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Recursion Relations on the Power Series Expansion

of the Universal Weierstrass Sigma Function

By

J. Chris Eilbeck∗ and Yoshihiro Ônishi∗∗

Abstract

The main aim of this paper is an exposition of the theory of Buchstaber and Leykin on

the heat equations for the multivariate sigma functions. We treat only the elliptic curve case,

but keeping the most general elliptic curve equation, which may be useful for number theoretic

applications.

Introduction

Let (ω′, ω′′) be a fixed basis of a lattice in C satisfying ω′′/ω′ > 0. Let ℘(u) be the

Weierstrass function associated to this lattice, which satisfies the equation

(0.1) ℘′(u)2 = 4℘(u)3 − g2℘(u)− g3,

where

(0.2) g2 = 60
∑

(n′,n′′ )̸=(0,0)

1

(n′ω′ + n′′ω′′)4
, g3 = 140

∑
(n′,n′′ )̸=(0,0)

1

(n′ω′ + n′′ω′′)6
.

The Weierstrass function σ(u) is defined by

(0.3) σ(u) = u exp

(∫ u

0

∫ u

0

(
1
u2 − ℘(u)

)
dudu

)
.

It is well-known that the power series expansion of the function σ(u) around u = 0 has

coefficients in Q[g2, g3]. Weierstrass [17] gave, by a quite technical method of integration
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from (0.1), a system of equations satisfied by the function σ(u), that is

(0.4)

(
4g2

∂

∂g2
+ 6g3

∂

∂g3
− u

∂

∂u
− 1

2
+

3

2

)
σ(u) = 0,(

6g3
∂

∂g2
− 1

3
g2

2 ∂

∂g3
− 1

2

∂2

∂u2
+

1

24
g2u

2 + 0
)
σ(u) = 0.

Here we have divided the left hand sides into three parts to make it easier to explain

these equations later, and we note that ([11] has an overview of [17]. ) Using these

equations, Weierstrass gave a recursion relation for the coefficients of the power series

expansion σ(u) around u = 0. He also gave relations for its expansions around the other

two-division points.

On the same year with [17], Frobenius-Stickelberger [6] gave a different method

from [17] to the same result. Using

(0.5) ℘(u) =
1

u2
+

g2
20

u2 +
g3
28

u4 +
g2

2

1200
u6 + · · ·

and a corresponding expansion of the Weierstrass function ζ(u), they obtained the

formulae

(0.6)
ω′ ∂g2

∂ω′ + ω′′ ∂g2
∂ω′′ = −4g2, ω′ ∂g3

∂ω′ + ω′′ ∂g3
∂ω′′ = −6g3,

η′
∂g2
∂ω′ + η′′

∂g2
∂ω′′ = −6g3, η′

∂g3
∂ω′ + η′′

∂g3
∂ω′′ = −1

3
g2

2,

where η′ = ζ(u+ω′)− ζ(u), η′′ = ζ(u+ω′′)− ζ(u) are independent of u. Then we have

(0.7) ω′ ∂

∂ω′ +ω′′ ∂

∂ω′′ = −4g2
∂

∂g2
− 6g3

∂

∂g3
, η′

∂

∂ω′ + η′′
∂

∂ω′′ = −6g3
∂

∂g2
− 1

3
g2

2 ∂

∂g3
.

Moreover, they obtained (p.318 in [7])

(0.8) ω′ ∂η
′

∂ω′ + ω′′ ∂η
′

∂ω′′ = η′, ω′ ∂η
′′

∂ω′ + ω′′ ∂η
′′

∂ω′′ = η′′.

Consequently, on p.326 of [7], they give the same system of heat equations as in [17].

Since the Weierstrass sigma function is expressed by using Jabobi theta series and

Dedekind eta function as

(0.9) σ(u) = −η(ω′−1
ω′′)

−3
· ω

′

2π
· exp

(
1
2u

2η′ω′−1)
ϑ

[ 1
2
1
2

]
(ω′−1

u
∣∣ω′−1

ω′′),

the equations (0.4) must be given by rewriting the famous heat equation

(L−H)ϑ
[
b
a

]
(z, τ) = 0,

where L = 4πi ∂
∂τ and H = ∂2

∂z2 . In order to do so, we need (0.7). We understand this

situation as follows: the operation of the left hand side of (0.7) described in terms of ω′,

ω′, η′, η′′ on (0.9) with (0.8) just corresponds to the operation of the right hand side of
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(0.7) described in terms of g2, g3 to (0.3) through the expansion (0.5) of ℘(u).

Since, unfortunately, there is no object in the higher genus case corresponding to

the Eisenstein series (0.2), it is impossible to generalise the work of Frobenius and

Stickelberger as well as that of Weierstrass’.

However, the pioneering work [3] by Buchstaber and Leykin gave a quite general

method which is applicable for higher genus cases. Roughly speaking, their idea is that

the left hand side of (0.7) is given by looking at the behaviour of operations of the right

hand side of (0.7) to the first de Rham cohomology of the curve.

At the conference “Mathematical structures observed from the theory of integrable

systems and its applications” organised by Shinsuke Iwao, held at RIMS on September

2018, one of the authors (Y.Ô.) gave a talk on the theory of Buchstaber-Leykin (BL)-

theory, in higher genus cases. In this article we restrict ourselves to the genus one

case, since a paper on the results in higher genus cases by the authors and coworkers is

now submitted for publication ([5]). However, we treat an elliptic curve which is more

general than the Weierstrass form (0.1) treated in [3] and [5], since some elliptic curves

defined over certain fields do not have a model of this form. The more general form we

consider is

(0.10) E : y2 = (a1x+ a3)y + (x3 + a2x
2 + a4x+ a6),

and this form is sufficient to define any elliptic curve over any field. Here, take care that

the choice of the opposite signs in front of a1 and a3 is not usual. The sigma function

attached to (0.10) is expanded as

(0.11)

σ(u) = u+ (a2 + (a1

2 )2)u
3

3! +
(
a2

2 + 2(a1

2 )2a2 + (a1

2 )4 + a3a1 + 2a4
)
u5

5!

+
(
a2

3 + 3(a1

2 )2a2
2 + (3(a1

2 )4 + 3a3a1 + 6a4)a2

+ (a1

2 )6 + 6a3(
a1

2 )3 + 6a4(
a1

2 )2 + 6a3
2 + 24a6

)
u7

7! + · · · .

Though this expansion is obtained by the usual transformation from the Weierstrass

form to the universal form, BL-theory works well also for the universal case naively.

That this is the first reason why we choose the universal case for this article. The

authors wish to explain the essential idea of BL-theory by restricting to the genus one

case. This is the second reason. Thirdly, in order to describe BL-theory, we need to

define the sigma function concretely. However, the definition of the over all constant

multiplicative factor in the front of the sigma function is slightly uncertain when we

define it by using theta series, except for genus one and two cases.

The solution space of the system of heat equations given by BL-theory seems to

be of one dimensional, as in Weierstrass’ original case. However, the reason of this is

not completely clear to the authors. We note that BL-theory possibly gives a good

explanation why the constant multiple factor in the definition of the sigma in terms of

theta series is a minus eighth root of the discriminant of the curve as is explained in
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Lemma 4.17 of [2] (see also [5]).

To conclude, we outline the structure of this article. Section 2 is devoted to prelim-

inaries. The left hand sides of (0.4) is divided into three parts as Li −Hi +
1
8Li(log∆)

(i = 0, 2). After explaining general heat equations in Section 3 we construct Li in

Subsections 4.1 and in 4.2, Hi and Li(log∆) in Subsection 4.3. We give a final form in

Subsection 4.4.

One of the authors (Y.Ô.) had an opportunity to discuss this work with S. Matsu-

tani. His valuable comments are deeply appreciated by the authors.
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1 Preliminaries

In this section, we recall the fundamental setting from [12].

1.1 The most general elliptic curve

As mentioned in the introduction, we start at the most general elliptic curve defined by

(1.1) E : y2 = (a1x+ a3)y + x3 + a2x
2 + a4x+ a6

with the point ∞ at infinity which is the unity of its group structure. Note that the

signs in front of a1 and a3 are non-standard.

We assume that the aj are variables or indeterminates. When we discuss the

Riemann surface corresponding to this curve, for instance on its periods et cetera, we

assume that the aj are independent complex variables. We use the following notation:

(1.2)

f(x, y) = y2 − (a1x+ a3)y − (x3 + a2x
2 + a4x+ a6),

f1(x, y) =
∂
∂xf(x, y) = −a1y − (3x2 + 2a2x+ a4),

f2(x, y) =
∂
∂yf(x, y) = 2y − (a1x+ a3).

We define the weight, which is denoted by wt, as wt(x) = −2, wt(y) = −3, wt(aj) = −j.

Then all objects and equations in this paper are of homogeneous weight. Let

ω1(x, y) =
dx

fy(x, y)
=

dx

2y − a1x− a3
.

This is the standard basis of the space of holomorphic differential forms (the differential

forms of the first kind). The differential forms ω1 and the form

η1(x, y) =
−xdx

2y − a1x− a3

of the second kind form a natural symplectic basis of the first de Rham cohomology

explained later. Using t = x/y, it is easy to get (see [12] for example)

(1.3)
ω1(x, y) =

dx

2y − a1x− a3
=

dx
dt dt

2y − a1x− a3
∈ (1 + tZ[ 12 ,a][[t]])dt,

ω1(x, y) = − dy

fx(x, y)
∈ (1 + tZ[ 13 ,a][[t]])dt.

Therefore, we have

(1.4)
ω1(x, y) = (1− a1t+ (a2 + a1

2)t2 + · · · )dt ∈ (1 + tZ[a][[t]])dt,

η1(x, y) = (−t−2 + a3t− (a4 + 2a1a3)t
2 − · · · )dt ∈ (−t−2 + tZ[a][[t]])dt.

These expansions are used to compute the symplectic product in the first de Rham

cohomology later.
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1.2 The Legendre relation

While in this paper we treat the curve E mainly defined over C, it is natural to be

regarded as a scheme over SpecQ[a]. However, for example, though the period matrix

Ω defined later can not be treated algebraically, the power series expansion of σ(u) we

finally obtain is an expansion over the ring Q[a]. Supposing dQ[a] = 0, we define

(1.5) H1
dR(E /Q[a]) =

{
h(x, y)dx/f2(x, y)

∣∣h(x, y) ∈ Q[a, x, y]/(f)
}

d
(
Q[a, x, y]/(f)

) ,

where d is the standard derivation. which is a Q[a]-module of rank 2 generated by ω1

and η1. In this paper we frequently switch between regarding the ajs as indeterminates

or complex numbers.

In Lemma 3.1 and following, we see that H1
dR(E /Q[a]) is a Q[a, ∂

∂a ]-module, where
∂
∂a stands for the set of ∂

∂aj
s, which are explained in and after 3.1. This module is

canonically isomorphic to{
h(x, y) dx

∣∣h(x, y) ∈ Frac
(
Q[a, x, y]/(f)

)}/
d
(
Frac

(
Q[a, x, y)]/(f)

))
,

where Frac stands for taking fractional field, though this fact is not used in this paper.

We shall denote the module (the first de Rham cohomology) by H1
dR(E /Q[a]) through

out this paper (see [10] or [13]). We choose a symplectic basis α, β of the first homology

group H1(E ,Z) with intersection products α·β = −β·α = 1, α·α = β·β = 0. The

regular polygon obtained from the Riemann E with respect to the cutting loops α, β is

denoted by E ◦. Then we have the natural alternating non-degenerate bilinear form

H1
dR(E /Q[a])×H1

dR(E /Q[a]) −→ Q[a], (ω, η) 7−→ ω ⋆ η = Res
P∈E ◦

(∫ P

∞
ω
)
η(P ).

The forms ω1 and η1 in (1.3) form a symplectic basis of H1
dR(E /Q[a]) with respect to

this bilinear form. Indeed, the products for these forms are given by using (1.4) as

(1.6)

ω1 ⋆ η1 = Res
(∫ t

0

ω1(t)
)
η1(t) = Res

(
(t+ · · · )(−t−2 + a3t+ · · · )dt

)
= −1,

η1 ⋆ ω1 = Res
(∫ t

t0

η1(t)
)
ω1(t) = Res

(
(t−1 + · · · )(1 + · · · )

)
= 1,

and likewise

ω1 ⋆ ω1 = 0, η1 ⋆ η1 = 0.

We introduce the periods

ω′ =

∫
α

ω1(x, y), ω′′ =

∫
β

ω1(x, y)

by using those objects defined above. Then, from our choice of α and β and ω1 and

η1 we see the imaginary part of ω′′/ω′ is positive (Riemann’s inequality). Then the
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Z-module

(1.7) Λ = ω′Z+ ω′′Z

gives a lattice in C. Moreover, we introduce the periods

η′ =

∫
α

η1(x, y), η′′ =

∫
β

η1(x, y),

and the matrix of periods defined by

(1.8) Ω =

[
ω′ ω′′

η′ η′′

]
.

Since (ω1, η1 ) is a symplectic basis, we see that

−1 = Res
(∫ t

0

ω1(t)
)
η1(t) =

∫
∂E◦

(∫ t

0

ω1(t)
)
η1(t) =

1

2πi
(ω′η′′ − ω′′η′′),

and we have the Legendre relation

(1.9) −det(Ω) = ω′′η′ − ω′η′′ = 2πi.

For any u ∈ C, we define u′, u′′ ∈ R by u = ω′u′ + ω′′u′′. Likewise, for ℓ ∈ Λ, we write

ℓ = ω′ℓ′ + ω′′ℓ′′. Let ∞ and I1 be the initial point and the tail point, respectively, of

the side α of E ◦. Then the Riemann constant vector of E is given by

δ1 = − 1
2τ −

∫ I1

∞
ω̂1 +

∫
α

(∫ P

∞
ω̂1

)
ω̂1(P ), δ = ω′ δ1,

where τ = ω′−1
ω′′, ω̂1 = ω′−1

ω1. Then δ1 is independent of the values of the ajs and is

given by (see [13], pp.76–80, for instance)

δ = δ′ω′ + δ′′ω′′, [δ′ δ′′] = [ 12 ,
1
2 ].

This δ gives the theta characteristic of the theta function by which the sigma function

is defined (see (2.2) of the next section). Using the above notation, we define a linear

form L( , ) on C× C by

(1.10) L(u, v) = u (v′η′ + v′′η′′).

This is C-linear with respect to the first variable, and R-linear with respect to the second

one. Moreover, we define, for any ℓ ∈ Λ,

(1.11) χ(ℓ) = exp
(
2πi(δ′ℓ′′ − δ′ℓ′ + 1

2ℓ
′ℓ′′)

)
= exp

(
πi(ℓ′ + ℓ′′ + ℓ′ℓ′′)

)
∈ {1, −1}.

Remark 1.12. The difference of twice the genus of a given curve over C and the

number of parameters of some deformations of the curve is called the modality of the

deformation. Our curve E as a deformation parameterised by b4 and b6 of (2.6) below

is of modality 0. For more detailed discussion, see [5]. Modality is very important when

we investigate the behaviour of the heat equations of multivariate sigma functions.
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2 The sigma function

2.1 Analytic construction of the sigma function

In this section, we recall the definition of σ(u) and its properties.

Definition 2.1. We denote the Dedekind eta function by η(τ), namely

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ ), (τ ∈ C, Im(τ) > 0).

The sigma function σ(u) on C associated with the curve E is defined by1

(2.2) σ(u) = −η(ω′−1
ω′′)

−3
· ω

′

2π
· exp

(
1
2u

2η′ω′−1)
ϑ

[
δ′′

δ′

]
(ω′−1

u
∣∣ω′−1

ω′′).

This function σ(u) has the following properties.

Proposition 2.3. Suppose that the {aj} are constants in C and ∆ is not zero.

Then σ(u) satisfies the following :

(1) σ(u) is an entire function on C;
(2) σ(u) is an odd function, namely, σ(−u) = −σ(u);

(3) σ(u+ ℓ) = χ(ℓ)σ(u) exp L(u+ 1
2ℓ, ℓ) for any u ∈ C and ℓ ∈ Λ, where Λ, L, and χ

are defined in (1.7), (1.10), and (1.11), respectively ;

(4) σ(u) = 0 ⇐⇒ u ∈ Λ;

(5) The power series expansion of σ(u) around u = 0 is of the form σ(u) = u+O(u3),

belongs to Q[a][[u]], and absolutely converges for all u.

Proof. (1) This is obvious from the definition (2.2). (2) This follows from the fact

that the theta series in (2.2) is known to be an odd function. (3) This is shown by

using (1.9) and the translational formula of the theta series (see [13] Lemma 6.47(i), for

example). (4) The zeroes of the theta series in (1.9) are all simple and only at Λ which

is well-known (see [15], pp.167–168). (5) The reader will find more general proof in [10].

However, we shall prove this property as follows. We define

(2.4) ℘(u) := − d2

du2
log σ(u).

By 2.3(1), (2), (3), and (4), we see ℘(u) has only poles of order 2 at any points Λ. For

any u ∈ C, there exists a unique point (x, y) ∈ E such that u =
∫ (x,y)

∞ ω1. Hence, we

have a function u 7→ x, which is denoted by x(u), has the same poles as ℘(u) and its

Laurent expansion at the origin is of the form 1
u2 + · · ·. Therefore, ℘(u) = x(u). Using

du = ω1 and (1.4), we see that x(u) has a Laurent expansion around u = 0 with all the

coefficients in Q[a] (see [12] for details). Integrating this, we see σ(u) ∈ Q[a][[u]].

1 Here, ϑ

[
b
a

]
(z|τ) =

∑
n∈Z

exp
[
2πi{ 1

2
(n+ b)2τ + (n+ b)(z + a)}

]
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Remark 2.5.

(1) The properties 2.3 (1), (2), (3), (4), for example, characterise σ(u).

(2) The expansion σ(u) at u = 0 is Hurwitz integral over Z[ 12a1, a2, a3, a4, a6], and the

expansion of σ(u)2 at u = 0 is Hurwitz integral over Z[a]. We refer the reader the

paper [14] for the definition of Hurwitz integrality and these properties. However,

our result (a recursion relation of the coefficients) shows that the expansion of σ(u)

is Hurwitz integral over Z[ 12 ,
1
3 ,a]. This was remarked by Buchstaber.

2.2 Remark on the Weierstrass form

We recall the relation of our functions to Weierstrass’ original ones from [12]. As usual,

letting

y = Y − 1
2 (a1x+ a3), x = X − 1

12 (a1
2 + 4a2),

and

(2.6)

b4 = −
(

1
48a1

4 + 1
6a2a1

2 − 1
2a3a1

1
3a2

2 − a4
)
,

b6 = −
(
− 1

864a1
6 − 1

72a2a1
4 + 1

24a3a1
3

(− 1
18a2

2 + 1
12a4)a1

2 + 1
6a2a3a1 −

1
4a3

2 − 2
27a2

3 + 1
3a4a2 − a6

)
,

the equation f(x, y) = 0 is transformed to Y 2 − (X3 + b4X + b6) = 0. We denote the

Weierstrass ℘- and σ-functions with respect to g2 = −4b4, g3 = −4b6 by ℘W(u) and

σW(u), respectively, we have relations

(2.7) ℘(u) = ℘W(u)− a1
2+4a2

12 , σ(u) = σW(u) · exp
(
a1

2+4a2

24 u2
)

with (2.4) and (2.2). Since ℘′(u) = 2y + a1x+ a3, we have also that

℘′(u)2 = 4℘(u)3 + (a1
2 + 4a2)℘(u)

2 + (4a4 + 2a1a3)℘(u) + (4a6 + a3
2).

2.3 The discriminant ∆

The discriminant ∆ of E is one of the simplest polynomials of the coefficients ajs of its

defining equation f(x, y) = 0 such that ∆ ̸= 0 if and only if E is smooth (non-singular).

It is uniquely determined up to a sign (see [16] pp.42-47, for instance). It is given by

∆ = −a6a1
6 + a3a4a1

5 + ((−a3
2 − 12a6)a2 + a4

2)a1
4

+ (8a3a4a2 + a3
3 + 36a6a3)a1

3 + ((−8a3
2 − 48a6)a2

2 + 8a4
2a2

+ (−30a3
2 + 72a6)a4)a1

2 + (16a3a4a2
2 + (36a3

3 + 144a6a3)a2 − 96a3a4
2)a1

+ (−16a3
2 − 64a6)a2

3 + 16a4
2a2

2a+ (72a3
2 + 288a6)a4a2

− 64a4
3 − 27a3

4 − 216a6a3
2 − 432a6

2.
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which is of homogeneous weight wt(∆) = −12. It relates to the Dedekind eta function

as

∆ =
(2π
ω′

)12

η(ω′−1
ω′′)24, η(ω′−1ω′′)−3 =

(2π
ω′

) 3
2

∆− 1
8 .

It is well-known that (see [15], p.176, line. 20)

(2.8) 2π·η(ω′−1
ω′′)3 =

d

dz
ϑ

[ 1
2
1
2

]
(z|ω′−1

ω′′)
∣∣∣
z=0

= ω′ d

du
ϑ

[ 1
2
1
2

]
(ω′−1

u|ω′−1
ω′′)

∣∣∣
u=0

.

Therefore, the expansion around u = 0 of the right hand side of (2.2) is of the form

u+ · · ·. Moreover, we have

Lemma 2.9. (2.2) The function σ(u) is independent of the choice of a symplectic

base α, β of H1(E ,Z).

Proof. See [12] or 6.47 (ii) in [13].

3 Theory of heat equations

3.1 Operators acting on the first de Rham cohomology

This and the following sections are devoted to explaining the theory of Buchstaber and

Leykin [3], on the differentiation of Abelian functions with respect to their parameters,

as clearly as we can. That generalises the work of Frobenius and Stickelberger [7],

discussed above, on the elliptic case of this problem.

In higher genus case, we do not have any facts corresponding to (0.5) and (0.2).

We explain the method given by [3] which implies (0.7).

We firstly investigate a general operator in Q[a][∂a]. Here, the symbol ∂a means

the set { ∂
∂aj

}. However, we shall explain the operator ∂
∂aj

. To do so, the following

Lemma is required. Let K be a field and R be a function field of one variable with K

the field of coefficients. We will apply this lemma for K = Q(a). Take a transcendental

element ξ in R over K and fix it. Let Dξ be the unique derivation on R satisfying

Dξ(ξ) = 0 and Dξ(ω) = Dξ

( ω

dξ

)
dξ for any ω ∈ Rdξ.

Let ζ be another transcendental element in R over K. Then we have the following

relation between Dξ and Dζ , which is know from Chevalley.

Lemma 3.1. (Chevalley [4]) For any w ∈ R, we have

Dξ(wdξ)−Dζ(wdξ) = d(−wDζξ).

Proof. See Lemma 1 in [8], which is included in [5] also.

By Lemma 3.1, any element in Q[a][∂a] operates linearly on the spaceH1
dR(E /Q[a])

of (1.5). Let L be a first order operator, namely, an element in
⊕

j Q[a] ∂
∂aj

. We define
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ΓL ∈ Mat(2,Q[a]) as the transpose of the representation matrix with respect to the

basis ω = (ω1, ω−1) for the following action of L:

(3.2) L(ω) = ω t(ΓL).

In [3], the matrix t(ΓL) defined by (3.2) is called the Gauss-Manin connection for the

vector field L. Accordingly, by integrating (3.2) along α and β in H1(E ,Z), we get the

natural action

(3.3) L(Ω) = ΓL Ω of L on Ω =

[
ω′ ω′′

η′ η′′

]
.

This is none other than the generalisation (0.7) of Frobenius-Stickelberger. Of course,

since Ω is the period matrix of a symplectic basis, these elements must satisfy

(3.4) tΩJΩ = 2πiJ, where J =

[
1g

−1g

]
by (1.6). By this equation, we see how L operates on the field Q(ω′, ω′′), as follows.

Operating L on both sides of (3.4), we see that the matrix ΓL satisfies

(3.5) tΓLJ + JΓL = 0, i.e. t(ΓLJ) = ΓLJ.

Thus we may write

(3.6) −ΓLJ =

[
α β

β γ

]
, ΓL =

[
−β α

−γ β

]
∈ Mat(2,Q[a]).

In order to be able to generalise our calculations to other curves, we define here g to

be the genus of the curve, which is equal to 1 in the simple example considered in this

paper. Now in an overload of notation, the α and β above are g × g matrices, scalars

in the current g = 1 case, unconnected with the symplectic basis α, β described in

Subsection 1.2.

Remark 3.7. We use a different notation from pp.273–274 of [3], for D(x, y, λ),

Ω, Γ, and β. Our ω equals to D(x, y, λ) by changing the sign on the latter half entries.

The others are naturally modified according to this difference and taking transposes.

We will give a detailed comparison of our notation with theirs in [5].

Conversely, starting from a matrix

Γ =

[
−β α

−γ β

]
∈ sp

(
2,Q[a]

)
= sl

(
2,Q[a]

)
,

we get uniquely an operator L ∈
⊕

j Q[a] ∂
∂aj

such that ΓL = Γ. This is a natural

generalisation of the situation investigated by Frobenius-Stickelberger [7].



12 J.C.Eilbeck and Y.Ônishi

3.2 The primary heat equation

We shall proceed with the heat equations satisfied by the sigma function. We first recall

the equation

(L−H)ϑ
[
b
a

]
(z, τ) = 0,

where L = 4πi ∂
∂τ and H = ∂2

∂z2 . However, we remark that the same equation holds for

each individual term exp 2πi
(
1
2τ(n+ b)2+(n+ b)(z+a)

)
of the sum in the theta series.

Our task is to convert the equation above to one satisfied by the sigma function.

We take again an arbitrary L ∈
⊕

j Q[a] ∂
∂aj

as in the previous section. Then we

have its associated symmetric matrix −ΓLJ =
[
α β
β γ

]
. Using this matrix, we define

the following differential operator HL of order 2 :

(3.8) HL = 1
2 [

d
du u ]

[
α β

β γ

][ d
du

u

]
+ 1

2 Trβ = 1
2 α

d2

du + β u d
du + 1

2 γ u
2 + 1

2 β,

where in the genus 1 case, Trβ = β. This notation is used to generalise to the higher

genus case as required. Taking any fixed b = b′ω′ + b′′ω′′ ∈ C, we define

(3.9) G(b, u,Ω) =

(
2π

ω′

)1
2

exp
(
− 1

2uη
′ω′−1u

)
exp

(
2πi

(
1
2b

′′ω′−1ω′′b′′+ b′′(ω′−1u+ b′)
))
.

Then we have the following equation satisfied by this function.

Theorem 3.10. Let L be an element in
⊕

j Q[a] ∂
∂aj

and HL be defined as

above. Then, for the function G(b, u,Ω) in (3.9), we have

(3.11) (L−HL)G(b, u,Ω) = 0.

Proof. By a straightforward calculation using the Legendre relation (3.4), we see

that both L logG(b, u,Ω) and HL logG(b, u,Ω) give

1
2uω

′−1
η′αη′ω′−1

u− 2πi b′′ω′−1
αη′ω′−1

u− 2π2 b′′ω′−1
αω′−1

b′′

− 1
2αη

′ω′−1
+ 2πi b′′ω′−1

βu− uω′−1
η′βu+ 1

2 trβ + 1
2uγu.

Hence the desired equation.

Since the equation (3.11) is the starting point of the following theory, we call this

the primary heat equation.

Corollary 3.12. Using functions of the form (3.9), we let

(3.13) ρ(u) = ρ(u,Ω) =
∑
b

G(b, u,Ω),

where b runs through the elements of any set ⊂ C such that the sum converges absolutely.

Then we have

(L−HL) ρ(u,Ω) = 0
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for any L satisfying (3.5).

Proof. Since both of L and HL are independent of b, each term of ρ(u) satisfies

(3.11).

3.3 The algebraic heat operators

Definition 3.14. Assume that E is non-singular. Let Ω be the usual period

matrix defined by (1.8), and δ be its Riemann constant. The function defined by

σ̃(u) = σ̃(u,Ω) =
ω′

2π
· exp

(
1
2u

2η′ω′−1)
ϑ

[ 1
2
1
2

]
(ω′−1

u
∣∣ω′−1

ω′′)

is written as

σ̃(u) =
∑
n∈Z

G(t[δ′ n+ δ′′], u,Ω).

Since the imaginary part of ω′−1ω′′ is positive, this series converges absolutely.

This is a special case of ρ(u) of (3.13), which means that

(3.15) (L−HL) σ̃(u) = 0.

In 3.12, since both L and HL are independent of b, we see that there are infinitely many

linearly independent entire functions ρ(u) on C satisfying (L−HL)ρ(u) = 0. Moreover,

we have infinitely many linearly independent operators L−HL which annihilate σ̃(u).

We shall find a nice set of L’s whose operation characterises σ(u).

However, because our aim is to find a method to calculate the power series expansion

of the sigma function, which is its algebraic aspect, we need an in-depth discussion. For

our purpose,

(A1) we need to find operators in the ring Q[a][∂a,
d
du ] which annihilate σ(u), and

(A2) we require that any function annihilated by all such operators belongs to Q[a][[u]].

If we ignore the choice of an eighth root for ∆, we have

σ(u) = −∆
1
8 σ̃(u).

Now, by replacing −∆
1
8 by other arbitrary function Ξ of aj ’s, we shall construct a heat

equation satisfied by Ξσ̃(u). Since L is a derivation with respect to the ajs but H
L is

a differential operator with respect to u, we see, for such function Ξ depending only on

the ajs, that

LΞσ̃(u) = (LΞ) σ̃(u) +Ξ(Lσ̃(u)), HL Ξσ̃(u) = Ξ(HLσ̃(u)).

Therefore, Ξσ̃(u) satisfies

(3.16) (L−HL)(Ξσ̃(u)) = LΞ
Ξ Ξ σ̃(u) = (L logΞ)Ξ σ̃(u).
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If Ξ σ̃(u) is the correct sigma function, the left hand side of the above is in Q[a][u]],

So, if we suppose that the correct σ(u) is equal to −∆− 1
8 σ̃(u), then we should narrow

down the choice of L to one such that

L log∆ = L(∆)
∆ ∈ Q[a].

4 Heat equation for the universal sigma function

We explain two methods for calculating ∆ explicitly, which work for curves of higher

genera as well. These methods also provide operators tangent to the variety defined

by ∆ = 0, too. Throughout this section, we suppose that all the ajs are variables or

indeterminates.

4.1 The first method to compute the discriminant

We recall the first method to compute the discriminant ∆ from Section 2.3 of [3].

We take 1 and x as a basis of the Q[a]-module Q[a][x, y]/(f1, f2). We use the rather

overloaded notation M(x, y) = [1 x] as used in [3] and [5] and is a symbol extending

to higher genus cases2. Moreover, we use M̌(x, y) = [x 1], the one with reversed order.

We define a matrix T = [Tij ]i,j=1,2 with wt(Tij) = −2(i+ j) by the equalities

(4.1)
−6 f(x, y)Mi(x, y) ≡

2∑
j=1

Tij M2+1−j(x, y) mod (f1, f2)

( i.e. − 6 f(x, y)M(x, y) ≡ T M̌(x, y) mod (f1, f2) ),

where f1 = ∂
∂xf(x, y), f2 = ∂

∂yf(x, y). The factor −6 ensures simplification of the final

form of heat equations and the signs of the first row and column of T are negative.

These Tij are uniquely determined because Q[a][x, y]/(f1, f2) is a Q[a]-module of rank

2 spanned by the entries in M(x, y) and we can reduce the order of x in the left hand

side by using f1(x, y) = · · · − 3x2 + · · · and that of y by using f2(x, y) = 2y+ · · ·. Then
we see ∆ = det(T ) which is shown in 4.8, though this is checked directly.

4.2 The second method to compute the discriminant and L-operators

We compute the discriminant by another method described in Section 4.2 of [2]. This

method seems much simpler than the first method in 4.1.

Let introduce H = H
(
(x, y), (z, w)

)
which is defined by

H =
1

2

∣∣∣∣∣∣
f1(x,y)−f1(z,w)

x−z
f2(x,y)−f2(z,w)

x−z

f1(z,y)−f1(x,w)
y−w

f2(z,y)−f2(x,w)
y−w

∣∣∣∣∣∣ .
2 In earlier version of [5] it is denoted as M(x, y) = t[1 x].
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For any g ∈ Q[a][x, y], its Hessian is defined by

Hess g =

∣∣∣∣∣ ∂2

∂x2 g
∂2

∂x∂y g
∂2

∂y∂xg
∂2

∂y2 g

∣∣∣∣∣.
Lemma 4.2. (Buchstaber-Leykin [2], p.64) Let x, y, z, w be indeterminates and

I be the ideal in Q[a][x, y, z, w] generated by f1(x, y), f2(x, y), f1(z, w), and f2(z, w).

The determinant H has the following properties.

(1) H
(
(x, y), (x, y)

)
∈ Q[a][x, y, z, w].

(2) H
(
(x, y), (x, y)

)
= Hess f(x, y).

(3) H
(
(x, y), (z, w)

)
= H

(
(z, w), (x, y)

)
.

(4) For any F
(
(x, y), (z, w)

)
∈ Q[a][x, y, z, w], we have

H
(
(z, w), (x, y)

)
F
(
(x, y), (z, w)

)
≡ H

(
(x, y), (z, w)

)
F
(
(z, w), (x, y)

)
mod I.

Proof. We can check these properties directly as we are treating only the genus

one case. (1) We have

H =
1

2

∣∣∣∣∣ −a1(y−w)
x−z − 3(x+ z)− 2a2

2(y−w)
x−z − a1

−a1(y+w)− 3(z2−x2)+2a2(z−x)
y−w 2− a1(z−x)

y−w

∣∣∣∣∣ = −6x− 6z − a1
2 − 4a2,

and this is a polynomial. (2) H
(
(x, y), (x, y)

)
= Hess(f) = −12x−a1

2− 4a2 as desired.

(3) is obvious from the definition. (4) Rewriting the difference of two sides of the

equation, we see that F
(
(x, y), (z, w)

)
−F

(
(z, w), (x, y)

)
removes the denominators x−z,

y − w in the definition of H and that it belongs to I.

We will use, instead of T in (4.1), the matrix V = [Vij ] with entries in Q[a] which

is defined by the equation

M(x, y)V tM(z, w) = f(x, y)H

in the ring Q[x, y, z, w]
/ (

f1(x, y), f2(x, y), f1(z, w), f2(z, w)
)
. We see V is symmetric

because of 4.2. The result is as follows

V11 = 1
12 (−a1

4 − 8a1
2a2 + 24a1a3 − 16a2

2 + 48a4),

V12 = V21 = 1
12 (−a1

3a3 − 2a1
2a4 − 4a1a2a3 − 8a2a4 + 18a3

2 + 72a6),

V22 = 1
12 (−a1

2a3
2 + 12a1

2a6 − 16a1a3a4 + 12a2a3
2 + 48a2a6 − 16a4

2).

Remark 4.3. Replacing E by any hyperelliptic curve, we have a general form

of Vij (see ([5]).

We introduce an matrix [Hij ] in order to see the coincidence of det(T ) and det(V ):

(4.4) H
(
(x, y), (z, w)

)
= M̌(x, y) [Hij ]

tM̌(z, w).



16 J.C.Eilbeck and Y.Ônishi

Lemma 4.5. The matrix [Hij ] is of the form

(4.6) [Hij ] =

[
−4a2 −6

−6

]
.

Proof. Straightforward.

Lemma 4.7. det(V ) = det(T ).

Proof. Since

f(x, y)H
(
(x, y), (z, w)

)
= f(x, y) M̌(z, w) [Hjk ]

tM̌(x, y)

= M(z, w) [− 1
2·3 Tij ][Hjk ]

tM̌(x, y),

we see that V equals − 1
2·3T [Hjk] with sorted rows in reverse order. Since [Hjk] is a

skew-upper-triangular matrix of the form (4.6), we have the desired equality.

Lemma 4.8. The determinant det(T ) = det(V ) is a constant multiple of ∆.

Proof. We assume a ⊂ C. Take the map given by multiplication by f(x, y)

· f(x, y) : Q[a][x, y]/(f1, f2) −→ Q[a][x, y]/(f1, f2).

The vector M(x, y) consists of the elements of a basis of Q[a][x, y]/(f1, f2) as a Q[a]-

module. The matrix T is no other than the representation matrix with respect to this

basis. So det(T ) = 0 if and only if the rank3 of the co-kernel Q[a][x, y]/(f, f1, f2) of

the map is positive. This is exactly the case that the ideal (f, f1, f2) does not contain

1 ∈ Q[a][x, y]. By Theorem 5.4 i) in [9] (Hilbert’s Nullstellensatz), we see this is

equivalent to saying that there exists (x, y) ∈ C2 such that

f(x, y) = f1(x, y) = f2(x, y) = 0.

Therefore the discriminant ∆ is a factor of det(T ). Moreover, since the matrix T reflects

precisely the rank ofQ[a][x, y]/(f,f1,f2), det(T ) must be a factor of the discriminant.

Now we are ready to define the following operators:

Definition 4.9. We define

(4.10) L0 = V11
∂

∂a4
+ V12

∂

∂a6
[0], L2 = V12

∂

∂a4
+ V22

∂

∂a6
[−2],

where the numbers in brackets signify the weight of the corresponding operators.

These operators are indeed tangent to the discriminant variety ∆ = 0 which is

ensured by (4.12) in the next subsection.

3the Tjurina number at a.
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4.3 The representation matrices and and tangentiality of L-operators

The operators in (4.10) give linear transforms of H1
dR(E /Q[a]) whose representation

matrices with respect to ω = (ω1, η1) are denoted simply by

Γ0 = ΓL0 , Γ2 = ΓL2 .

The calculation procedure to get Γ0 and Γ2 is as follows. We suppose ∂x
∂ai

= 0 for i = 0

and 2. Then we have

2y
∂y

∂a6
+ (a1x+ a3)

∂y

∂a6
= 1, 2y

∂y

∂a4
+ (a1x+ a3)

∂y

∂a4
= x

by f = 0. Hence

∂

∂a6
ω1 =

∂

∂a6

1

2y + a1x+ a3
dx =

−1

(2y + a1x+ a3)2
· 2 ∂y

∂a6
dx =

−2

(2y + a1x+ a3)3
dx,

∂

∂a4
ω1 =

∂

∂a4

1

2y + a1x+ a3
dx =

−1

(2y + a1x+ a3)2
· 2 ∂y

∂a4
dx =

−2x

(2y + a1x+ a3)3
dx,

∂

∂a4
η1 =

∂

∂a4

x

2y + a1x+ a3
dx =

−x

(2y + a1x+ a3)2
· 2 ∂y

∂a4
dx =

−2x2

(2y + a1x+ a3)3
dx.

By using f = 0 at any time, we have

d
(

1
f2

)
= ( 12a3a1 + a4)

∂
∂a6

ω1 + ( 12a1
2 + 2a2)

∂
∂a6

ω1 + 3 ∂
∂a6

η1,

d
(

x
f2

)
= (− 3

4a3
2 − 3a6)

∂
∂a6

ω1 + (−a3a1 − 2a4)
∂

∂a4
ω1 + (− 1

4a1
2 − a2)

∂
∂a4

η1 − 1
2ω1,

d
(
x2

f2

)
= (( 1

16a3
2+ 1

4a6)a1
2+ 1

4a2a3
2+a6a2))

∂
∂a6

ω1

+ ( 18a3a1
3+ 1

4a4a1
2+ 1

2a2a3a1−
3
4a3

2+a4a2−3a6)
∂

∂a4
ω1

+ ( 1
16a1

4 + 1
2a2a1

2 − a3a1 + a2
2 − 2a4)

∂
∂a4

η1 + ( 18a1
2 + 1

2a2)ω1 +
1
2η1.

We denote by D the determinant of the 3 × 3-matrix consists of the coefficients with

respect to ∂
∂a6

ω1,
∂

∂a4
ω1, and

∂
∂a4

η1 of the above. Solving this modulo the exact forms,

we have

D · ∂
∂a6

ω1 = ( 1
16a3a1

3 + 1
8a4a1

2 + 1
4a2a3a1 −

9
8a3

2 + 1
2a4a2 − 9/2a6)ω1

+ ( 1
16a1

4 + 1
2a2a1

2 − 3
2a3a1 + a2

2 − 3a4)η1,

D · ∂
∂a4

ω1 =
(
− 1

16a3
2 + 3

4a6)a1
2 − a4a3a1 +

3
4a2a3

2 + (3a6a2 − a4
2)ω1

+ (− 1
16a3a1

3 − 1
8a4a1

2 − 1
4a2a3a1 +

9
8a3

2 − 1
2a4a2 +

9
2a6

)
η1,

D · ∂
∂a4

ω1(=
∂

∂a6
η1) =

(
− 1

8a6a1
4 + 1

8a4a3a1
3 − 1

8a2a3
2 + (−a6a2 +

1
8a4

2)a1
2 + 3

16a1a3
3

+( 12a4a2 +
3
4a6)a1a3 + (− 1

2a2
2 + 3

8a4)a3
2 − 2a6a2

2 + 1
2a4

2a2 +
3
2a6a4

)
ω1

+
(
( 1
16a3

2 − 3
4a6)a1

2 + a4a3a1 − 3
4a2a3

2 − 3a6a2 + a4
2
)
η1,

where all these equalities are regarded modulo the exact forms.

Substituting these into (4.10), we see that the determinant D is completely can-
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celled out, and we have (simply!)

L0(ω1, η1) = (ω1, η1)
tΓ0, L2(ω1, η1) = (ω1, η1)

tΓ2,

where

(4.11) Γ0 =

[
−1

1
6a1

2 + 2
3a2 1

]
, Γ2 =

[
1

1
6a3a1 +

1
3a4

]
.

We have the following important

Proposition 4.12. (Buchstaber-Leykin) Let L = M(x, y) t[L0 L2 ]. We have

(4.13) L(∆) = Hessf ·∆

in the ring Q[a][x, y]/(f1, f2), which is explicitly written as

(L0, L2)(∆) = [ 12, a1
2 + 4a2 ]∆.

Proof. There is no proof in [3] and we do not give a proof here. See [5] for a proof

for the hyperelliptic case due to S. Yasuda.

Corollary 4.14. The operators L0 and L2 are tangent to the discriminant ∆,

i.e. (L0∆)/∆, (L2∆)/∆ ∈ Q[a].

Proof. Obvious from 4.12.

Remark 4.15. If a1 = a2 = a3 = 0, namely, in the case of the Weierstrass form,

any operator D ∈ Q[a][ ∂
∂a

] which is tangent to ∆ is a linear combination of L0 and L2.

In our situation, we have more linearly independent tangent operators

(4.16)
E = a1

∂
∂a1

+ 2a2
∂

∂a2
+ 3a3

∂
∂a3

+ 4a4
∂

∂a4
+ 6a6

∂
∂a6

(Euler’s vector field ),

Vi1
∂

∂a1
+ Vi2

∂
∂a3

, Vi1
∂

∂a2
+ Vi2

∂
∂a4

, Vi1
∂

∂a4
+ Vi2

∂
∂a6

(i = 1, 2).

The operator E is indeed tangent to ∆ = 0 because ∆ is of homogeneous weight. We

will use E as well. However, the sigma function for our case is determined only by L0

and L2. We refer the reader to Theorem A8 in [1] concerning this remark.

4.4 Final forms of heat operators

We denote simply H0 = HL0 , H2 = HL2 . Letting Γi =

[
−βi αi

−γi βi

]
(i = 0, 2), we have

Hi =
1
2αi

∂
∂u2 + βiu

∂
∂u + 1

2γiu
2 + 1

2Trβi.

We have explicitly these and 1
8Li(log∆) as follows:

(4.17)
H0 = 0 + u ∂

∂u − 1
12 (a1

2 + 4a2)u
2 + 1

2 ,
1
8L0(log∆) = 3

4 ,

H2 = 1
2

∂2

∂u2 + 0− 1
12 (a3a1 + 2a4)u

2 + 0, 1
8L2(log∆) = 1

8 (a1
2 + 4a2).

Then our refined BL-theory states that L0−H0+
1
8L0(log∆) and L2−H2+

1
8L2(log∆)

annihilate σ(u), which is the first statement of the following theorem.
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Now, (3.16) leads to the following.

Theorem 4.18. (Universal version of BL-theory) One has(
L0 −H0 +

1
8L0(log∆)

)
σ(u) = 0,

(
L2 −H2 +

1
8L2(log∆)

)
σ(u) = 0.

Moreover, for an unknown function φ(u), any solution of(
L0 −H0 +

1
8L0(log∆)

)
φ(u) = 0,

(
L2 −H2 +

1
8L2(log∆)

)
φ(u) = 0

is a absolute-constant multiple of σ(u).

Proof. The former part is seen by (3.15) and (3.16). On the latter part, after

rewriting these equations to relations on the expansion coefficients, we solve them in

Section 5 and see that the solution is of 1-dimensional.

Remark 4.19. (1) It is not obvious to the authors why L0 −H0 +
1
8L0(log∆)

and L2 −H2 +
1
8L2(log∆) determines σ(u). The authors do not know a fundamental

reason why the coefficients of power series expansion of σ(u) have a recursion relation.

(2) We see that our L0 has extra terms coming from exp
(
a1

2+4a2

24 u2
)
of (2.7) in com-

parison with Weierstrass’ original L0 (i.e. to L0 of the case a1 = a2 = a3 = 0).

(3) If we use Euler’s vector field E in (4.16) instead of L0, we get a simpler heat equation,

which states that the expansion of σ(u) is homogeneous of weight 1.

We compute the heat operator E −HE + 1
8E log∆ for the calculation in Section

5. By (1.4), we see that

E(ω1) + ω1 =
(
1 + 2a1t+ 3(a2 + a1

2)t2 + · · ·
)
dt = d

(
t+ a1t

2 + (a2 + a1
2)t3 + · · ·

)
= d

(
t
ω1

dt

)
= d

( x

y
·

dx
dt

2y − a1x− a3

)
= d

(
x

y
· 1

2y − a1x− a3

1
d
dx

(
x
y

) ),
E(η1)− η1 = (t−2 + 2a3t− 3(a4 + 2a1a3)t

2 + · · · )dt

= d(−t−1 + a3t
2 − 3(a4 + 2a1a3)t

3 + · · · ) = d
(
t
η1
dt

)
= · · · ,

which are exact forms. Obviously, E log∆ = 12. We then have ΓE =
[−1

1

]
, and

(4.20)
E −HE + 1

8E log∆ = E − u ∂
∂u − 1

2 + 12
8

= a1
∂

∂a1
+ 2a2

∂
∂a2

+ 3a3
∂

∂a3
+ 4a4

∂
∂a4

+ 6a6
∂

∂a6
− u ∂

∂u + 1.

5 Recursion Relations

By (4.20), we see the expansion of σ(u) is of the form

σ(u) =
∑

k−n1−2n2−3n3−4n4−6n6=1

b(n1, n2, n3, n4, n6) a1
n1a2

n2a3
n3a4

n4a6
n6

uk

k!
,
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where b(n1, n2, n3, n4, n6) ∈ Q. We denote by bL0
and bH0

the coefficients of

a1
n1a2

n2a3
n3a4

n4a6
n6

uk

k!

with k = 1 + n1 + 2n2 + 3n3 + 4n4 + 6n6 in L0

(
σ(u)

)
and (H0 − 1

8L0 log∆)
(
σ(u)

)
,

respectively, and by bL2 and bH2 the coefficients of

a1
n1a2

n2a3
n3a4

n4a6
n6

uk−2

(k − 2)!

in L2

(
σ(u)

)
and (H2− 1

8L2 log∆)
(
σ(u)

)
, respectively. which are explicitly expressed as

in the last page. Therefore, we have two recursion relations

bL0 − bH0 = 0, bL2 − bH2 = 0.

Definition 5.1. We fix integers n1, n2, n3, n4, n6. Then, we define the relative

weight (with respect to these integers) of the symbol

b(n1 + k1, n2 + k2, n3 + k3, n4 + k4, n6 + k6)

to be −(k1 + 2k2 + 3k3 + 4k4 + 6k6).

It is easy to see the relation bL2
− bH2

= 0 gives indeed a recursion relation by

looking at the relative weights for all symbols appeared in this relation. Namely, there

exists a relative weight 0 symbol which is b(n1, n2, n3, n4, n6) and the other symbols

are of lower weight. The explicit formulae are given below.

Remark 5.2. If we set a1 = a2 = a3 = 0, the relations bLi
− bHi

= 0 (i = 0, 2)

coincide with the relations (0.4) of Weierstrass ([17]) (see [11] also).

Finally, we shall describe the actual calculation. Using the recursion relation bL2
−

bH2 = 0, we have the coefficients, as in the following order,

b(0, 0, 0, 0, 0) = 1, b(0, 0, 0, 1, 0) = 2, b(0, 0, 0, 0, 1) = 24, b(2, 0, 0, 0, 0) = 1
2 ,

b(4, 0, 0, 0, 0) = 1
16 , b(0, 1, 0, 0, 0) = 1, b(2, 1, 0, 0, 0) = 1

2 , b(4, 1, 0, 0, 0) = 3
16 ,

b(6, 0, 0, 0, 0) = 1
64 , b(0, 0, 2, 0, 0) = 6, b(1, 0, 1, 0, 0) = 1, b(3, 0, 1, 0, 0) = 3

4 , · · · ,

and we get the expansion (0.11).

6 Some problems

We pick up some questions on the direction of this investigation for higher genus curves.

Q1. For a given general curve, describe the power series expansion of the sigma function

explicitly around any point on the Abelian image of the curve, as Weierstrass gave

expansions around the 2-division points on any elliptic curve.

Q2. Give a closed formula for the coefficients of the expansion of the sigma function

around the origin for any curve, as S. Yasuda [18] obtained for the Weierstrass sigma

function.
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The final forms of the recursion equations are as follows (the RHS’s show the corre-
sponding terms in Li and Hi − 1

8Li log∆) :

bL0 = 1
12

(
− (n4+1)·b(n1 − 4, n2 , n3 , n4 + 1, n6 ) · 16 · · · (−a1

4

−8(n4+1)·b(n1 − 2, n2 − 1, n3 , n4 + 1, n6 ) · 4 · · · − 8a1
2a2

+24(n4+1)·b(n1 − 1, n2 , n3 − 1, n4 + 1, n6 ) · 2 · · · + 24a1a3

−16(n4+1)·b(n1 , n2 − 2, n3 , n4 + 1, n6 ) · · · − 16a2
2

+48 n4 ·b(n1 , n2 , n3 , n4 , n6 ) · · · + 48a4)
∂

∂a4

−(n6+1)·b(n1 − 3, n2 , n3 − 1, n4 , n6 + 1) · 8 · · · + (−a1
3a3

−2(n6+1)·b(n1 − 2, n2 , n3 , n4 − 1, n6 + 1) · 4 · · · − 2a1
2a4

−4(n6+1)·b(n1 − 1, n2 − 1, n3 − 1, n4 , n6 + 1) · 2 · · · − 4a1a2a3

−8(n6+1)·b(n1 , n2 − 1, n3 , n4 − 1, n6 + 1) · · · − 8a2a4

+18(n6+1)·b(n1 , n2 , n3 − 2, n4 , n6 + 1) · · · + 18a3
2

+72 n6 ·b(n1 , n2 , n3 , n4 , n6 )
)
, · · · + 72a6)

∂
∂a6

,

bH0 = b(n1 , n2 , n3, n4, n6) · (k − 1) · · · u ∂
∂u

− 1
12

· b(n1 − 2, n2 , n3, n4, n6) · (k − 1)(k − 2) · 4 · · · + (− 1
12
a1

2

+ 1
3
· b(n1 , n2 − 1, n3, n4, n6) · (k − 1)(k − 2) · · · + 1

3
a2)u

2

+ 1
2
· b(n1 , n2 , n3, n4, n6) · · · + 1

2

− 3
4
· b(n1 , n2 , n3, n4, n6), · · · + 1

8
(−12),

bL2 = 1
12

(
− (n4+1)·b(n1 − 3, n2 , n3 − 1, n4 + 1, n6 ) · 8 · · · 1

12

(
− a1

3a3

−2 n4 ·b(n1 − 2, n2 , n3 , n4 , n6 ) · 4 · · · − 2a1
2a4

−4(n4+1)·b(n1 − 1, n2 − 1, n3 − 1, n4 + 1, n6 ) · 2 · · · − 4a1a2a3

−8 n4 ·b(n1 , n2 − 1, n3 , n4 , n6 ) · · · − 8a2a4

+18(n4+1)·b(n1 , n2 , n3 − 2, n4 + 1, n6 ) · · · + 18a3
2

+72(n4+1)·b(n1 , n2 , n3 , n4 + 1, n6 − 1) · · · + 72a6

)
∂

∂a4

−1(n6+1)·b(n1 − 2, n2 , n3 − 2, n4 , n6 + 1) · 4 · · · + 1
12

(
− a1

2a3
2

+12 n6 ·b(n1 − 2, n2 , n3 , n4 , n6 ) · 4 · · · + 12a1
2a6

−16(n6+1)·b(n1 − 1, n2 , n3 − 1, n4 − 1, n6 + 1) · 2 · · · − 16a1a3a4

+12(n6+1)·b(n1 , n2 − 1, n3 − 2, n4 , n6 + 1) · · · + 12a2a3
2

+48 n6 ·b(n1 , n2 − 1, n3 , n4 , n6 ) · · · + 48a2a6

−16(n6+1)·b(n1 , n2 , n3 , n4 − 2, n6 + 1)
)
, · · · − 16a4

2) ∂
∂a6

,

bH2 = 1
2
· b(n1 , n2 , n3 , n4 , n6) · · · 1

2
∂2

∂u2

− 1
12

· b(n1 − 1, n2 , n3 − 1, n4 , n6) · (k − 1)(k − 2) · 2 · · · + (− 1
12
a3a1

− 1
6
· b(n1 , n2 , n3 , n4 − 1, n6) · (k − 1)(k − 2) · · · − 1

6
a4)u

2

− 1
8
· b(n1 − 2, n2 , n3 , n4 , n6) · 4 · · · − 1

8
a1

2

− 1
2
· b(n1 , n2 − 1, n3 , n4 , n6). · · · − 1

2
a2.
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A script for computing the expansion of the σ(u) by using the recursion relation bL2
−

bH2 = 0 for pari/GP is available at http://www2.meijo-u.ac.jp/~yonishi.
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