (4.2). Then 5.3 and 6.1 give the formula of Kiepert-type by similar manipulation

to the proof of [11], Theorem 3.3.
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