ON A GENERALIZATION OF JACOBI'S DERIVATIVE FORMULA TO HYPERELLIPTIC CURVES

Yoshiniro Ônishi
Faculty of Humanities and Social Sciences, Iwate University

Abstract

In this paper we give a weak generalization of so-called Jacobi's derivative formula to hyperelliptic curves of any genus.

§0. Introduction

Let E be an elliptic curve over the complex number field \mathbf{C}. Let $\left(\omega^{\prime}, \omega^{\prime \prime}\right)$ be a basis of the lattice of periods of E such that the imaginary part of $Z:=\omega^{\prime-1} \omega^{\prime \prime}$ is positive. Let $\sigma(u)=\sigma(u ; E),(u \in \mathbf{C})$, be Weierstrass' sigma function (whose explicit definition is given by (1.2) below). Then so-called Jacobi's derivative formula states

$$
\left.\frac{d}{d u} \sigma(u ; E)\right|_{u=0}=\frac{2 \pi}{\omega^{\prime}} \theta\left[\begin{array}{l}
0 \tag{1}\\
0
\end{array}\right](0, Z) \cdot \theta\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right](0, Z) \cdot \theta\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right](0, Z),
$$

where $\theta\left[\begin{array}{l}a \\ b\end{array}\right](z, Z)$ is the theta series with characteristic $\left[\begin{array}{l}a \\ b\end{array}\right]$. This formula (1) evaluates the coefficient of the lead term of the Taylor expansion of $\sigma(u)$ at the origin.

This function $\sigma(u)$ was generalized for hyperelliptic curves ([B1, B2] or (1.2) bellow). We call it the hyperelliptic sigma function. Let C be a hyperelliptic curve of genus $g \geq 1$. The hyperelliptic sigma function of C, denoted by $\sigma(u)$ or $\sigma\left(u_{1}, \cdots, u_{g} ; C\right)$, is a function of g variables. In the Taylor expansion of $\sigma(u)$ at the origin, the form of the terms of lowest degree is independent to the curve C up to a multiplicative constant, say $\gamma(C)$ (defined explicitly in (2.2) bellow), and depends only on the genus of C (see (2.1) below). So we want to give a generalization of (1) which evaluates $\gamma(C)$. In the main result (3.3) of this paper, we evaluates not $\gamma(C)$ itself but certain power of it by the fourth power of a product of several "Thetanullwerten" of even characteristic (i.e. special values of even theta functions of C at the origin).

Grant's paper $[\mathbf{G 1}]$ is a start of this paper. He treated only the case of genus two and gave a stronger formula than ours in the case. But we treat all the hyperelliptic curves over the complex number field.

We furthermore explain the hyperelliptic sigma function. The function is essentially a singled out theta series, but has a particular role in the theory of hyperelliptic abelian functions ($[\mathbf{B 1}, \mathbf{B 2}, \mathbf{B 3}, \mathbf{G 1}, \mathbf{G 2}]$). That is characterized by several second logarithmic derivatives $\frac{\partial^{2}}{\partial u_{j} \partial u_{g}} \log \sigma(u)(j=1, \cdots, g)$ being certain fundamental abelian functions on the Jacobian variety of C. We refer the reader to $[\mathbf{B 1}]$ for detail.

Though our formula is a simple result from the formula of Thomae and Baker etc., it gives one of the steps to write down the coefficient $\gamma(C)$ by suitable values related to Thetanullwerten.

Another generalization of Jacobi's formula was given by Igusa ($[\mathbf{I 1}, \mathbf{I 2}, \mathbf{I} 3]$) which evaluates a determinant of the Jacobian matrix of sets of theta series on a higher dimensional Abelian variety at the origin.

§1. Preliminaries

Let C be a smooth projective model of the curve of genus $g(>0)$ defined by $y^{2}=f(x)$ over the complex number field \mathbf{C}, where

$$
f(x)=\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}+\cdots+\lambda_{2 g+1} x^{2 g+1}
$$

We arbitrarily fix an ordering \prec of the roots of $f(x)=0$, say

$$
\begin{equation*}
c_{1} \prec a_{1} \prec \cdots \prec c_{g} \prec a_{g} \prec c_{g+1} . \tag{1.1}
\end{equation*}
$$

Of course, we have

$$
f(x)=\lambda_{2 g+1}\left(x-a_{1}\right) \cdots\left(x-a_{g}\right)\left(x-c_{1}\right) \cdots\left(x-c_{g}\right)\left(x-c_{g+1}\right) .
$$

In this paper we denote the discriminant of quantities $X_{1}, X_{2}, \cdots, X_{m}$ by $\Delta\left(X_{1}\right.$, X_{2}, \cdots, X_{m}):

$$
\Delta\left(X_{1}, X_{2}, \cdots, X_{m}\right)=\prod_{1 \leq i<j \leq m}\left(X_{i}-X_{j}\right)^{2}
$$

We define

$$
\Delta(C):=\Delta\left(a_{1}, c_{1}, \cdots, a_{g}, c_{g}, c_{g+1}\right)
$$

Let

$$
\omega_{j}=\frac{x^{j-1} d x}{y}, \quad(j=1, \cdots, g)
$$

be a basis of the space $\Gamma\left(C, \Omega_{C}^{1}\right)$ of holomorphic 1-forms, and

$$
\eta_{j}=\frac{1}{4 y} \sum_{k=j}^{2 g-j}(k+1-j) \lambda_{k+1+j} x^{k} d x, \quad(j=1, \cdots, g)
$$

be a basis of the space $\Gamma\left(C, \Omega_{C}^{1}(2 \infty)\right)-\Gamma\left(C, \Omega_{C}^{1}\right)$, the differentials of second kind whose member has a pole of second order at the infinity and has no other poles
(see [B1, p.195, Ex. i] and [B2, p.314]). We fix generators $\alpha_{i}, \beta_{i}(i=1, \cdots, g)$ of the fundamental group $\pi_{1}(C)$ of C as indicated by Fig. 1. Then

$$
\alpha_{i} \cdot \alpha_{j}=\beta_{i} \cdot \beta_{j}=0, \quad \alpha_{i} \cdot \beta_{j}=\delta_{i j} \quad \text { for } i, j=1, \cdots g .
$$

As usual we let

$$
\omega^{\prime}=\left[\begin{array}{ccc}
\int_{\alpha_{1}} \omega_{1} & \cdots & \int_{\alpha_{g}} \omega_{1} \tag{1.2}\\
\vdots & \ddots & \vdots \\
\int_{\alpha_{1}} \omega_{g} & \cdots & \int_{\alpha_{g}} \omega_{g}
\end{array}\right], \quad \omega^{\prime \prime}=\left[\begin{array}{ccc}
\int_{\beta_{1}} \omega_{1} & \cdots & \int_{\beta_{g}} \omega_{1} \\
\vdots & \ddots & \vdots \\
\int_{\beta_{1}} \omega_{g} & \cdots & \int_{\beta_{g}} \omega_{g}
\end{array}\right]
$$

be the period matrices. Then the modulus Z of C given by

$$
Z=\omega^{\prime-1} \omega^{\prime \prime},
$$

which belongs to g-dimensional Siegel upper half space. Furthermore let

$$
H=\left[\begin{array}{ccc}
\int_{\alpha_{1}} \eta_{1} & \cdots & \int_{\alpha_{g}} \eta_{1} \\
\vdots & \ddots & \vdots \\
\int_{\alpha_{1}} \eta_{g} & \cdots & \int_{\alpha_{g}} \eta_{g}
\end{array}\right]
$$

The lattice of periods is denoted by

$$
\Lambda:=\left[\begin{array}{llll}
\mathbf{Z} & \mathbf{Z} & \cdots & \mathbf{Z}
\end{array}\right] \omega^{\prime}+\left[\begin{array}{llll}
\mathbf{Z} & \mathbf{Z} & \cdots & \mathbf{Z}
\end{array}\right] \omega^{\prime \prime}\left(\subset \mathbf{C}^{g}\right),
$$

Where \mathbf{Z} is the ring of integers. We introduce some theta characteristics followed by [M, p.3.88]. Let

$$
\begin{aligned}
\eta_{2 i-1} & =\left[\right] \\
\eta_{2 i} & =\left[\right] .
\end{aligned}
$$

Let $B=\left\{a_{1}, a_{2}, \cdots, a_{g}, c_{1}, c_{2}, \cdots, c_{g}, c_{g+1}\right\}$ be the set of x-coordinates of brunch points of C. Then we denote, for every subset $T \subset B$,

$$
\eta_{T}:=\sum_{c_{i} \in T} \eta_{2 i-1}+\sum_{a_{i} \in T} \eta_{2 i} .
$$

Especially we set

$$
\begin{aligned}
\delta: & =\eta_{A} \quad \text { with } \quad A:=\left\{a_{1}, \cdots, a_{g}\right\} \\
& =\left[\begin{array}{cccc}
{ }^{t}(1 / 2 & 1 / 2 & \cdots & 1 / 2) \\
{ }^{t}(g / 2 & (g-1) / 2 & \cdots & 1 / 2)
\end{array}\right] .
\end{aligned}
$$

For any two subsets S and T of B, we let $S \circ T$ denote the symmetric difference of S and T : that is $S \circ T=S \cup T-S \cap T$.

For a, b in $\left(\frac{1}{2} \mathbf{Z}\right)^{g}$, let

$$
\begin{aligned}
& \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z)=\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, Z) \\
& =\sum_{n \in \mathbf{Z}^{g}} \exp \left[2 \pi \sqrt{-1}\left\{\frac{1}{2}^{t}(n+a) Z(n+a)+{ }^{t}(n+a)(z+b)\right\}\right] .
\end{aligned}
$$

Then the hyperelliptic sigma-function on \mathbf{C}^{g} with respect to Λ defined in [B1, p. 283] or [B2, p. 336] is

$$
\begin{equation*}
\sigma(u):=\sigma(u ; C)=\exp \left(-\frac{1}{2} u H \omega^{\prime-1} u\right) \vartheta[\delta]\left(\omega^{\prime-1} t u, Z\right) \tag{1.3}
\end{equation*}
$$

here

$$
u=\left(u_{1}, \cdots, u_{g}\right) .
$$

Proposition 1.4. (Thomae) Let $D=\left\{c_{1}, \cdots, c_{g}, c_{g+1}\right\}$. Then the following formula holds for all $S \subset B$ with $\# S$ even,

$$
\begin{aligned}
& \vartheta\left[\eta_{S}\right](0)^{4} \\
= & \begin{cases}0 & \text { if } \quad \# S \circ D \neq g+1, \\
\pm \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)^{2} \prod_{\substack{s, t \in S \circ D \\
s \prec t}}(s-t) \cdot \prod_{\substack{s, t \notin S \circ D \\
s \prec t}}(s-t) & \text { if } \quad \# S \circ D=g+1,\end{cases}
\end{aligned}
$$

where the ordering \prec is the one defined in (1.1). The sign \pm is independent to S. Proof. See [Th] or [M, p.3.120].

§2. Leading terms of the sigma function

Let $F\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)$ be a polynomial of ξ_{i} 's whose partial degree with respect to ξ_{i} is at most $g+1$ for each ξ_{i}. Then we let

$$
\left.F\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)\right|_{\xi^{r-1}=u_{r}}
$$

denote the homogeneous polynomial of $u_{1}, u_{2}, \cdots, u_{g}$ which is given by, after plugging formally $\xi_{j}^{r-1}=u_{r}$ for any j, homogenizing by u_{1}. For instance, if $F\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\xi_{1} \xi_{2}^{2}+\xi_{2}^{3}$ and $g \geq 4$, then, by plugging $\xi_{1}=u_{2}, \xi_{2}^{2}=u_{3}$ and $\xi_{2}^{3}=u_{4}$, we have $\left.F\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|_{\xi^{r-1}=u_{r}}=u_{2} u_{3}+u_{4} u_{1}$ by homogenizing $u_{2} u_{3}+u_{4}$ by u_{1}.

Proposition 2.1. On the Taylor expansion of $\sigma(u)=\sigma(u ; C)$ at the origin, the following statements hold.
(i) Assume that the genus g is odd and put $g=2 n-1$. Then the lowest terms of $\sigma(u)$ is given by

$$
\left[\left.\frac{\partial^{(g+1) / 2}}{\partial u_{1} \partial u_{3} \cdots \partial u_{g}} \sigma(u)\right|_{u=0}\right] \cdot\left[\left.\frac{1}{n!} \Delta\left(\xi_{1}, \cdots \xi_{n}\right)\right|_{\xi^{r-1}=u_{r}}\right] .
$$

(ii) Assume that the genus $g=2 n$ is even. Then the lowest terms of $\sigma(u)$ is given by

$$
\left[\left.\frac{\partial^{g / 2}}{\partial u_{1} \partial u_{3} \cdots \partial u_{g-1}} \sigma(u)\right|_{u=0}\right] \cdot\left[\left.\frac{1}{n!} \Delta\left(\xi_{1}, \cdots \xi_{n}\right)\right|_{\xi^{r-1}=u_{r}}\right] .
$$

Proof. see [B2, p.360].
We know that $u_{1} u_{3} \cdots u_{g}$, if g odd, or $u_{1} u_{3} \cdots u_{g-1}$, if g even, is one of the terms of lowest degree. We are interested in the following constant:

Definition 2.2.

$$
\gamma(C):=\left\{\begin{array}{cc}
\left.\frac{\partial^{(g+1) / 2}}{\partial u_{1} \partial u_{3} \cdots \partial u_{g}} \sigma(u ; C)\right|_{u=0} & \text { if } g \text { is odd } \\
\left.\frac{\partial^{g / 2}}{\partial u_{1} \partial u_{3} \cdots \partial u_{g-1}} \sigma(u ; C)\right|_{u=0} & \text { if } g \text { is even }
\end{array}\right.
$$

Proposition 2.3. We have

$$
\gamma(C)^{8}=\Delta(C) \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)^{4}
$$

Proof.

In (1.4), if we take the empty set \emptyset as S, then

$$
\begin{equation*}
\vartheta0^{4}= \pm \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)^{2} \prod_{1 \leq i<j}\left(a_{i}-a_{j}\right) \prod_{1 \leq i<j}\left(c_{i}-c_{j}\right) . \tag{2.4}
\end{equation*}
$$

Let

$$
P(x)=\left(x-a_{1}\right) \cdots\left(x-a_{g}\right) .
$$

Let $\ell_{r}:=\lambda_{2 g+1} \frac{P^{\prime}\left(a_{r}\right)^{2}}{\sqrt{-1} \cdot f^{\prime}\left(a_{r}\right)}$, where $P^{\prime}(X)=\frac{d}{d X} P(X)$. Then, by [B2, p.358], we have

$$
\begin{equation*}
\gamma(C)^{4}=\frac{\vartheta0^{4} \prod_{i<j}\left(a_{i}-a_{j}\right)^{2}}{\ell_{1} \cdots \ell_{g}} \tag{2.5}
\end{equation*}
$$

From the formulae (2.4) and (2.5), the proof completes by an easy calculation.

§3. Description by even Thetanullwerten

From now on we assume that $g \geq 2$. Let

$$
E:=\{S \subset B \mid \# S \circ D=g+1\}
$$

If $\# S \circ D=g+1$ then $\# S \cap D=\# S \cap \complement D$. So, in this case, $\# S$ must be even. Then

$$
\begin{align*}
\# E & =\sum_{m=0}^{g} \#\{S \mid S \in E, \# S=2 m\} \\
& =\sum_{m=0}^{g} \#\{S \mid S \in E, \# S \cap D=m\} \tag{3.1}\\
& =\sum_{m=0}^{g}\binom{g+1}{m}\binom{g}{m}
\end{align*}
$$

Here D is the set defined in (1.4). For example, if $g=2$ or $g=3$ then $\# E$ is equal to 10 or 25 , respectively.

Proposition 3.2. Assume the genus $g \geq 2$. Let

$$
\mu=\frac{\# E \cdot g}{2(2 g+1)}(\in \mathbf{N}) .
$$

Then

$$
\Delta(C)^{\mu} \cdot \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)^{2 \# E}=\prod_{S \in E} \vartheta\left[\eta_{S}\right](0)^{4}
$$

Note that if $g=2$ then $\mu=2$. So, in this case, the result of $[\mathbf{G 1}]$ is stronger than our result (see [M, p.3.104]).

Proof of 3.2. We rewrite the factors of

$$
\prod_{S \in E} \vartheta\left[\eta_{S}\right](0)^{4}
$$

by (1.4). Then we can easily verify that each $(s-t)$ with $s, t \in B$ appears in the same proportion in this product. Thus, we have

$$
\prod_{S \in E} \vartheta\left[\eta_{S}\right](0)^{4}=\left(\pm \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)^{2}\right)^{\# E} \Delta(C)^{M}
$$

for some natural number M. We let compute M. The number of factors of the form $(s-t)$ with $s, t \in B$ appearing as factors of $\prod_{S \in E} \vartheta\left[\eta_{S}\right](0)^{4}$ is $\# E$.
$\left\{\binom{g+1}{2}+\binom{g}{2}\right\}$. The number of such factors appearing in $\Delta(C)$ is $2\binom{2 g+1}{2}$. Hence

$$
\begin{aligned}
M & =\# E \cdot\left\{\binom{g+1}{2}+\binom{g}{2}\right\} / 2\binom{2 g+1}{2} \\
& =\frac{\# E \cdot g}{2(2 g+1)} \\
& =\mu
\end{aligned}
$$

and the statement has benn proved.
Now, (2.3) and (3.2) imply:
Theorem 3.3. Let $\gamma(C)$ be as in (2.2). Let μ be as in (3.2). Then

$$
\gamma(C)^{8 \mu}=\left(\pm \operatorname{det}\left(\frac{\omega^{\prime}}{2 \pi}\right)\right)^{-2 \# E+4 \mu} \prod_{S \in E} \vartheta\left[\eta_{S}\right](0)^{4},
$$

where the sign \pm is that of (1.4)and $\# E$ is given by (3.1).

References

[B1] H.F. Baker, Abelian functions, - Abel's theorem and the allied theory including the theory of the theta functions -, Cambridge Univ. Press, 1897.
[B2] H.F. Baker, On the hyperelliptic sigma functions, Amer. J. of Math. XX (1898), 301-384.
[B4] H.F. Baker, An introduction to the theory of multiply periodic functions, Cambridge Univ. Press, 1907.
[G1] D. Grant, On a generalization of Jacobi's derivative formula to dimension two, J. reine angew. Math. 392 (1988), 125-136.
[G2] D. Grant, Formal groups in genus two, J. reine angew. Math. 411 (1990), 96-121.
[I1] J.-I. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 86 (1964), 392-412.
[I2] J.-I. Igusa, On the Nullwerte of jacobians of odd theta functions, Symp. Math. XXIV (1979), 83-95.
[I3] J.-I. Igusa, On Jacobi's derivative formula and its generalizations, Amer. J. Math. 102 (1980), 409-446.
[M] D. Mumford, Tata lectures on theta II (Prog. in Math. vol.43), Birkhäuser, 1984.
[T] T. Takenouchi, Elliptic function theory (in japanese), Iwanami Syo-ten, Japan, 1936.
[Th] J. Thomae, Beitrag zur Bestimmung von $\vartheta(0, \cdots, 0)$ durch die klassenmoduln algebraiscer Funktionen, J. reine angew. Math. LXXI (1870), 326-336.

Ueda 3-18-34, Morioka, Iwate 020, JAPAN.

