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In this paper we give a weak generalization of so-called Jacobi’s deriva-

tive formula to hyperelliptic curves of any genus.

§0. Introduction

Let E be an elliptic curve over the complex number field C. Let (ω′, ω′′) be a

basis of the lattice of periods of E such that the imaginary part of Z := ω′−1
ω′′ is

positive. Let σ(u) = σ(u;E), (u ∈ C), be Weierstrass’ sigma function (whose ex-
plicit definition is given by (1.2) below). Then so-called Jacobi’s derivative formula
states

(1)
d

du
σ(u;E)

∣∣∣
u=0

=
2π

ω′
θ

[
0
0

]
(0, Z) · θ

[
0

1/2

]
(0, Z) · θ

[
1/2
1/2

]
(0, Z),

where θ

[
a
b

]
(z, Z) is the theta series with characteristic

[
a
b

]
. This formula (1)

evaluates the coefficient of the lead term of the Taylor expansion of σ(u) at the
origin.

This function σ(u) was generalized for hyperelliptic curves ([B1, B2] or (1.2)
bellow). We call it the hyperelliptic sigma function. Let C be a hyperelliptic
curve of genus g ≥ 1. The hyperelliptic sigma function of C, denoted by σ(u) or
σ(u1, · · · , ug;C), is a function of g variables. In the Taylor expansion of σ(u) at the
origin, the form of the terms of lowest degree is independent to the curve C up to a
multiplicative constant, say γ(C) (defined explicitly in (2.2) bellow), and depends
only on the genus of C (see (2.1) below). So we want to give a generalization
of (1) which evaluates γ(C). In the main result (3.3) of this paper, we evaluates
not γ(C) itself but certain power of it by the fourth power of a product of several
“Thetanullwerten” of even characteristic (i.e. special values of even theta functions
of C at the origin).

Grant’s paper [G1] is a start of this paper. He treated only the case of genus two
and gave a stronger formula than ours in the case. But we treat all the hyperelliptic
curves over the complex number field.
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We furthermore explain the hyperelliptic sigma function. The function is es-
sentially a singled out theta series, but has a particular role in the theory of hy-
perelliptic abelian functions ([B1, B2, B3, G1, G2]). That is characterized by

several second logarithmic derivatives
∂2

∂uj∂ug
log σ(u) (j = 1, · · · , g) being certain

fundamental abelian functions on the Jacobian variety of C. We refer the reader
to [B1] for detail.

Though our formula is a simple result from the formula of Thomae and Baker
etc., it gives one of the steps to write down the coefficient γ(C) by suitable values
related to Thetanullwerten.

Another generalization of Jacobi’s formula was given by Igusa ([I1, I2, I3]) which
evaluates a determinant of the Jacobian matrix of sets of theta series on a higher
dimensional Abelian variety at the origin.

§1. Preliminaries

Let C be a smooth projective model of the curve of genus g(> 0) defined by
y2 = f(x) over the complex number field C, where

f(x) = λ0 + λ1x+ λ2x
2 + · · ·+ λ2g+1x

2g+1.

We arbitrarily fix an ordering ≺ of the roots of f(x) = 0, say

(1.1) c1 ≺ a1 ≺ · · · ≺ cg ≺ ag ≺ cg+1.

Of course, we have

f(x) = λ2g+1(x− a1) · · · (x− ag)(x− c1) · · · (x− cg)(x− cg+1).

In this paper we denote the discriminant of quantities X1, X2, · · · , Xm by ∆(X1,
X2, · · · , Xm):

∆(X1, X2, · · · , Xm) =
∏

1≤i<j≤m
(Xi −Xj)

2.

We define
∆(C) := ∆(a1, c1, · · · , ag, cg, cg+1).

Let

ωj =
xj−1dx

y
, (j = 1, · · · , g),

be a basis of the space Γ(C,Ω1
C) of holomorphic 1-forms, and

ηj =
1

4y

2g−j∑

k=j

(k + 1− j)λk+1+jx
kdx, (j = 1, · · · , g),

be a basis of the space Γ(C,Ω1
C(2∞))− Γ(C,Ω1

C), the differentials of second kind
whose member has a pole of second order at the infinity and has no other poles
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(see [B1, p.195, Ex. i] and [B2, p.314]). We fix generators αi, βi (i=1, · · · , g) of
the fundamental group π1(C) of C as indicated by Fig. 1. Then

αi · αj = βi · βj = 0, αi · βj = δij for i, j = 1, · · ·g.

As usual we let

(1.2) ω′ =




∫
α1
ω1 · · ·

∫
αg
ω1

...
. . .

...∫
α1
ωg · · ·

∫
αg
ωg


 , ω′′ =




∫
β1
ω1 · · ·

∫
βg
ω1

...
. . .

...∫
β1
ωg · · ·

∫
βg
ωg




be the period matrices. Then the modulus Z of C given by

Z = ω′
−1
ω′′,

which belongs to g-dimensional Siegel upper half space. Furthermore let

H =




∫
α1
η1 · · ·

∫
αg
η1

...
. . .

...∫
α1
ηg · · ·

∫
αg
ηg


 .

The lattice of periods is denoted by

Λ := [ Z Z · · · Z ]ω′ + [ Z Z · · · Z ]ω′′ (⊂ Cg),

Where Z is the ring of integers. We introduce some theta characteristics followed
by [M, p.3.88]. Let

η2i−1 =


 t(0 · · · 0

i-th place
_
1
2 0 · · · 0)

t( 1
2 · · · 1

2 0 0 · · · 0)




η2i =


 t(0 · · · 0

i-th place
_
1
2

0 · · · 0)
t( 1

2 · · · 1
2

1
2 0 · · · 0)


 .



4 Yoshihiro Ônishi

Let B = {a1, a2, · · · , ag, c1, c2, · · · , cg, cg+1} be the set of x-coordinates of brunch
points of C. Then we denote, for every subset T ⊂ B,

ηT :=
∑

ci∈T
η2i−1 +

∑

ai∈T
η2i.

Especially we set
δ : = ηA with A := {a1, · · · , ag}

=

[
t(1/2 1/2 · · · 1/2)
t(g/2 (g − 1)/2 · · · 1/2)

]
.

For any two subsets S and T of B, we let S ◦ T denote the symmetric difference of
S and T : that is S ◦ T = S ∪ T − S ∩ T .

For a, b in
(

1
2
Z
)g

, let

ϑ

[
a
b

]
(z) = ϑ

[
a
b

]
(z, Z)

=
∑

n∈Zg

exp

[
2π
√
−1

{
1

2
t(n+ a)Z(n+ a) + t(n+ a)(z + b)

}]
.

Then the hyperelliptic sigma-function on Cg with respect to Λ defined in [B1, p.
283] or [B2, p. 336] is

(1.3) σ(u) := σ(u;C) = exp(−1

2
uHω′

−1 tu)ϑ[δ] (ω′
−1 tu, Z),

here
u = (u1, · · · , ug).

Proposition 1.4. (Thomae) Let D = {c1, · · · , cg, cg+1}. Then the following for-
mula holds for all S ⊂ B with #S even,

ϑ [ηS ] (0)4

=





0 if #S ◦D 6= g + 1,

±det

(
ω′

2π

)2 ∏

s,t∈S◦D
s≺t

(s− t) ·
∏

s,t/∈S◦D
s≺t

(s− t) if #S ◦D = g + 1,

where the ordering ≺ is the one defined in (1.1). The sign ± is independent to S.

Proof. See [Th] or [M, p.3.120]. �

§2. Leading terms of the sigma function

Let F (ξ1, ξ2, · · · , ξn) be a polynomial of ξi’s whose partial degree with respect
to ξi is at most g + 1 for each ξi. Then we let

F (ξ1, ξ2, · · · , ξn)
∣∣
ξr−1=ur

denote the homogeneous polynomial of u1, u2, · · · , ug which is given by, after

plugging formally ξr−1
j = ur for any j, homogenizing by u1. For instance, if

F (ξ1, ξ2, ξ3) = ξ1ξ
2
2 + ξ3

2 and g ≥ 4, then, by plugging ξ1 = u2, ξ2
2 = u3 and

ξ3
2 = u4, we have F (ξ1, ξ2, ξ3)

∣∣
ξr−1=ur

= u2u3 + u4u1 by homogenizing u2u3 + u4

by u1.
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Proposition 2.1. On the Taylor expansion of σ(u) = σ(u;C) at the origin, the
following statements hold.
(i) Assume that the genus g is odd and put g = 2n − 1. Then the lowest terms of
σ(u) is given by

[
∂(g+1)/2

∂u1∂u3 · · ·∂ug
σ(u)

∣∣
u=0

]
·
[

1

n!
∆(ξ1, · · · ξn)|ξr−1=ur

]
.

(ii) Assume that the genus g = 2n is even. Then the lowest terms of σ(u) is given
by [

∂g/2

∂u1∂u3 · · ·∂ug−1
σ(u)

∣∣
u=0

]
·
[

1

n!
∆(ξ1, · · · ξn)|ξr−1=ur

]
.

Proof. see [B2, p.360]. �

We know that u1u3 · · ·ug, if g odd, or u1u3 · · ·ug−1, if g even, is one of the terms
of lowest degree. We are interested in the following constant:

Definition 2.2.

γ(C) :=





∂(g+1)/2

∂u1∂u3 · · ·∂ug
σ(u;C)

∣∣∣
u=0

if g is odd ,

∂g/2

∂u1∂u3 · · ·∂ug−1
σ(u;C)

∣∣∣
u=0

if g is even .

Proposition 2.3. We have

γ(C)8 = ∆(C)det

(
ω′

2π

)4

.

Proof.
In (1.4), if we take the empty set ∅ as S, then

(2.4) ϑ[0](0)4 = ±det

(
ω′

2π

)2 ∏

1≤i<j
(ai − aj)

∏

1≤i<j
(ci − cj).

Let
P (x) = (x− a1) · · · (x− ag).

Let `r:= λ2g+1
P ′(ar)2

√
−1 · f ′(ar)

, where P ′(X) = d
dX
P (X). Then, by [B2, p.358], we

have

(2.5) γ(C)4 =

ϑ[0](0)4
∏

i<j

(ai − aj)2

`1 · · · `g

From the formulae (2.4) and (2.5), the proof completes by an easy calculation. �
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§3. Description by even Thetanullwerten

From now on we assume that g ≥ 2. Let

E := {S ⊂ B
∣∣#S ◦D = g + 1}.

If #S ◦D = g + 1 then #S ∩ D = #S ∩ {D. So, in this case, #S must be even.
Then

(3.1)

#E =

g∑

m=0

#{S
∣∣S ∈ E,#S = 2m}

=

g∑

m=0

#{S
∣∣S ∈ E,#S ∩D = m}

=

g∑

m=0

(
g + 1
m

)(
g
m

)
.

Here D is the set defined in (1.4). For example, if g = 2 or g = 3 then #E is equal
to 10 or 25, respectively.

Proposition 3.2. Assume the genus g ≥ 2. Let

µ =
#E · g

2(2g + 1)
(∈ N).

Then

∆(C)µ · det

(
ω′

2π

)2#E

=
∏

S∈E
ϑ[ηS ](0)4.

Note that if g=2 then µ=2. So, in this case, the result of [G1] is stronger than
our result (see [M, p.3.104]).

Proof of 3.2. We rewrite the factors of

∏

S∈E
ϑ[ηS ](0)4.

by (1.4). Then we can easily verify that each (s− t) with s, t ∈ B appears in the
same proportion in this product. Thus, we have

∏

S∈E
ϑ[ηS ](0)4 =

(
±det

(
ω′

2π

)2
)#E

∆(C)M

for some natural number M . We let compute M . The number of factors of

the form (s − t) with s, t ∈ B appearing as factors of
∏

S∈E
ϑ[ηS ](0)4 is #E ·
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{(
g + 1

2

)
+

(
g
2

)}
. The number of such factors appearing in∆(C) is 2

(
2g + 1

2

)
.

Hence

M = #E ·
{(

g + 1
2

)
+

(
g
2

)}/
2

(
2g + 1

2

)

=
#E · g

2(2g + 1)

= µ,

and the statement has benn proved. �

Now, (2.3) and (3.2) imply:

Theorem 3.3. Let γ(C) be as in (2.2). Let µ be as in (3.2). Then

γ(C)8µ =

(
±det

(
ω′

2π

))−2#E+4µ ∏

S∈E
ϑ[ηS ] (0)4,

where the sign ± is that of (1.4)and #E is given by (3.1).
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[T] T. Takenouchi, Elliptic function theory (in japanese), Iwanami Syo-ten, Japan, 1936.

[Th] J. Thomae, Beitrag zur Bestimmung von ϑ(0, · · · , 0) durch die klassenmoduln algebraiscer
Funktionen, J. reine angew. Math. LXXI (1870), 326-336.

����� 	���������������� ��!"�$#%!'&'	(�")+*,	-� �/.10�. �"21�43 ��56�


