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1. We consider the curve
E =0 —1.

Let u — z(u) and v — y(u) are the set of inverse functions of
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We define a series of rational numbers {F,} by
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and by F, = 0 if 6fn. We call F, the n-th Bernoulli-Hurwitz number for &. Let
p =1 mod 3 be a rational prime, ¢ = e>™*/3 and let
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Suppose m =n mod p®'(p—1) and m # 0 mod (p — 1). Then, it is know that
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2. Now, we consider the curve
€ y=a2"—1

of genus two. Let u — x(u) = # + --- be the formal inverse series of u given by
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We define a series of rational numbers {C,} by

ZClO” 2102
10n (10n —2)V

and by C, =0 if 10/n. We call C,, the n-th generalized Bernoulli-Hurwitz number for €.
Let p =1 mod 5 be a rational prime, and
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Let ¢ = €2™/> and 7 be the element of Gal(Q(¢)/Q) such that
T (e
Choose a P € Z[(] such that
p=PHHTH P =1 mod (1-¢)* in Z[].

Then I shall present the following problem. Does the following congruence hold?
Ifm=n modp*'(p—1) and m #0 mod (p — 1), then
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where “over-line” stands for the complex conjugation. While we have ambiguity on choosing
P, namely, a multiplication by some real unit ¢ such that e = 1 mod (1 — ¢)?, P is uniquely
determined by canceling out such multiplication.

Because of the conditions in Remark 2.18 of the other attached file, the set of numbers in
the smallest non-trivial example is

p =31,
a=29,
m = 10,

n=m+p" ' (p—1) =10+ 31% x 30 = 25586731123240.

This seems to be too large to check.
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