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Introduction.

Let σ(u) and ℘(u) be the usual functions from the classical theory of elliptic functions.

The following two formulae were found in the nineteenth-century. The first one is

(0.1)

(−1)(n−1)(n−2)/21!2! · · · (n− 1)!
σ(u(1) + u(2) + · · ·+ u(n))

∏
i<j σ(u(i) − u(j))

σ(u(1))nσ(u(2))n · · ·σ(u(n))n

=

∣∣∣∣∣∣∣∣

1 ℘(u(1)) ℘′(u(1)) ℘′′(u(1)) · · · ℘(n−2)(u(1))
1 ℘(u(2)) ℘′(u(2)) ℘′′(u(2)) · · · ℘(n−2)(u(2))
...

...
...

...
. . .

...
1 ℘(u(n)) ℘′(u(n)) ℘′′(u(n)) · · · ℘(n−2)(u(n))

∣∣∣∣∣∣∣∣
.

This formula appeared in the paper of Frobenius and Stickelberger [11]. The second one

is

(0.2) (−1)n−1(1!2! · · · (n− 1)!)2 σ(nu)

σ(u)n2 =

∣∣∣∣∣∣∣∣

℘′ ℘′′ · · · ℘(n−1)

℘′′ ℘′′′ · · · ℘(n)

...
...

. . .
...

℘(n−1) ℘(n) · · · ℘(2n−3)

∣∣∣∣∣∣∣∣
(u).

Although this formula can be obtained by a limiting process from (0.1), it was found before

(0.1) by [14].

If we set y(u) = 1
2℘
′(u) and x(u) = ℘(u), then we have the equation y(u)2 = x(u)3 + · · · ,

that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are

attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the

identity

u =

∫ (x(u),y(u))

∞

dx

2y

1



2 Yoshihiro Ônishi

with an appropriate choice of path of the integral. Then (0.1) and (0.2) are easily rewritten

as

(0.3)

σ(u(1) + u(2) + · · ·+ u(n))
∏
i<j σ(u(i) − u(j))

σ(u(1))nσ(u(2))n · · ·σ(u(n))n

=

∣∣∣∣∣∣∣∣

1 x(u(1)) y(u(1)) x2(u(1)) yx(u(1)) x3(u(1)) · · ·
1 x(u(2)) y(u(2)) x2(u(2)) yx(u(2)) x3(u(2)) · · ·
...

...
...

...
...

...
. . .

1 x(u(n)) y(u(n)) x2(u(n)) yx(u(n)) x3(u(n)) · · ·

∣∣∣∣∣∣∣∣

and

1!2! · · · (n− 1)!
σ(nu)

σ(u)n2

=

∣∣∣∣∣∣∣∣

x′ y′ (x2)′ (yx)′ (x3)′ · · ·
x′′ y′′ (x2)′′ (yx)′′ (x3)′′ · · ·
...

...
...

...
...

. . .

x(n−1) y(n−1) (x2)(n−1) (yx)(n−1) (x3)(n−1) · · ·

∣∣∣∣∣∣∣∣
(u),(0.4)

respectively.

The author recently gave a generalization of the formulae (0.3) and (0.4) to the case

of genus two in [19] and to the case of genus three in [20]. The aim of this paper is to

generalize (0.3), (0.4) and the results in [19], [20] to all hyperelliptic curves (see Theorem

7.2 and Theorem 8.3). The idea of our generalization arises from the unique paper [12] of

D. Grant. It can be summarized in a phrase, “Think not on the Jacobian but on the curve

itself.”

Fay’s famous formula (44) in p.33 of [10] which generalizes an addition formula on the

Jacobian variety, known as Schottky-Klein, is another generalization of (0.3). The author

does not know whether Fay’s formula is able to yield a generalization of (0.4). Our formula

is quite elegant in comparison with Fay’s one and naturally gives a generalization of (0.4).

Though no explicit connection to Fay’s formula with ours is known at present, recently the

paper [9] appeared, and this paper seems to investigate this problem.

We now present the minimal fundamentals needed to explain our results. Let f(x) be

a monic polynomial in x of degree 2g + 1 with g a positive integer. Assume that f(x) = 0

has no multiple roots. Let C be the hyperelliptic curve defined by y2 = f(x). Then C is

of genus g and is ramified at infinity. We denote by ∞ the unique point at infinity on C.

Let Cg be the coordinate space of all vectors of integrals

(∫ P1

∞
+ · · ·+

∫ Pg

∞

)( 1

2y
,
x

2y
, · · · , x

g−1

2y

)
dx

of the first kind for Pj ∈ C. Let Λ ⊂ Cg be the lattice of their periods. So Cg/Λ is

the Jacobian variety of C. We denote the canonical map by κ : Cg → Cg/Λ. We have

an embedding ι : C ↪→ Cg/Λ defined by P 7→ (
∫ P
∞

dx
2y ,

∫ P
∞

xdx
2y , · · · ,

∫ P
∞

xg−1dx
2y ) mod Λ.



Determinant expressions for hyperelliptic functions 3

Therefore ι(∞) = (0, 0, · · · , 0) ∈ Cg/Λ. We regard an algebraic function on C, which we

call a hyperelliptic function in this article, as a function on a universal Abelian covering

κ−1ι(C) (⊂ Cg) of C. If u = (u1, · · · , ug) is in κ−1ι(C), we denote by (x(u), y(u)) the

coordinate of the corresponding point on C by

u =

∫ (x(u),y(u))

∞

( 1

2y
,
x

2y
, · · · , x

g−1

2y

)
dx

with appropriate choice of a path for the integrals. Needless to say, we have (x(0, 0, · · · , 0),

y(0, 0, · · · , 0)) =∞.

Our new point of view is characterized by the following three featuring of the formulae

(0.3) and (0.4). Firstly, the sequence of functions of u whose values at u = u(j) are displayed

in the jth row of the determinant of (0.3) is just a sequence of the monomials of x(u) and

y(u) displayed according to the order of their poles at u = 0. Secondly, the two sides of

(0.3) as a function of u = u(j) and those of (0.4) should be regarded as functions defined

on the universal (Abelian) covering space C not of the Jacobian variety but of the elliptic

curve. Thirdly, the expression of the left hand side of (0.4) states that the function on the

two sides of (0.4) is characterized as an elliptic function such that its zeroes are exactly

the points different from ∞ whose n-plication is just on the standard theta divisor in the

Jacobian of the curve, and such that its only pole is at ∞. In the case of the elliptic curve

above, the standard theta divisor is just the point at infinity.

Surprisingly enough, these three featuring can be used to derive a natural generalization

of these formulae for hyperelliptic curves. More concretely, for n = g our generalization of

(0.4) is obtained by replacing the sequence giving the rows of the right hand side by the

sequence

1, x(u), x2(u), · · · , xg(u), y(u), xg+1(u), yx(u), · · · .

Here u = (u1, u2, · · · , ug) is on κ−1ι(C), with the monomials of x(u) and y(u) displayed

according to the order of their poles at u = (0, 0, · · · , 0), replacing the derivatives with

respect to u ∈ C by those with respect to u1 along κ−1ι(C). The left hand side of (0.4) is

replaced by

(0.5) ±1!2! · · · (n− 1)!σ(nu)/σ](u)n
2

,

where n = g, σ(u) = σ(u1, u2, · · · , ug) is a well-tuned Riemann theta series, which is a

natural generalization of the classical σ(u). The function σ] is defined in the table below:

genus g 1 2 3 4 5 6 7 8 · · ·
σ] σ σ2 σ2 σ24 σ24 σ246 σ246 σ2468 · · ·

where σij···`(u) = ∂
∂ui

∂
∂uj
· · · ∂

∂u`
σ(u). The function (0.5) is a natural generalization of the

n-division polynomial of an elliptic curve, as mentioned in Remark 8.4 below. For the

case n 5 g, we need a slight modification as in Theorems 7.2(1) and 8.3(1). As a function

on κ−1ι(C), σ](u) has its zeroes only at the points κ−1ι(∞) (Proposition 6.5(1)). This
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property is exactly the same as for the classical σ(u). The hyperelliptic function (0.5) can

be regarded as a function on Cg via theta functions. Although this function on Cg is no

longer a function on the Jacobian, it is indeed expressed simply in terms of theta functions

and is treated in a very similar way to that of elliptic functions.

The most difficult problem was to find the left hand side of our expected generalization

of (0.3). For simplicity we assume n = g. The answer is remarkably elegant and is

σ(u(1) + u(2) + · · ·+ u(n))
∏
i<j σ[(u

(i) − u(j))

σ](u(1))nσ](u(2))n · · ·σ](u(n))n
,

where u(j) = (u(j)

1 , u(j)

2 , · · · , u(j)
g ) (j = 1, · · · , n) are variables on κ−1ι(C) and σ[(u) is

defined as in the table below:

genus g 1 2 3 4 5 6 7 8 · · ·
σ[ σ σ σ3 σ3 σ35 σ35 σ357 σ357 · · ·

Once we found this, we could prove the formula by, roughly speaking, comparing the

divisors of the two sides. As the formula (0.4) is obtained by a limiting process from (0.3),

our generalization of (0.4) is obtained by a similar limiting process from the generalization

of (0.3).

Cantor [8] gave another determinant expression of the function that is characterized in

the third featuring explained above, for any hyperelliptic curve. The expression of Cantor

should be seen as a generalization of a formula due to Brioschi (see [4, p.770, `.3]).

Concerning the paper [19], Matsutani pointed out that (0.4) can be generalized to all

hyperelliptic curves, and he proved that the resulting formula is equivalent to Cantor’s one.

He kindly permitted the author to include his proof as an Appendix in this paper.

Matsutani’s observation stimulated the author to start working on an extension of (0.3)

for all hyperelliptic curves. The method of this paper is entirely different from that of [19]

and [20]. It gives probably one of the simplest approaches to these extensions, and is based

on the paper of Buchstaber, Enolskii and Leykin [6]. At the beginning of this research the

author computed several cases by the low blow method as in [19] and [20]. While Theorem

7.2 was still a conjecture Professor V.Z. Enolskii suggested to the author that to prove the

conjecture it would be important to investigate the leading terms of the sigma function as

in [6].

Now we outline the idea of the proof. When the curve C, defined by y2 = f(x), deforms

to a singular curve y2 = x2g+1 the canonical limit of the function σ(u) is known to be a

Schur polynomial from the theory of representations of symmetric groups. The paper [6]

treated this fact quite explicitly. Such a limit polynomial is called the Schur-Weierstrass

polynomial in that paper. For our argument, we need a slight extension of this fact (see

Section 4). To prove our formula of Frobenius-Stickelberger type by induction on the

number of variables u(j) we need relations to connect each factor of the numerator to a

factor of the denominator in the left hand side of Theorem 7.2. So, after proving such a

connection with the Schur-Weierstrass polynomial as explained in Section 2, we will lift the

connection to the case of the sigma function as in Section 6. For this, we need additional
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facts on the vanishing of some derivatives of the sigma function, as is described in Section

5.

The results from Section 1 to Section 6 are easily generalized to quite wide family of

algebraic curves. Such curves are called (n, s)-curves in [6] and [7]. Unfortunately the

standard theta divisor or every standard theta subvariety, i.e. an image of the symmetric

product of some copies of the curve, in the case of such a general curve, is not symmetric

in the Jacobian. Here the word “standard” means that the embedding of the curve into

its Jacobian variety sends the point at infinity to the origin. Hence the sigma function of

such a general curve has no involution and our naive generalization ended in failure.

There are also various generalizations of (0.1) (or (0.3)) in the case of genus two different

from our line of approach. If the reader is interested in them, he should consult Introduction

of [19].

Finally, The authors would like deeply to express thanks to the referee who read carefully

the first version of this paper which was written hardly to read. If this final version is much

easier to read, all things depend on the referee’s considerations.

Convention.

We use the following notation throughout the paper. We denote, as usual, by Z, Q, R and

C the ring of rational integers, the field of rational numbers, the field of real numbers and

the field of complex numbers, respectively. In an expression for the Laurent expansion of a

function, the symbol (d◦(z1, z2, · · · , zm) = n) stands for the terms of total degree at least

n with respect to the variables z1, z2, · · · , zm. This notation never means that the terms

are monomials only of z1, · · · , zm. When the variable or the least total degree clear from

the context, we simply denote them by (d◦ = n) or the dots “· · ·”.

We will often omit zero entries from a matrix. For a simplicity we will occasionally

denote an unspecified matrix entry with an asterisk.

For cross-references in this paper, we indicate a formula as (1.2), and each of Lemmas,

Propositions, Theorems and Remarks also as 1.2.

Contents.

1. The Schur-Weierstrass polynomial

2. Derivatives of the Schur-Weierstrass polynomial

3. Hypelliptic Functions

4. The Schur-Weierstrass polynomial and the sigma function

5. The vanishing structure of the sigma functions and of its derivatives

6. Special derivatives of the sigma function

7. The Frobenius-Stickelberger type formula

8. The Kiepert type formula

Appendix. Connection of the formulae of Cantor-Brioschi and of Kiepert type

(by S. Matsutani)
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1. The Schur-Weierstrass Polynomial.

We begin with a review of fundamentals on Schur-Weierstrass polynomials. Our main

references are [15] and [6].

Let g be a fixed positive integer, and u(1)
g , · · · , u(g)

g be indeterminates. We fix n (0 5
n 5 g) and we denote by ug the set of variables u(1)

g , · · · , u(n)
g . For each k = 0 we denote

by (−1)kU [n]

k (ug) the kth complete symmetric function, namely the sum of all monomials

of total degree k of the variables u(1)
g , · · · , u(n)

g . We will emphasis by the superscript [n]

that U [n]

k (ug) is a function of a set of n variables ug. For k < 0, we regard U [n]

k (ug) as 0.

We now consider the determinant

|U [g]

g−2i+j+1(ug)|15i,j5g.

If we write simply Uk = U [g]

k (ug) and let Uk = 0 if k < 0, then this is explicitly of the form

(1.1a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ug Ug+1 Ug+2 · · · U2g−2 U2g−1

Ug−2 Ug−1 Ug · · · U2g−4 U2g−3

...
...

...
. . .

...
...

U1 U2 U3 · · · ∗ ∗
U0 U1 · · · ∗ ∗

. . .
...

...
U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for odd g, or

(1.1b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ug Ug+1 Ug+2 Ug+3 · · · U2g−2 U2g−1

Ug−2 Ug−1 Ug Ug+1 · · · U2g−4 U2g−3

...
...

...
...

. . .
...

...
U0 U1 U2 U3 · · · ∗ ∗

U0 U1 · · · ∗ ∗
. . .

...
...

U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for even g.

In the sequel we denote

(1.2)

pj := (u(1)

g )j + · · ·+ (u(g)

g )j ,

u(i)

j := 1
2(g−j)+1

(u(i)

g )2(g−j)+1,

u(i) := (u(i)

1 , · · · , u(i)

g ),

uj := u(1)

j + u(2)

j + · · ·+ u(g)

j = 1
2(g−j)+1p2(g−j)+1,

u := u(1) + u(2) + · · ·+ u(g) = (u1, u2, · · · , ug).

We explain our |U [g]

g−2i+j+1(ug)|15i,j5g is no other than S2,2g+1 in [6]. We introduce new

variables s1, s2, · · · , s2g−1 satisfying

(1.3) pj = −s1
j − s2

j − · · · − s2g−1
j , (1 5 j 5 2g − 1).
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In fact, such sj ’s exist by the following reason. Denoting by εk(s) with s = (s1, s2, · · · , s2g−1)

the elementary symmetric function of degree k of sj’s, the numbers s1, s2, · · · , s2g−1 sat-

isfying (1.3) are solutions of

εk(s) =
1

k!

∣∣∣∣∣∣∣∣∣∣

−p1 1
−p2 −p1 2

...
...

...
. . .

−pk−1 −pk−2 −pk−3 · · · k − 1
−pk −pk−1 −pk−2 · · · −p1

∣∣∣∣∣∣∣∣∣∣

= (−1)kU [g]

k (ug)

for k = 1, 2, · · · , 2g − 1. This fact is given by [15, p.29, `. − 4 and p.28, `.13]. The

fundamental theorem of the algebraic equations shows that such a system of equations

always has solutions. Hence, we see that |U [g]

k (ug)| coincides with the Schur-Weierstrass

polynomial S2,2g+1(−p1,−p3, · · · ,−p2g−1) of Theorem 4.3 in [6],

Remark 1.4. Here note that our notation of uj ’s are slightly different from zj ’s of [6].

The correspondence is given by zj = −(2j − 1)ug−j+1. Moreover it would be helpful for

the reader to understand the relation of setting of [6] and ours that we compare with the

integral (3.7) below and the definition (5.3) of [6] that has a multiplicative constant and

is of opposite direction of integral.

Besides |U [g]

g−2i+j+1(ug)| is obviously a polynomial of u(1)
g , · · · , u(g)

g , we can prove the

following.

Proposition 1.5. The polynomial |U [g]

g−2i+j+1(ug)|15i,j5g above is completely determined

by the g values of −p1, −p3, · · · , −p2g−1 defined above, so that, of u1, u2, · · · , ug.

Proof. See Theorem 4.1 in [6, p.86]. �
So we may write in this paper that

S(u) := |U [g]

g−2i+j+1(ug)|15i,j5g.
This polynomial S(u) is called the Schur-Weierstrass polynomial.

We introduce a weight which is defined by taking the weight of uj being 2(g − j) + 1.

We call this the Sato weight. It is easy to see that S(u) is of homogeneous with respect to

Sato weight, and has the Sato weight 1
2
g(g + 1).

Let m be a fixed positive integer and ξ1, · · · , ξm be indeterminates. We denote (−1)k

times the sum of monomials of total degree k of ξ1, · · · , ξm by U [m]

k (ξ) as above, where ξ

means the set of ξ1, · · · , ξm.

Definition 1.6. Let m, ξi, and U [m]

k (ξ) are as above. A matrix whose every row is suc-

cessive (m+ 1) terms of the sequence

· · · , 0, 0, 1, U [m]

1 (ξ), U [m]

2 (ξ), · · ·
except the set of terms

0, · · · , 0, 0, 1

is called a fundamental matrix without a simple row with respect to ξ1, · · · , ξm.

The following is used several times in Section 2.
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Lemma 1.7. Let m, ξi, and U [m]

k (ξ) are as above. Let M be a fundamental matrix without

a simple row with respect to ξ1, · · · , ξm. We denote by εj(ξ), the elementary symmetric

function of ξ1, · · · , ξm of degree j. Then we have

M




εm(ξ)
εm−1(ξ)

...
ε1(ξ)

1




=




0
0
...
0
0



.

Proof. See [15, p.21, (2.6′)]. �

Although the following will be not used in this paper explicitly, it is deeply related to

the Riemann singularity theorem which is mentioned in Section 5. So we give it here.

Lemma 1.8. As a polynomial in u(1)
g , · · · , u(g−1)

g , u(g)
g , we have

S(u(1) + · · ·+ u(g−1) + u(g)) = 0

identically when u(g)
g = 0.

Proof. This formula follows from 1.7 by setting m = g − 1 and M to be the matrix whose

determinant expresses S(u(1) + · · ·+ u(g−1)). �



Determinant expressions for hyperelliptic functions 9

2. Derivatives of the Schur-Weierstrass Polynomial.

We will discuss some derivatives of the Schur-Weierstrass polynomial, in order to investigate

the corresponding derivatives of the sigma function in Section 6.

Definition 2.1. For an integer n with 1 5 n 5 g, we denote by \n the set of positive

integers i such that n+ 1 5 i 5 g with i ≡ n+ 1 mod 2. Namely, \n is the set {n+ 1, n+

3, · · · , g − 3, g − 1} or {n+ 1, n+ 3, · · · , g − 2, g} according as n ≡ g mod 2 or not.

Definition 2.2. We denote by S\n(u) the derivative

( ∏

i∈\n

∂
∂ui

)
S(u).

We define in particular ] = \1 and [ = \2, so that S](u) = S\1(u) and S[(u) = S\2(u).

In this Section we define, as in Section 1, pk :=
∑g

i=1(u(i)
g )k and uj = 1

2g−2j+1
p2g−2j+1

for j = 1, · · · , g.

Lemma 2.3. If we regard a polynomial of U [g]

1 (ug), U [g]

2 (ug), · · · as a polynomial in p1,

· · · , p2g−1, we then have

k ∂
∂pk

= (−1)k
∑

r=0

Ur
∂

∂Uk+r
,

where we simply write Uj = U [g]

j (ug).

Proof. See [15, p.76]. �

Now we continue to write Uj = U [g]

j (ug). The formula states that (−1)kk(∂/∂pk)S(u)

is the sum of the determinants obtained by “shifting by k ” one of the rows to the right

direction of the matrix of the determinant expression of S(u).

Proposition 2.4. Let n be an integer such that 1 5 n 5 g− 1 and vg be a scalar variable.

Let

v =
(

1
2g−1

vg
2g−1, · · · , 1

3
vg

3, vg

)
,

u(j) =
(

1
2g−1(u(j)

g )2g−1, · · · , 1
3 (u(j)

g )3, u(j)

g

)
.

Then

(1) S](v) = −(−1)(g−1)(g−2)(g−3)/2vg
g,

(2) S\n+1(u(1) + · · ·+ u(n) + v)

= (−1)(g−n)(g−n−1)/2S\n(u(1) + · · ·+ u(n))vg
g−n + (d◦(vg) = g − n+ 2),

(3) S[(2v) = −(−1)g(g−1)(g−2)/22vg
2g−1.

We firstly prove (2), secondly (1), and finally (3).
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Proof of (2). While we consider four cases according to the parity of g and n, all the cases

are similarly proved. We see that

\n+1 =

{ {n+ 2, n+ 4, · · · , g − 2, g} if n ≡ g mod 2,

{n+ 2, n+ 4, · · · , g − 3, g − 1} if n 6≡ g mod 2.

We denote the number of this set by ν:

ν =

{
(g − n)/2 if n ≡ g mod 2,

(g − n− 1)/2 if n 6≡ g mod 2.

The expansion that we concern is the derivative S\n+1(u) of S(u) which is a function of g

variables u = (u1, · · · , ug) with substituted later by u = u(1) + · · ·+u(n) + v. We will apply

(2.5)

Dn+1 =
∏

i∈\n+1

∂
∂ui

=





(2g − 2n− 3) ∂
∂p2g−2n−3

(2g − 2n− 7) ∂
∂p2g−2n−7

· · · 5 ∂
∂p5

1 ∂
∂p1

(if n ≡ g mod 2),

(2g − 2n− 3) ∂
∂p2g−2n−3

(2g − 2n− 7) ∂
∂p2g−2n−7

· · · 7 ∂
∂p7

3 ∂
∂p3

(if n 6≡ g mod 2)

to S(u). The formula in 2.3 and expressing S(u) as the determinant |Ug−2i+j+1|15i,j5g
with Uk = U [g]

k (u(1), · · · , u(g)) show explicitly the result given by applying Dn+1 to S(u).

Namely, each of the factors of Dn+1 in (2.5) is simply the sum of certain shifting to the

right of every rows of S(u) = |Ug−2i+j+1|. To explain more concretely, we regard the each

row of S(u) to be a partial sequence consisting successive g terms of the two-sided infinite

sequence

· · · , 0, 0, · · · , 0, U0, U1, U2, · · · .

We denote by shji the operation shifting by j terms to the right on the ith row. For example,

if the ith row is (U2, U3, U4, U5, · · · , Ug+1) then sh3

i transforms this row to (0, U0, U1, U2,

· · · , Ug−2). Then we have

(2.6)

S\n+1(u) = Dn+1S(u)

= γ′n+1 ·





∑

15i1,··· ,iν5g
sh4ν−1

i1
sh4ν−5

i2
· · · sh5

iν−1
sh1

iν
|Ug−2i+j+1| if n ≡ g mod 2,

∑

15i1,··· ,iν5g
sh4ν−1

i1
sh4ν−5

i2
· · · sh7

iν−1
sh3

iν
|Ug−2i+j+1| if n 6≡ g mod 2.

Here γ′n+1 is a signature ± coming from the top of the formula in 2.3, and is given by

γ′n+1 =

{
(−1)(g−n+1)(g−n)/2 if n ≡ g mod 2,

(−1)(g−n)(g−n−1)/2 if n 6≡ g mod 2.
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We claim that if we put u = u(1) + · · ·+ u(n) + v in (2.6), namely if we set Ug−2i+j+1 to

be U [n+1]

g−2i+j+1 = U [n+1]

g−2i+j+1(u(1)
g , · · · , u(n)

g , vg) then all the terms in (2.6) vanish except only

one certain term. The unique non-vanishing term is obtained from

γ′n+1|M | := γ′n+1 ·
{

sh4ν−1

n+1 sh4ν−5

n+2 · · · sh5
n+ν−1sh1

n+ν |Ug−2i+j+1| if n ≡ g mod 2,

sh4ν−1

n+1 sh4ν−5

n+2 · · · sh7
n+ν−1sh3

n+ν |Ug−2i+j+1| if n 6≡ g mod 2

by putting u = u(1) + · · ·+ u(n). We denote it by γ′n+1|M [n+1]|. Here the determinant |M |
is expressed as follows: if n ≡ g mod 2 then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ug Ug+1 · · · Ug+n ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
Ug−2 Ug−1 · · · Ug+n−2 ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

Ug−2n+2 Ug−2n+3 · · · Ug−n+2 ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
Ug−2n Ug−2n+1 · · · Ug−n ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗

U0

U0 U1 U2

. .
. ...

...
...

...
U0 U1 · · · ∗ ∗ ∗ ∗

U0 U1 U2 U3 · · · ∗ ∗ ∗ ∗
U0 U1 U2 U3 U4 · · · ∗ ∗ ∗ ∗

U0 U1 U2 · · · ∗ ∗ ∗ ∗
.. . . .

...
...

...
...

U0 U1 U2 U3

U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and if n 6≡ g mod 2 then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ug Ug+1 · · · Ug+n ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
Ug−2 Ug−1 · · · Ug+n−2 ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

Ug−2n+2 Ug−2n+3 · · · Ug−n+2 ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
Ug−2n Ug−2n+1 · · · Ug−n ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗

U0

U0 U1 U2

.. . .
. ...

...
...

...
U0 U1 U2 · · · ∗ ∗ ∗ ∗

U0 U1 U2 U3 U4 · · · ∗ ∗ ∗ ∗
U0 U1 U2 U3 · · · ∗ ∗ ∗ ∗

U0 U1 · · · ∗ ∗ ∗ ∗
. . .

...
...

...
...

U0 U1 U2 U3

U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Both of the cases, each determinant is obviously transformed to

= γ′′n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ug Ug+1 · · · Ug+n ∗ ∗ · · · ∗
Ug−2 Ug−1 · · · Ug+n−2 ∗ ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

Ug−2n+2 Ug−2n+3 · · · Ug−n+2 ∗ ∗ · · · ∗
Ug−2n Ug−2n+1 · · · Ug−n ∗ ∗ · · · ∗

U0 ∗ · · · ∗
U0 · · · ∗

. . .
...
U0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where γ′′n+1 is the signature coming from exchanges of rows and is given by

γ′′n+1 =

{
1 if g − (n+ 1) 6≡ 2 mod 4,

−1 if g − (n+ 1) ≡ 2 mod 4.

We will show the claim above by the following three steps.

Step 1. If the index (i1, · · · , iν) corresponding to a term in (2.6) contains a repetition, then

such the term vanishes when we put u = u(1) + · · ·+ u(n), by the following reason. Since j

of shji is anytime odd, any twice of shift in a row is a shift by even terms. By looking at

the expression (1.1a) and (1.1b) of |Ug−2i+j+1|, we see that the shifted row coincides with

another row or all the terms in the row are 0, and such the determinant vanishes before

getting the remaining shifts and substituting u = u(1) + · · ·+ u(n). Hence, in this case, no

non-zero term appears.

Step 2. In this step, any matrix [aij ] of size g× g which we will consider its determinant is

regarded to be divided into four blocks according as i 5 (n+ 1) or not, and as j 5 (n+ 1)

or not. We take arbitrary term of the sum (2.6) (which was already suffered all shifts).

We reorder its rows such that any column is ordered of indexes increasing. We denote the

obtained determinant by |M1|. Moreover we denote by |M [n+1]

1 | the determinant obtained

from |M1| by putting u = u(1) + · · ·+ u(n) + v. Suppose the region of |M [n+1]

1 | consisting

the (n+ 1)st row and the below contains at least one multi-step as

|M [n+1]

1 | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

* *
. . .

...
...

...
... . .

.

· · · U [n+1]

k−1 U [n+1]

k U [n+1]

k+1 U [n+1]

k+2 · · ·
U [n+1]

0 U [n+1]

1 · · ·
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(k = 1).

x taking (n+ 2) columns y
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Then the successive (n+ 2) columns from the column that contains the multi-step above

to the left direction form a matrix without simple rows and are linearly dependent by 1.7

with respect to (n+ 1) variables u(1)
g , · · · , u(n)

g , vg. Hence |M [n+1]

1 | = 0. Therefore we may

consider determinants such that all their diagonals in the right-lower block are U0(= 1).

Step 3. Since the totality of the shifts in every terms in (2.6) are always same, the Step

2 states that we may consider the only terms in (2.6) such that the sum of the indices of

the entries of the first column in the upper left block is equal to such the sum for |M |.
Since we can shift only to the right, the first row of |M | is no other than the first row

of S(u). Hence we may suppose that the sum of the indices from the (2, 1)-entry to the

(n+ 1, 1)-entry in the first column is equal to such the sum for |M |. Then the second row

must be just the second row of |M |. Repeating such the consideration, we arrive that no

row in the upper blocks suffered any shift shji . Hence we see that γ′n+1|M [n+1]| is unique

non-zero term in (2.6).

Summing up, we see that all the terms in (2.6) except γ ′n+1|M [n+1]| vanish, namely we

have

(2.7)

S\n+1(u(1) + · · ·+ u(n) + v)

= γn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U [n+1]
g U [n+1]

g+1 · · · U [n+1]

g+n−1 U [n+1]

g+n ∗ ∗ · · · ∗
U [n+1]

g−2 U [n+1]

g−1 · · · U [n+1]

g+n−3 U [n+1]

g+n−2 ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

. . .
...

U [n+1]

g−2n+2 U [n+1]

g−2n+3 · · · U [n+1]

g−n+1 U [n+1]

g−n+2 ∗ ∗ · · · ∗
U [n+1]

g−2n U [n+1]

g−2n+1 · · · U [n+1]

g−n−1 U [n+1]

g−n ∗ ∗ · · · ∗
1 ∗ · · · ∗

1 · · · ∗
. . .

...
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where U [n+1]

k = U [n+1]

k (u(g)

1 , · · · , u(g)
g , vg) and

γn+1 = γ′n+1γ
′′
n+1 =





(+1)(+1) = 1 if g − n ≡ 0 mod 4,

(+1)(+1) = 1 if g − n ≡ 1 mod 4,

(−1)(+1) = −1 if g − n ≡ 2 mod 4,

(−1)(−1) = 1 if g − n ≡ 3 mod 4.

Here we have used that U0 = 1. It is easily checked that γn+1 = (−1)(g−n)(g−n−1)(g−n−3).

Similarly, we have

(2.8) S\n(u(1) + · · ·+ u(n)) = γn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U [n]
g U [n]

g+1 · · · U [n]

g+n−1 ∗ ∗ · · · ∗
U [n]

g−2 U [n]

g−1 · · · U [n]

g+n−3 ∗ ∗ · · · ∗
...

...
. . .

...
...

...
. . .

...
U [n]

g−2n−2 U [n]

g−2n−1 · · · U [n]

g−n+1 ∗ ∗ · · · ∗
1 ∗ · · · ∗

1 · · · ∗
. . .

...
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where U [n]

k = U [n]

k (u(g)

1 , · · · , u(g)
g ). For the determinant (2.7), we subtract vg times the nth

column from the (n + 1)st column. In the next time, we subtract vg times the (n − 1)st

column from the nth column. Repeating such the transformations for (2.7), we see that

(2.7) is equal to

(2.9) γn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U [n]
g U [n]

g+1 · · · U [n]

g+n−1 (−1)g+nvg
g+n ∗ ∗ · · · ∗

U [n]

g−2 U [n]

g−1 · · · U [n]

g+n−3 (−1)g+n−2vg
g+n−2 ∗ ∗ · · · ∗

...
...

. . .
...

...
...

...
. . .

...
U [n]

g−2n U [n]

g−2n+1 · · · U [n]

g−n+1 (−1)g−n+2vg
g−n+2 ∗ ∗ · · · ∗

U [n]

g−2n−2 U [n]

g−2n−1 · · · U [n]

g−n−1 (−1)g−nvgg−n ∗ ∗ · · · ∗
1 ∗ · · · ∗

1 · · · ∗
. . .

...
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding this by its (n+ 1)st column and looking at (2.8) yield the expansion of (2) up

to a signature. The signature is obviously given by

γn+1/γn =





(+1)/(+1) = 1 if g − n ≡ 0 mod 4,

(+1)/(−1) = −1 if g − n ≡ 1 mod 4,

(−1)/(+1) = −1 if g − n ≡ 2 mod 4,

(+1)/(+1) = 1 if g − n ≡ 3 mod 4

times the signature of the (n+ 1, n+ 1)-entry of (2.9), namely the signature is

γn+1/γn · (−1)g−n = (−1)(g−n)(g−n−3)/2(−1)g−n = (−1)(g−n)(g−n−1)/2.

Thus we have proved (2).

Proof of (1). By (2.8), we have for v = ( 1
2g−1vg

2g−1, · · · , 1
3vg

3, vg) that

S](v) = γ1(−1)gvg
g = (−1)g(g−1)(g−3)/2(−1)gvg

g = −(−1)(g−1)(g−2)(g−3)/2vg
g.

Proof of (3). For v = ( 1
2g−1

vg
2g−1, · · · , 1

3
vg

3, vg), we have by (2.8) that

S[(2v) = γ2

(
U [2]

g (v, v) · U [2]

g−1(v, v)− U [2]

g−2(v, v) · U [2]

g+1(v, v)
)

= (−1)(g−1)(g−2)g/2(−1)2g−1
(
(g + 1)vg

g · gvgg−1 − (g − 1)vg
g−2 · (g + 2)vg

g+1
)

= −(−1)g(g−1)(g−2)/2 ((g + 1)g − (g − 1)(g + 2)) vg
2g−1

= −(−1)g(g−1)(g−2)/22vg
2g−1.

Now all the statements have been proved completely. �
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3. Hyperelliptic Functions.

In this section we recall fundamentals of the theory of hyperelliptic functions.

Let C be a smooth projective model of a curve of genus g > 0 defined over C whose

affine equation is given by y2 = f(x), where

f(x) = λ0x
2g+1 + λ1x

2g + · · ·+ λ2gx+ λ2g+1.

In this paper, we always have the agreement λ0 = 1. We will use, however, the letter λ0

too when this notation makes an equation of homogeneous weight easy to read.

We denote by ∞ the point of C at infinity. It is known that the set of

ωj :=
xj−1dx

2y
(j = 1, · · · , g)

forms a basis of the space of the differential forms of the first kind. As usual we let [ω′ ω′′]
be the period matrix for a suitable choice of the basis of the fundamental group of C. Then

the modulus of C is given by Z := ω′−1
ω′′. The lattice of periods is denoted by Λ, that is

Λ := ω′ t[ Z Z · · · Z ] + ω′′ t[ Z Z · · · Z ] (⊂ Cg).

Let

ηj :=
1

2y

2g−j∑

k=j

(k + 1− j)λ2g−k−jx
kdx (j = 1, · · · , g),

which are differential forms of the second kind without poles except at ∞ (see [2, p.195,

Ex. i] or [3, p.314]). We introduce the matrices of periods [η′ η′′] with respect to η1, · · · ,
ηg for the basis of the fundamental group of C chosen as above. We let

δ′′ := t
[

1

2

1

2
· · · 1

2

]
, δ′ := t

[
g

2

g − 1

2
· · · 1

2

]
and δ :=

[
δ′′

δ′

]
.

For a and b in
(

1
2Z
)g

, we let

ϑ

[
a
b

]
(z) = ϑ

[
a
b

]
(z;Z)

=
∑

n∈Zg

exp

[
2πi

{
1

2
t(n+ a)Z(n+ a) + t(n+ a)(z + b)

}]
.

Then the hyperelliptic sigma function on Cg associated with C is defined by

(3.1) σ̃(u) = exp(−1

2
uη′ω′

−1 tu)ϑ[δ] (ω′
−1 tu; Z)

up to a multiplicative constant, where u = (u1, u2, · · · , ug). We shall fix this constant later.
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Definition 3.2. We define the Sato weight by taking such the weight of uj being 2(g −
j) + 1. When we consider several variables u(1), · · · , u(n) on κ−1ι(C) for some n, we also

regard the Sato weight of each u(i)

j to be 2(g− j) + 1. Moreover we define the Sato weight

of λj to be −2j.

To fix the multiplicative constant above, we recall the following.

Lemma 3.3. (1) The power-series expansion of σ̃(u) with respect to u1, u2, · · · , ug has

polynomials coefficients in λ0, λ1, · · · , λ2g+1, and is homogeneous in the Sato weight.

(2) The terms of least total degree of the power-series expansion of the function σ̃(u) with

respect to the variables u1, · · · , ug is either a non-zero constant multiple of the Hankel type

determinant ∣∣∣∣∣∣∣∣∣

u1 u2 · · · u(g+1)/2

u2 u3 · · · u(g+3)/2

...
...

. . .
...

u(g+1)/2 u(g+3)/2 · · · ug

∣∣∣∣∣∣∣∣∣

if g is odd, or of ∣∣∣∣∣∣∣∣∣

u1 u2 · · · ug/2
u2 u3 · · · u(g+2)/2

...
...

. . .
...

ug/2 u(g+2)/2 · · · ug−1

∣∣∣∣∣∣∣∣∣

if g is even.

Proof. While the statement (1) is shown in the proof of Corollary 1 of [7], it is also proved

as follows. This proof is given by the referee. For any non-zero constant α, the transform

given by x 7→ α2x, y 7→ α2g+1y, λj 7→ α2jλj defines an isomorphisim of the curve C

that maps xjdx
2y
7→ α2(j−g)−1 xjdx

2y
, and hence uj 7→ α2(j−g)−1uj . Since the situation on

the zeroes and the periodicity of σ(u) are invariant under this transform, and σ(u) is

determined up to a constant multiple by its zeroes and periodicity, its expansion should be

homogeneous with respect to the Sato weight. The statement (2) is proved in Proposition

2.2 in [5, p.32] or [3, pp.359-360]. �

In this paper we let σ(u) be the function such that it is a constant multiple of σ̃(u) and

the terms of least total degree of its power-series expansion at u = (0, 0, · · · , 0) are just the

Hankel type determinant above.

For u ∈ Cg we conventionally denote by u′ and u′′ the elements of Rg such that u =

ω′u′+ω′′u′′, where [ω′, ω′′] are the period matrix above. We define a C-valued R-bilinear

form L( , ) by

L(u, v) = u t(η′v′ + η′′v′′)

for u, v ∈ Cg. For ` in Λ, the lattice of periods as defined in Section 1, let

χ(`) = exp[2πi( t`′δ′′ − t`′′δ′)− πi t`′`′′].
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Lemma 3.4. The function σ(u) is an odd function if g ≡ 1 or 2 modulo 4, and an even

function if g ≡ 3 or 0 modulo 4.

Proof. See [17, p.3.97 and p.3.100]. �

Lemma 3.5. (The translational relation) The function σ(u) satisfies

σ(u+ `) = χ(`)σ(u) expL(u+ 1
2`, `)

for all u ∈ Cg and ` ∈ Λ.

For a proof of this formula we refer to the reader to [2, p.286].

Remark 3.6. The Riemann form of σ(u), which is defined by E(u, v) = L(u, v)−L(v, u),

(u, v ∈ Cg) is simply written as E(u, v) = 2πi(u′ tv′′ − u′′ tv′) (see Lemma 3.1.2(2) in [18,

p.396]). Hence, E( , ) is an iR-valued form and 2πiZ-valued on Λ × Λ. In particular

the pfaffian of E( , ) is 1. This simple expression is one of the convenient properties

for distinguishing σ(u) from the theta series without multiplication by an exponential pre-

factor in (3.1).

Let J be the Jacobian variety of the curve C. We identify J with the Picard group

Pic◦(C) of the linearly equivalent classes of divisors of degree zero of C. Let Symg(C) be

the gth symmetric product of C. Then we have a birational map

Symg(C)→ Pic◦(C) = J

(P1, · · · , Pg) 7→ the class of P1 + · · ·+ Pg − g · ∞.

As an analytic manifold, J is identified with Cg/Λ. We denote by κ the canonical map

Cg → Cg/Λ = J . We embed C into J by ι : Q 7→ Q−∞. For each n = 1, · · · , g − 1 let

Θ[n] be the subvariety of J determined by the set of classes of the form P1 + · · ·+Pn−n ·∞.

This is called the standard theta subvariety of dimension n. Obviously Λ = κ−1ι(∞) and

Θ[1] = ι(C).

Analytically, each point (P1, · · · , Pg) of Symg(C) is canonically mapped to

(3.7) u = (u1, · · · , ug) =

(∫ P1

∞
+ · · ·+

∫ Pg

∞

)
(ω1, · · · , ωg),

and σ(u) is regarded as a function on the universal covering space Cg of J with the canonical

map κ above and the natural coordinate u of Cg.

If u = (u1, · · · , ug) is in κ−1ι(C), we denote by (x(u), y(u)) the coordinate of the point

on C corresponding to u, so that u =
∫ (x(u),y(u))

∞ ( 1
2y
, x

2y
, · · · , xg−1

2y
)dx with appropriate

choice for a path of the integrals. Then we have that x(−u) = x(u), y(−u) = −y(u), and

(x(0, 0, · · · , 0), y(0, 0, · · · , 0)) = ∞. We frequently use the following lemma in the rest of

the paper.
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Lemma 3.8. Suppose u ∈ κ−1ι(C). The Laurent expansions of x(u) and y(u) at u =

(0, · · · , 0) on the pull-back κ−1ι(C) of C to Cg are

x(u) =
1

ug2
+ (d◦(ug) = 0), y(u) = − 1

ug2g+1
+ (d◦(ug) = −2g + 1)

with their coefficients in Q[λ0, λ1, · · · , λ2g+1]. Moreover x(u) and y(u) are homogeneous

in the Sato weight −2 and −(2g + 1), respectively.

Proof. We take t =
1√
x

as a local parameter at∞ along ι(C). If u is in κ−1ι(C) and suffi-

ciently near (0, 0, · · · , 0), we are agree to that t, u = (u1, · · · , ug) and (x, y) are coordinates

of the same point on C. Then

ug =

∫ (x,y)

∞

xg−1dx

2y

=

∫ (x,y)

∞

x−3/2dx

2
√

1 + λ1
1
x + · · ·+ λ2g+1

1
x2g+1

=

∫ t

0

t3 ·
(
− 2
t3

)
dt

2 + (d◦ = 1)

=− t+ (d◦(t) = 2).

Hence x(u) = 1
u2
g

+ (d◦(ug) = −1) and our assertion is proved, because x(−u) = x(u) and

y(−u) = −y(u). The rest of the statements are obvious from the calculation above. �

Lemma 3.9. If u = (u1, u2, · · · , ug) is a variable on κ−1(Θ[1]), then

u1 = 1
2g−1ug

2g−1 + (d◦(ug) = 2g),

u2 = 1
2g−3ug

2g−3 + (d◦(ug) = 2g − 2),

· · · · · · · · ·
ug−1 = 1

3
ug

3 + (d◦(ug) = 4)

with the coefficients in Q[λ0, λ1, · · · , λ2g+1], and these expansions are homogeneous with

respect to the Sato weight.

Proof. The assertions are easily obtained by similar calculations as in the proof of 3.8.

�

Remark 3.10. The second set of equalities in (1.2) is canonical limit of the equalities in

3.9 when we let all the coefficients λ1, · · · , λ2g+1 tend to 0, because of the homogeneity in

3.9.
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4. The Schur-Weierstrass Polynomial and the Sigma Function.

The polynomial S(u) closely relates to the function σ(u) as follows. We denote

Si1i2···in(u) = ∂
∂ui1

∂
∂ui2

· · · ∂
∂uin

S(u), σi1i2···in(u) = ∂
∂ui1

∂
∂ui2

· · · ∂
∂uin

σ(u).

Proposition 4.1. The function σ(u) has the power-series expansion

σ(u) = (−1)g(g−1)(g−3)/2S(u) + (d◦(λ1, λ2, · · · , λ2g+1) = 1) ∈ Q[λ1, · · · , λ][[u1, · · · , ug]]

at u = (0, 0, · · · , 0), and is homogeneous with respect to the Sato weight.

Proof. It is easy to see from the proof of the Corollary 1 of [7] that the power-series expan-

sion of σ(u) with respect to u1, u2, · · · , ug belongs to Q[λ0, λ1, · · · , λ2g+1][[u1, u2, · · · , ug]],
namely, is expanded over the rational numbers. If g is odd then

S13···g(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0

U0 U1 U2

. .
. ...

...
...

U0 U1 · · · ∗ ∗ ∗
U0 U1 U2 U3 · · · ∗ ∗ ∗

U0 U1 U2 · · · ∗ ∗ ∗
U0 · · · ∗ ∗ ∗

.. ...
...

U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1,

and σ13···g(0, 0, · · · , 0) = 1 by 3.3. If g is even then

S13···(g−1)(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0

U0 U1 U2

. .
. ...

...
...

U0 · · · ∗ ∗ ∗
U0 U1 U2 · · · ∗ ∗ ∗

U0 U1 U2 U3 · · · ∗ ∗ ∗
U0 U1 · · · ∗ ∗ ∗

.. ...
...

U0 U1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

{
1 （g ≡ 0 mod 4）,

−1 （g ≡ 2 mod 4）;

and σ13···(g−1)(0, 0, · · · , 0) = 1 by 3.3 again. Hence the form of expansion of σ(u) follows

straight from Theorem 6.3 of [6]. The last statement is a repetition of 3.3(1). �

Corollary 4.2. The derivatives of σ(u) and S(u) are related as follows :

σi1i2···in(u) = (−1)g(g−1)(g−3)/2Si1i2···in(u) + (d◦(λ1, λ2, · · · , λ2g+1) = 1).

This series is homogeneous in the Sato weight.

Proof. This is obvious from 4.1. �
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5. The vanishing Structure of the Sigma Function and of Its Derivatives.

We investigate vanishing structure of σ(u) and of its derivatives by using Riemann sin-

gularity theorem and by calculations using the Brill-Noether matrices. The following is

fundamental for us.

Proposition 5.1. (Riemann singularity theorem) For a given u ∈ κ−1(Θ[g−1]), we denote

a divisor on the curve C which corresponds the point u modulo Λ by P1 + · · ·+Pg−1− (g−
1) · ∞. Then

dim Γ(C,O(P1 + · · ·+ Pg−1)) = r + 1

if and only if both of the following hold :

(1) σi1i2···ih(u) = 0 for any h 5 r and for any i1, · · · , ih ∈ {1, 2, · · · , g}; and

(2) There exists an (r + 1)-tuple {i1, i2, · · · , ir+1} such that σi1i2···ir+1
(u) 6= 0.

Proof. By (3.1) we easily restate the fact stated in [1, pp.226-227] into as above. �

To compute the dimension of the 0th cohomology group above we recall the Brill-Noether

matrix defined as follows. We fix a local parameter of every point of C. To make clear the

following argument we define the local parameter t at each point P by

t =





y if y(P ) = 0,

x− x(P ) if y(P ) 6= 0 and P 6=∞,
1√
x

if P =∞.

We denote by Ω1 the sheaf of differential forms of the first kind. For a point P of C, let t

be the local parameter defined above. We denote by Pt the point of C at which the value

of the local parameter is t. Then we define for µ ∈ Γ(C,Ω1)

δ`µ(P ) =
d`

dt`

∫ Pt

∞
µ
∣∣∣
t=0

.

Since µ is a holomorphic form, δ`µ(P ) takes a finite value at every point P . Let D :=∑k
j=1 njPj with different Pjs be an effective divisor. A matrix with degD :=

∑
nj rows

and g columns is called the Brill-Noether matrix for D if its (n1 + · · ·+ nj−1 + `, i)-entry

is δ`ωi(Pj), where 1 5 ` 5 nj and ωi = xi−1

2y
dx. We denote by B(D) the Brill-Noether

matrix for D. Our computation starts with the following.

Proposition 5.2. Let D be an effective divisor of C, Then

dim Γ(C,O(D)) = degD + 1− rankB(D).

Proof. For µ ∈ Γ(C,Ω1), we can find uniquely the set of elements c1, · · · , cg ∈ C such that

µ = c1ω1 + · · ·+ cgωg. Let D =
∑k
j=1 njPj. In this situation, the three statements

(1) µ ∈ Γ(C,Ω1(−D)),

(2) δ`µ(Pj) = 0 for all j and ` with 1 5 j 5 k and 1 5 ` 5 nj , and
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(3) B(D)



c1
...
cg


 =




0
...
0




are equivalent. So dim Γ(C,Ω1(−D)) = g−rankB(D). The Riemann-Roch theorem states

dim Γ(C,O(D)) = degD − g + 1 + dim Γ(C,Ω1(−D)).

Hence dim Γ(C,O(D)) = degD + 1− rankB(D). �

To compute the rank of B(D) we need only considering the case where D is of the form

D = P1 + P2 + · · ·+ Pn + (g − n− 1) · ∞, (Pi 6= Pj , Pi for any i 6= j, and Pj 6=∞)

where Pi is the hyperelliptic involution of Pi. Then the matrix B(D) is given by




1
2y (P1) x

2y (P1) · · · xn−1

2y (P1) xn

2y (P1) · · · xg−3

2y (P1) xg−2

2y (P1) xg−1

2y (P1)
...

...
. . .

...
...

. . .
...

...
...

1
2y (Pn) x

2y (Pn) · · · xn−1

2y (Pn) xn

2y (Pn) · · · xg−3

2y (Pn) xg−2

2y (Pn) xg−1

2y (Pn)

0 · · · 0 0 1
0 · · · 0 0
0 · · · 0 1
0 · · · 0
0 · · · 1
... . .

.




.

Here the right lower block was calculated by similar way to 3.8 and 3.9. Therefore the rank

of B(D) is n+ (g− n− 1)/2 or n+ (g− n)/2 according as g− n is odd or even. Summing

up the considerations above, we have

dim Γ(C,O(P1 + P2 + · · ·+ Pn + (g − n− 1)∞)) = (g − 1) + 1− (n+ b(g − n)/2c)
= b(g − n− 1)/2c+ 1.

Again we denote by u the point in κ−1(Θ[g−1]) corresponding to P1 + P2 + · · ·+ Pn + (g−
n−1)∞− (g−1)∞. Proposition 5.1 yields that if h 5 b(g−n−1)/2c, then σi1i2···ih(u) = 0

for all i1, · · · , ih and σj1j2···jb(g−n−1)/2c+1
(u) 6= 0 for some j1, j2, · · · , jb(g−n−1)/2c+1. Here

we record the first fact as follows.

Lemma 5.3. We fix the genus g. Let n (5 g − 1) and h be integers such that 0 5 h 5
b(g − n − 1)/2c. Let i1, i2, · · · , ih be arbitrary h elements in {1, 2, · · · , g}. Then the

function u 7→ σi1i2···ih(u) on κ−1(Θ[n]) is identically zero.



22 Yoshihiro Ônishi

6. Special Derivatives of the Sigma function.

We will introduce some special derivatives of the sigma function. These are important to

state our Frobenius-Stickelberger type formula.

Definition 6.1. Let \n be the set defined in 2.1. Then we define a derivative σ\n(u) of

σ(u) by

σ\n(u) =

( ∏

i∈\n

∂

∂ui

)
σ(u)

In particular we define

σ](u) = σ\1(u), σ[(u) = σ\2(u).

These functions are given in the following table.

genus σ] σ[ σ\3 σ\4 σ\5 σ\6 σ\7 σ\8 σ\9 σ\10 · · ·
1 σ σ σ σ σ σ σ σ σ σ · · ·
2 σ2 σ σ σ σ σ σ σ σ σ · · ·
3 σ2 σ3 σ σ σ σ σ σ σ σ · · ·
4 σ24 σ3 σ4 σ σ σ σ σ σ σ · · ·
5 σ24 σ35 σ4 σ5 σ σ σ σ σ σ · · ·
6 σ246 σ35 σ46 σ5 σ6 σ σ σ σ σ · · ·
7 σ246 σ357 σ46 σ57 σ6 σ7 σ σ σ σ · · ·
8 σ2468 σ357 σ468 σ57 σ68 σ7 σ8 σ σ σ · · ·
9 σ2468 σ3579 σ468 σ579 σ68 σ79 σ8 σ9 σ σ · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

Table of σ\n(u)

We are going to prepare tools for investigating the zeroes of these derivatives.

Lemma 6.2. Suppose 0 5 n 5 g − 1. Let \̌n be a proper subset of \n, and let

σ\̌n(u) =

( ∏

i∈\̌n

∂

∂ui

)
σ(u)

Then the function u 7→ σ\̌n(u) on κ−1(Θ[n]) is identically zero.

Proof. Since the number of elements in the set \n is b(g− n+ 1)/2c, we see the number of

elements in \̌n is less than or equal to b(g − n− 1)/2c. Hence we have the assertion from

5.3. �
Lemma 6.3. (The translational relation) Let n be an integer such that 1 5 n 5 g − 1.

Assume u belongs to κ−1(Θ[n]). Then we have

σ\n(u+ `) = χ(`)σ\n(u) expL(u+ 1
2`, `)

for all ` ∈ Λ.

Proof. This follows from 6.2 by using 3.5 and 6.1. �
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Proposition 6.4. Let n be an integer such that 1 5 n 5 g − 1. The space spanned by the

functions u 7→ ϕ(u) on κ−1(Θ[n]) vanishing only on κ−1(Θ[n−1]) and satisfying the equation

ϕ(u+ `) = χ(`)ϕ(u) expL(u+ 1
2
`, `)

for all ` ∈ Λ is one dimensional.

Proof. Let ϕ1(u) and ϕ2(u) be non-trivial functions on κ−1(Θ[n]) with the stated properties.

Since Θ[n−1] is a prime divisor of the variety Θ[n], the equations assumed for these functions

imply that we may assume that the vanishing order of ϕ2(u) on κ−1(Θ[n−1]) is less than or

equal to that of ϕ1(u). Then the function ϕ1/ϕ2 is holomorphic on κ−1(Θ[n]). Classically,

this is a situation where we might use a special case of Hartogs’ analytic continuation

theorem. On the other hand, we have

ϕ1

ϕ2
(u+ `) =

ϕ1

ϕ2
(u) for all u ∈ κ−1(Θ[n]) and ` ∈ Λ,

by the supposed equations. Therefore ϕ1/ϕ2 can be regarded as a holomorphic function

on Θ[n]. Hence this is a constant function, by Liouville’s theorem. �

Proposition 6.5. Let v is a variable on κ−1(Θ[1]). Then we have the following.

(1) The function v 7→ σ](v) has a zero of order g at v = (0, 0, · · · , 0) modulo Λ and no zero

elsewhere. This function has an expansion of the form

σ](v) = (−1)(g−2)(g−3)/2vg
g + (d◦(vg) = g + 2).

(2) Let n be an integer such that 1 5 n 5 g − 1. Suppose v, u(1), u(2), · · · , u(n) belong to

κ−1(Θ[1]). If u(1) + · · ·+u(n) 6∈ κ−1(Θ[n−1]), then the function v 7→ σ\n+1(u(1) + · · ·+u(n) +v)

has zeroes of order 1 at v = −u(1), · · · , −u(n), a zero of order g − n at v = (0, 0, · · · , 0)

modulo Λ and no other zero elsewhere. This function has an expansion of the form

σ\n+1(u(1)+· · ·+u(n)+v) = (−1)(g−n)(g−n−1)/2σ\n(u(1)+· · ·+u(n))vg
g−n+(d◦(vg) = g−n+1).

(3) If u /∈ κ−1(Θ[g−1]) then σ(u) 6= 0.

Proof. The statement (3) is well-known (see Theorem 5.3 in [19, p.3.80]). We prove (1)

and (2). The usual argument by integration of the logarithm of

σ\n+1(u(1) + · · ·+ u(n) + v + `)

= χ(`)σ\n+1(u(1) + · · ·+ u(n) + v) expL(u(1) + · · ·+ u(n) + v + 1
2`, `)

of 6.3 along the boundary of a polygon representation of the Riemann surface of C shows

either that the functions v 7→ σ](v) and v 7→ σ\n+1(u(1) + · · ·+ u(n) + v) above have exactly

g zeroes modulo Λ or they vanish identically (see [13, p.147] for details). These functions,

however, do not vanish identically because of 2.4 and 4.2. The other statements of (1)

follow from 4.2 and 2.4(1).
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We prove the rest of statement (2). Since the number of the elements in \n+1 is b(g−n)/2c,
5.3 shows that the function v 7→ σ\n+1(u(1) + · · ·+u(n) +v) has zeroes at least at v = −u(1),

· · · , −u(n). For v ∈ κ−1(Θ[1]), we let

σ\n+1(u(1) + · · ·+ u(n) + v) =
∞∑

j=0

ϕ(j)(u(1) + · · ·+ u(n))vg
j ,

where ϕ(j) are certain functions on κ−1(Θ[n]). Let the Sato weight of σ\n+1(u(1) + · · · +
u(n) + v) to be m, so that m = ng − 1

2n(n + 1). Let j0 be the minimal j’s such that

ϕ(j)(u(1) + · · ·+u(n)) is not identically 0 as a function of the variables u(1), · · · , u(n), So, we

can write

σ\n+1(u(1) + · · ·+ u(n) + v) = ϕ(j0)(u(1) + · · ·+ u(n))vg
j0 + · · · .

Then the Sato weight of ϕ(j0)(u(1) + · · · + u(n)) is m − j0. We claim that the function

u 7→ ϕ(j0)(u) on κ−1(Θ[n]) satisfies the equation in 6.4. To prove it, let us take ` ∈ Λ and

u ∈ κ−1(Θ[n]). Then, since u+ ` ∈ κ−1(Θ[n]), we have

σ\n+1(u+ v + `) = ϕ(j0)(u+ `)vg
j0 + · · · .

On the other hand, the translational relation for σ\n+1 gives

σ\n+1(u+ v + `) = χ(`)σ\n+1(u+ v) expL(u+ v + 1
2`, `)

= χ(`)
(
ϕ(j0)(u)vg

j0 + · · ·
)

expL(u+ v + 1
2`, `)

= χ(`)
(
ϕ(j0)(u)vg

j0 + · · ·
){

expL(u+ 1
2`, `) + (d◦(vg) = 1)

}

= χ(`)ϕ(j0)(u) expL(u+ 1
2`, `)vg

j0 +
(
d◦(vg) = (j0 + 1)

)
.

Comparing these two above, we see that

ϕ(j0)(u+ `) = χ(`)ϕ(j0)(u) expL(u+ 1
2`, `).

So, we have shown the claim above. Proposition 6.4 yields that ϕ(j0)(u) is, as functions on

κ−1(Θ[n]), equal to σ\n(u) up to a multiplicative constant. The Sato weight of σ\n(u) is

(n−1)g− 1
2
(n−1)n = m− (g−n). By 4.1, 2.4(2), and 2.4(1), we see that the expansion of

σ\n(u) contains a term whose coefficient is 1 or −1. Therefore, the multiplicative constant

above must be a polynomial of λ0(= 1), · · · , λ2g+1. Hence the Sato weight of ϕ(j0)(u) is

larger than or equal to m− (g − n), namely j0 = g − n. Therefore we have identically

ϕ(j)(u) = 0 for j = 0, · · · , g − n− 1.

Because we already found at least n zeroes of v 7→ σ\n+1(u(1) + · · ·+ u(n) + v) for v 6= 0, it

is impossible that ϕ(g−n)(u(1) + · · ·+ u(n)) = 0 identically. So we see j0 = g − n and have

σ\n+1(u+ v) = ϕ(g−n)(u)vg
g−n + (d◦(vg) = g)

for the non-trivial function ϕ(g−n)(u). Thus, we see that

ϕ(g−n)(u) = (−1)(g−n)(g−n−1)/2σ\n(u)

for u ∈ κ−1(Θ[n]) by 2.4(2) and 4.2. Now all the other statements are clear. �
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Lemma 6.6. Let u ∈ κ−1(Θ[1]). Then

σ[(2u) = (−1)g−12ug
2g−1 + (d◦(ug) = 2g + 1) .

Proof. The statement follows from 2.4(3), 4.2 and 3.4. �

Lemma 6.7. Let u ∈ κ−1(Θ[1]). Then

σ[(2u)

σ](u)4
= (−1)g2y(u).

Proof. Lemma 6.3 shows that the left hand side is periodic with respect to Λ, and is an

odd function by 3.4. We have by 6.6 that

σ[(2u)

σ](u)4
=

(−1)g−12ug
2g−1 + (d◦(ug) = 2g + 1)

(ugg + (d◦(ug) = g + 2))
4

= (−1)g−1 2

ug2g+1
+ · · ·

= (−1)g2y(u).

�
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7. Frobenius-Stickerberger Type Formulae.

The initial case of our Frobenius-Stickelberger type formulae is as follows.

Lemma 7.1. Suppose that u and v are in κ−1(Θ[1]). We have

(−1)g+1σ[(u+ v)σ[(u− v)

σ](u)2σ](v)2
= −x(u) + x(v)

(
=

∣∣∣∣
1 x(u)
1 x(v)

∣∣∣∣
)
.

Proof. As a function of u (or v), we see that the left hand side is periodic with respect

to Λ, by 6.3. Moreover we see that the left hand side has only pole at u = (0, 0, · · · , 0)

modulo Λ by 6.5(1). Proposition 6.5 also shows the Laurent expansion of the left hand

side is of the form

(σ](v)ug
g−1 + · · · )(σ](−v)ug

g−1 + · · · )
(ugg + · · · )2σ](v)2

= (−1)g
1

ug2
+ · · · = (−1)gx(u) + · · · .

Here we have used the fact that σ](−v) = (−1)gσ](v) which follows from 3.4. Since both

sides has the same zeroes at u = v and u = −v, they coincide. �

The general case of our Frobenius-Stickelberger type formula is as follows.

Theorem 7.2. Let n be a fixed integer. Suppose u(1), · · · , u(n) are variables on κ−1(Θ[1]).

(1) If 2 5 n 5 g, then we have

(−1)g+ 1
2n(n+1)

σ\n(u(1) + · · ·+ u(n))
∏
i<j σ[(u

(i) − u(j))

σ](u(1))n · · ·σ](u(n))n

=

∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) · · · xn−1(u(1))
1 x(u(2)) x2(u(2)) · · · xn−1(u(2))
...

...
...

. . .
...

1 x(u(n)) x2(u(n)) · · · xn−1(u(n))

∣∣∣∣∣∣∣∣
.

(2) If n = g + 1, then we have

(−1)
1
2 (2n−g)(g−1)

σ(u(1) + · · ·+ u(n))
∏
i<j σ[(u

(i) − u(j))

σ](u(1))n · · ·σ](u(n))n

=

∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) · · · xg(u(1)) y(u(1)) xg+1(u(1)) xy(u(1)) xg+2(u(1)) · · ·
1 x(u(2)) x2(u(2)) · · · xg(u(2)) y(u(2)) xg+1(u(2)) xy(u(2)) xg+2(u(2)) · · ·
...

...
...

. . .
...

...
...

...
...

. . .

1 x(u(n)) x2(u(n)) · · · xg(u(n)) y(u(n)) xg+1(u(n)) xy(u(n)) xg+2(u(n)) · · ·

∣∣∣∣∣∣∣∣
,

where the right hand side is an n by n determinant.

Proof. While this Theorem is proved by 6.5 and the same argument as in [19], [20], we

describe details here because of complexity of the signature of the top in the formulae.

We prove (1) first by three Steps as follows.
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Step 1. Lemma 6.3 shows both sides in (1) are periodic functions of u(n) with respect to

Λ. Hence we regard them as functions on C and will compare their divisors.

Step 2. We are still regarding both sides as functions of u(n). By continuity, we may

assume that u(1), · · · , u(n−1) are pairwise different. The right hand side vanishes at u(1),

· · · , u(n−1) by 6.5(2). The left hand side has zeroes of order 1 at the same points because

of the product of σ[’s. We see that the left hand side has a pole only at u(n) = (0, 0, · · · , 0)

modulo Λ and its order is (g−n+ 1) + (g− 1)(n− 1)− gn = 2(n− 1) by 6.5(1). Obviously,

the right hand side has also a pole only at u(n) = (0, 0, · · · , 0) modulo Λ. Because the

lowest term of the Laurent expansion of it is coming only from (n, n)-entry, the pole is also

of order 2(n− 1). Let v(1), · · · , v(n−1) are the other zeroes of the left hand side than u(1),

· · · , u(n−1). As we also consider their multiplicities, it may happen that some of v(1), · · · ,
v(n−1) coincide with any of u(1), · · · , u(n−1). Anyway, Abel-Jacobi theorem shows that

u(1) + · · ·+ u(n−1) + v(1) + · · ·+ v(n−1) ∈ Λ.

We denote this element by `. Then 6.3 states that

σ\n(u(1) + · · ·+ u(n−1) + u(n)) = σ\n(u(n) − v(1) − · · · − v(n−1))χ(`) expL(u+ 1
2
`, `).

Hence this function of u(n) has zeroes at v(1), · · · , v(n−1) of order 1 by 6.5(2). Therefore the

two sides have the same divisor, and they are equal up to multiplication of a function of

u(1), · · · , u(n−1).

Step 3. Finally, we check the undetermined function above is 1 by comparing the coeffi-

cients of the lowest term in the Laurent expansion with respect to u(n). The expansion of

the left hand side is

[{
(−1)(g−n+1)(g−n)/2σ\n−1(u(1) + · · ·+ u(n−1))vg

g−n+1 + · · ·
}

∏

i<j5n−1

σ[(u
(i) − u(j))

n−1∏

i=1

{
(−1)(g−1)(g−2)/2σ](u

(i))(−u(n)

g )g−1 + · · ·
}]

/[
σ](u

(1))n · · ·σ](u(n−1))n
{

(−1)(g−2)(g−3)/2(u(n)

g )g + · · ·
}n]

+ · · ·

= (−1)(g−n+1)(g−n)/2+(g−1)(g−2)(n−1)/2+(g−1)−(g−2)(g−3)n/2

σ\n−1(u(1) + · · ·+ u(n−1))
∏
i<j5n−1 σ[(u

(i) − u(j))

σ](u(1))n−1 · · ·σ](u(n−1))n−1

1

(u(n)
g )2(n−1)

+ · · · .

Here we see easily that the index of (−1) is given by

(g − n+ 1)(g − n)

2
+

(g − 1)(g − 2)(n− 1)

2
+ (g − 1)− (g − 2)(g − 3)n

2

≡ g +
1

2
(n− 1)n mod 2.
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The expansion

∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) · · · xn−2(u(1))
1 x(u(2)) x2(u(2)) · · · xn−2(u(2))
...

...
...

. . .
...

1 x(u(n−1)) x2(u(n−1)) · · · xn−2(u(n−1))

∣∣∣∣∣∣∣∣
xn−1(u(n)) + · · ·

of the right hand side with x(u(n)) = 1/(u(n))2 + · · · and the induction hypothesis shows

the coefficients coincide. Thus, we have proved (1).

Now let us prove (2). While the argument is entirely similar to that of (1), we describe

it explicitly again in order to make the reader easier to check the signature of the desired

formula. Regarding both sides to be functions of u(n) again, the things corresponding

to the Steps 1 and 2 above are proved similarly. So, we omit them. To prove the part

corresponding to Step 3 above, we note that the leading term of Laurent expansion of the

right hand side contains the following signature;

(−1)(n+g−1)

(u(n)
g )n+g−1

∣∣∣∣∣∣∣∣

1 x(u(1)) · · · xg(u(1)) y(u(1)) xg+1(u(1)) xy(u(1)) · · ·
1 x(u(2)) · · · xg(u(2)) y(u(2)) xg+1(u(2)) xy(u(2)) · · ·
...

...
. . .

...
...

...
...

. . .

1 x(u(n−1)) · · · xg(u(n−1)) y(u(n−1)) xg+1(u(n−1)) xy(u(n−1)) · · ·

∣∣∣∣∣∣∣∣
.

Expanding the left hand side gives

[{
σ(u(1) + · · ·+ u(n−1)) + · · ·

}

∏

i<j5n−1

σ[(u
(i) − u(j))

n−1∏

i=1

{
(−1)(g−1)(g−2)/2σ](u

(i))(−u(n)

g )g−1 + · · ·
}]

/[
σ](u

(1))n · · ·σ](u(n−1))n
{(

(−1)(g−2)(g−3)/2(u(n)

g )g
)n

+ · · ·
}]

= (−1)(g−1)(g−2)(n−1)/2+(g−1)−(g−2)(g−3)n/2

σ\n−1(u(1) + · · ·+ u(n−1))
∏
i<j5n−1 σ[(u

(i) − u(j))

σ](u(1))n−1 · · ·σ](u(n−1))n−1

1

(u(n)
g )n+g−1

+ · · · .

Because the index of the quotient of signatures of the two leading terms above is given by

(g − 1)(g − 2)(n− 1)

2
+ (g − 1)− (g − 2)(g − 3)n

2
− (n+ g − 1)

≡ (2n− 2− g)(g − 1)

2
mod 2,

we can use the induction hypothesis and have (2). �
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8. Kiepert Type Formulae.

The function σ(u) directly relates with x(u) as follows.

Lemma 8.1. Fix j with 0 5 j 5 g. Let u and v are on κ−1(Θ[1]). Then

lim
u→v

σ[(u− v)

uj − vj
=

1

xj−1(v)
.

Proof. Because of 7.1 we have

x(u)− x(v)

uj − vj
= (−1)g

σ[(u+ v)

σ](u)2σ](v)2
· σ[(u− v)

uj − vj
.

Now we let u tend to v. Then the limit of the left hand side is

lim
u→v

x(u)− x(v)

uj − vj
=

dx

duj
(v).

This is equal to 2y/xj−1(v) by the definition. The required formula follows from 6.7. �

Definition 8.2. For u ∈ κ−1(Θ[1]) we denote by ψn(u) the function σ\n(nu)/σ](u)n
2

if

n 5 g, and σ(nu)/σ](u)n
2

if n = g + 1.

This function ψn(u) has the following expression, which is a natural generalization of the

classical formula of Kiepert [14].

Theorem 8.3. (Kiepert type formula) Let u ∈ κ−1(Θ[1]) and n be a positive integer.

(1) If 1 5 n 5 g then ψn(u) = (−1)g+ 1
2n(n+1)(2y(u))n(n−1)/2.

(2) We fix j with 1 5 j 5 g. If n = g + 1 then we have

(−1)(2n−g)(g−1)/2(1!2! · · · (n− 1)!)ψn(u) = x(j−1)n(n−1)/2(u)×
∣∣∣∣∣∣∣∣∣∣

x′ (x2)′ · · · (xg)′ y′ (xg+1)′ (yx)′ (xg+2)′ · · ·
x′′ (x2)′′ · · · (xg)′′ y′′ (xg+1)′′ (yx)′′ (xg+2)′′ · · ·
x′′′ (x2)′′′ · · · (x3)′′′ y′′′ (xg+1)′′′ (yx)′′′ (xg+2)′′′ · · ·
...

...
. . .

...
...

...
...

...
. . .

x(n−1) (x2)(n−1) · · · (xg)(n−1) y(n−1) (xg+1)(n−1) (yx)(n−1) (xg+2)(n−1) · · ·

∣∣∣∣∣∣∣∣∣∣

(u).

where the size of the matrix is (n − 1) by (n− 1), the symbols ′, ′′, · · · , (n−1) denote d
duj

,
(
d
duj

)2
, · · · ,

(
d
duj

)n−1
.

Proof. If 1 5 n 5 g + 1, the right hand side of 7.2 is a Vandermonde determinant. Hence

we have statement (1), by using 8.1. Statement (2) is proved by the same argument as in

[19], using 7.2 and 8.1. �
Remark 8.4. The polynomials ψn(u) are the natural generalization of division polynomi-

als of an elliptic curve, and are used to find torsion points on the curve C in the Jacobian

variety J . Indeed, for n = g, u ∈ κ−1ι(C) is an n-torsion in J if and only if all of ψn−g+1(u),

ψn−g+2(u), · · · , ψn(u), · · · , ψn+g−1(u) vanish. Detailed description of this fact is seen in

[8].

Finally we mention the degree of the polynomials above.
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Proposition 8.5. The number of roots, counting multiplicities, of the equation ψn(u) = 0

is 1
2n(n− 1)(2g + 1) if 1 5 n 5 g − 1 and n2g − 1

2g(g + 1) if n = g.

Proof. The number of the roots is equal to the order of the pole at u = (0, · · · , 0). If
u ∈ κ−1(Θ[1]), then ug is a local parameter at u = (0, · · · , 0) because of 3.9. We calculate
it for the case j = g. We denote ug by t. If n = g, the lowest term of the Laurent expansion
of the determinant in 8.3 at u = (0, 0, · · · , 0) is exactly the same as that of������������

− 2
t3

− 4
t5

· · · − 2g
t2g+1 · · · −n+g−1

tn+g

4·3
t4

6·5
t6

· · · (2g+2)(2g+1)

t2g+2 · · · (n+g+1)(n+g)

tn+g+1

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

(−1)n−1 (n+1)···3
tn+1 (−1)n−1 (n+3)···5

tn+3 · · · (−1)n−1 (n+2g−1)···(2g−1)

t2g+n−1 · · · (−1)n−1 (2n+g−1)···(n+g−1)

t2n+g−2

������������
.

This is equal to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

t3
1

t6

. . . *
1

t3g
1

t3g+2

. . .
1

t2n+4g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

times a non-zero constant. This determinant is the ( 3
2g(g+1)+(n−g−1)(n+2g))th power

of 1/t. Hence we see that x(g−1)n(n−1)/2(u) = 1/t(g−1)n(n−1) + · · · . So the lowest term of

the Laurent expansion of the right hand side of the formula in 8.3 is the
(
n2g − 1

2g(g + 1)
)st

power of 1/t. If n < g then the lowest term is easily seen to be the 1
2n(n − 1)(2g + 1)st

power of 1/t. �

Finally we have a remark. The derivation D∞ used in Mumford’s book [17, p.3.155] is

essentially no other than our ∂/∂ug. While we could rewrite our expressions using mainly

this D∞, the author hopes to describe such things in other occasion.
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Appendix: Connection of The formulae of Cantor-Brioschi and those of

Kiepert type (by S. Matsutani).

In this Appendix we prove a formula of Cantor in [8] (Theorem A.1 below) by using 8.3.

This is a detailed exposition of the appendix in [16]. Since our argument is convertible,

8.3 is proved using the formula of Cantor.

Let u = (u1, u2, · · · , ug) be the system of variables explained in Section 3. We assume

that u belongs to κ−1ι(C). So we may use the notation x(u) and y(u). If µ(u) is a function

on κ−1ι(C) we can regard it locally as a function of u1. We denote by

µ′(u), µ′′(u), · · · , µ(ν)(u), · · ·

the functions obtained by applying

d
du1

, ( d
du1

)2, · · · , ( d
du1

)ν , · · ·

to the function µ(u) along ι(C); and by

µ̇(u), µ̈(u), · · · , µ〈ν〉(u), · · ·

the functions given by applying

d
dx , ( d

dx )2, · · · , ( d
dx )ν , · · ·

to µ(u). Here we regard µ(u) locally as a function of x = x(u).

Recall that ψn(u) was defined in 8.2. A determinant expression for ψn(u), due to Cantor,

is the following.

Theorem A.1. (Cantor [8]) Suppose n = g+ 2. Let s be the largest integer not exceeding

(n− g)/2, and r = n− 1− s. Then

ψn(u) = εn · (2y)n(n−1)/2 ×





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y〈g+2〉

(g + 2)!

y〈g+3〉

(g + 3)!
· · · y〈r+1〉

(r + 1)!

y〈g+3〉

(g + 3)!

y〈g+4〉

(g + 4)!
· · · y〈r+2〉

(r + 2)!

...
...

. . .
...

y〈r+1〉

(r + 1)!

y〈r+2〉

(r + 2)!
· · · y〈n−1〉

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if n 6≡ g mod 2,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y〈g+1〉

(g + 1)!

y〈g+2〉

(g + 2)!
· · · y〈r+1〉

(r + 1)!

y〈g+2〉

(g + 2)!

y〈g+3〉

(g + 3)!
· · · y〈r+2〉

(r + 2)!

...
...

. . .
...

y〈r+1〉

(r + 1)!

y〈r+2〉

(r + 2)!
· · · y〈n−1〉

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if n ≡ g mod 2,
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where εn is given by the following table :

g \ n mod 4 0 1 2 3

0 −1 −1 1 −1
1 −1 1 1 1
2 1 −1 −1 −1
3 1 1 −1 1 .

Remark A.2. (1) The both matrices above are of size s× s.
(2) The number r and s are just the number of entries of the form (xk)′ with k = 1 and of

the form (yxj)′ with j = 0, respectively, in the first row of the determinant in 8.3(2).

(3) The constant factor is not clear from our definition in 8.2 and [8] of ψn(u). It is

determined when our calculation has been completed.

(4) This formula for the case g = 1 is known classically (Brioschi [4]).

(5) Since our proof depends on 7.2, it works over only the field of complex numbers.

The following Lemma is easily checked.

Lemma A.3. Let m > 0 be any integer. One has

(
d
du1

)m
= (2y)m(u)

(
d
dx

)m
+

m∑

j=1

a(m)

j (u)
(
d
dx

)j
.

Here a(m)

j (u) are polynomials in y(u), dy
dx

(u), d2y
dx2 (u), · · · , dm−1y

dxm−1 (u).

Let s = n− 1− r. Then, by 8.3 for j = 1, we have

c′n1!2! · · · (n− 1)!ψn(u)

= (−1)r(r+1)/2

∣∣∣∣∣∣∣∣∣∣

x′ (x2)′ · · · (xr)′ y′ (yx)′ · · · (yxs−1)′

x′′ (x2)′′ · · · (xr)′′ y′′ (yx)′′ · · · (yxs−1)′′

x′′′ (x2)′′′ · · · (xr)′′′ y′′′ (yx)′′′ · · · (yxs−1)′′′

...
...

...
...

...
. . .

...
x(n−1) (x2)(n−1) · · · (xr)(n−1) y(n−1) (yx)(n−1) · · · (yxs−1)(n−1)

∣∣∣∣∣∣∣∣∣∣

(u).

Here the determinant is n− 1 by n− 1. By A.3 we have that




d
du1

( d
du1

)2

( d
du1

)3

...
( d
du1

)n−1




=




2y
a(1)

2 (2y)2

a(1)

3 a(2)

3 (2y)3

...
...

...
. . .

a(1)

n−1 a(2)

n−1 a(3)

n−1 · · · (2y)n−1







d
dx(
d
dx

)2
(
d
dx

)3
...(

d
dx

)n−1



.

Now we consider
t
[
d
dxµ

(
d
dx

)2
µ

(
d
dx

)3
µ · · ·

(
d
dx

)n−1
µ
]



Determinant expressions for hyperelliptic functions 33

for µ = x, x2, · · · and y, yx, yx2, · · · . Obviously




d
dx(
d
dx

)2
(
d
dx

)3
...(

d
dx

)n−1




[x x2 · · · xr ] =




1!

*2!
3!

. . .

r!

0




.

For µ = y, yx, · · · , yxs−1, we have


d
dx(
d
dx

)2
(
d
dx

)3
...(

d
dx

)n−1




[ y yx yx2 · · · yxs−1 ]

=




�
1
0 � ẏ �

1
0 � ẏx+

�
1
1 � y �

1
0 � ẏx2 +

�
1
1 � y · 2x �

1
0 � ẏx3 +

�
1
1 � y · 3x2 · · ·�

2
0 � ÿ �

2
0 � ÿx+

�
2
1 � ẏ �

2
0 � ÿx2 +

�
2
1 � ẏ · 2x+

�
2
2 � y · 2!

�
2
0 � ÿx3 +

�
2
1 � ẏ · 3x2 +

�
2
2 � y · 3 · 2x · · ·�

3
0 � ...
y

�
3
0 � ...
y x+

�
3
1 � ÿ �

3
0 � ...
y x2 +

�
3
1 � ÿ · 2x+

�
3
2 � ẏ · 2!

�
3
0 � ...
y x3 +

�
3
1 � ÿ · 3x2 +

�
3
2 � ẏ · 3 · 2x+

�
3
3 � y · 3! · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .




=







(
1
0

)
d
dx

(
1
1

)
(

2
0

)(
d
dx

)2 (
2
1

)
d
dx

(
2
2

)

...
...

...
. . .(

s−1
0

)(
d
dx

)s−1 (
s−1

1

)(
d
dx

)s−2 (
s−1

2

)(
d
dx

)s−3 · · ·
(
s−1
s−1

)

...
...

...
. . .

...(
r
0

)(
d
dx

)r (
r
1

)(
d
dx

)r−1 (
r
2

)(
d
dx

)r−2 · · ·
(
r
s−1

)(
d
dx

)r−s+1

(
r+1

0

)(
d
dx

)r+1 (
r+1

1

)(
d
dx

)r (
r+1

2

)(
d
dx

)r−1 · · ·
(
r+1
s−1

)(
d
dx

)r−s+2

...
...

...
. . .

...(
n−1

0

)(
d
dx

)n−1 (
n−1

1

)(
d
dx

)n−2 (
n−1

2

)(
d
dx

)n−3 · · ·
(
n−1
s−1

)(
d
dx

)n−s




×




y yT y · T 2 · · · y · T s−1

y y · 2T · · · y · (s− 1)T s−2

y · 2! · · · y · (s− 1)(s− 2)T s−3

. . .
...

y · (s− 1)!







∣∣∣∣∣
T=x

.

Thus

det







d
dx(
d
dx

)2
(
d
dx

)3
...(

d
dx

)n−1




[x x2 · · · xr y yx · · · yxs−1 ]



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is equal to (1!2! · · · r!) times

det

�������
�

����
�

�
r+1

0 � �
d
dx � r+1 · · ·

�
r+1
s−1 � �

d
dx � r−s+2

.

.

.
. . .

.

.

.�
n−1

0 � �
d
dx � n−1 · · ·

�
n−1
s−1 � �

d
dx � n−s

	�



�

�������
�
y yT y · T 2 · · · y · T s−1

y y · 2T · · · y · (s− 1)T s−2

y · 2! · · · y · (s− 1)(s− 2)T s−3

. . .
.
.
.

y · (s− 1)!

	�






�


�������
�

�����
T=x

= det

�������
�

����
�

�
r+1

0 � �
d
dx � r+1 · · ·

�
r+1
s−1 � �

d
dx � r−s+2

.

.

.
. . .

.

.

.�
n−1

0 � �
d
dx � n−1 · · ·

�
n−1
s−1 � �

d
dx � n−s

	�



�

�������
�
y

y · 1!
y · 2!

. . .

y · (s− 1)!

	�






�


�������
�

= det

������
�

������
�

�
r+1

0 � �
d
dx � r+1

1!
�
r+1

1 � �
d
dx � r · · · (s− 1)!

�
r+1
s−1 � �

d
dx � r−s+2�

r+2
0 � �

d
dx � r+2

1!
�
r+2

1 � �
d
dx � r+1 · · · (s− 1)!

�
r+2
s−1 � �

d
dx � r−s+3

.

.

.
.
.
.

. . .
.
.
.�

n−1
0 � �

d
dx � n−1

1!
�
n−1

1 � �
d
dx � n−2 · · · (s− 1)!

�
n−1
s−1 � �

d
dx � n−s

	 





�

������
�
y

y

y

. . .

y

	 





�


 �����
� .

By dividing the first row by (r + 1)!, the second row by (r + 2)!, and so on, we see that

the above is equal to

(r + 1)!(r + 2)! · · · (n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y〈r+1〉

(r + 1)!

y〈r〉

r!
· · · y〈r−s+2〉

(r − s+ 2)!
y〈r+2〉

(r + 2)!

y〈r+1〉

(r + 1)!
· · · y〈r−s+3〉

(r − s+ 3)!
...

...
. . .

...
y〈n−1〉

(n− 1)!

y〈n−2〉

(n− 2)!
· · · y〈n−s〉

(n− s)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

If we reorder the columns (or the rows) of this determinant, we have the right hand side

of A.1 with the signature (−1)s(s−1)/2. Then the total signature is given by

(−1)(2n−g)(g−1)/2 · (−1)s(s−1)/2+r(r−1)/2

= (−1)(2n−g)(g−1)/2 · (−1)−s(s−1)/2+r(r−1)/2

= (−1)(2n−g)(g−1)/2 · (−1)(r−s)(r+s)/2−(r−s)/2

= (−1)(2n−g)(g−1)/2 · (−1)(r−s)(n−2)/2

= (−1)(2n−g)(g−1)/2 ·
{

(−1)g(n−2)/2 if n 6≡ g mod 2,

(−1)(g−1)(n−2)/2 if n ≡ g mod 2.

Computing this for n and g modulo 4 yields the value of εn in the table in A.1, and the

desired formula have been obtained. �
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