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Abstract. In a previous paper (Eilbeck, Matsutani and Ônishi, Phil.
Trans. R. Soc. A 2011 369, 1245-1263), we introduced new 2- and 3-
variable addition formulae for the Weierstrass elliptic functions in the
special case of an equianharmonic curve. In the present paper we remove
the restriction to the equianharmonic curve, extending the ideas to the
general elliptic curve. We present explicit new 2-variable and 3-variable
addition formulae for this curve, and prove the structure of the formulae
for the n-variable case.

1. Introduction

Consider the Weierstrass equation

(1.1) ℘′(u)
2
= 4℘(u)3 − g2℘(u)− g3,

where g2 and g3 are constants. The functions σ(u) and ℘(u) = − d2

du2 log σ(u)

from Weierstrass’s theory of elliptic functions are well studied. There is an

especially well-known addition formula

(1.2) −σ(u+ v)σ(u− v)

σ(u)2σ(v)2
= ℘(u)− ℘(v),

(see p.451 of [11], for instance). In general, for n variables u(j) (j = 1, ...,

n), it is known that

(1.3)

σ(u(1) + u(2) + · · ·+ u(n))
∏

i<j σ(u
(i) − u(j))∏

j σ(u
(j))n

=
1∏

j

j!

∣∣∣∣∣∣∣∣∣
1 ℘(u(1)) ℘′(u(1)) · · · ℘(n−2)(u(1))
1 ℘(u(2)) ℘′(u(2)) · · · ℘(n−2)(u(2))
...

...
...

. . .
...

1 ℘(u(n)) ℘′(u(n)) · · · ℘(n−2)(u(n))

∣∣∣∣∣∣∣∣∣ .
These are a reflection of the involution of the elliptic curve associated to

(1.1). Some of the related addition formulae may be found on p.458 of [11],

for example.
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There is also a three-term analogy of equation (1.2), which reflects the

cyclic automorphism group of order three, in the so-called equianharmonic

case where the Weierstrass invariant g2 = 0 (and g3 is assumed non-zero).

Let ζ be a primitive cube root of unity, (without loss of generality we may

take ζ = (−1+
√
−3)/2 ). Then the functions specialised to this case satisfy

(1.4) −σ(u+ v)σ(u+ ζv)σ(u+ ζ2v)

σ(u)3σ(v)3
=

1

2
(℘′(u) + ℘′(v)).

This was given as Proposition 5.1 of [4].

We have similar, but more complicated, generalizations for certain spe-

cialized trigonal curves of genus three, (Theorem 10.1 in [3] and Theorem

5.4 in [2]), and genus four, (Theorem 8 in [5]). The aim of this paper is to

introduce generalisations of (1.3) similar to (1.4), but for the most general

elliptic curve, (2.1).

Our new results are based on the following observation. The curve defined

by (1.1):

(1.5) C : y2 = x3 − g2
4
x− g3

4
(y = 1

2
℘′(u), x = ℘(u))

has two natural maps

(1.6)
P1←− C −→P1

x←−p (x, y) 7−→ y,

where both P1 denote projective lines. The map to the left is a double

covering and the map to the right is a triple covering. The formulae (1.2)

and (1.3) come from the former and so it is natural to ask what would

formulae would follow from the latter.

We proceed by considering the most general elliptic curve, first describing

the structure of a new class of n-variable addition formulae in Theorem 4.1

and then giving explicit expressions in the cases n = 2 (Theorem 5.1) and

n = 3 (Theorem 6.1).

When we consider the 2-variable case with the general Weierstrass curve

(Remark 5.3[2]) we find the new generalisation of (1.4)

(1.7) −σ(u+ v)σ(u+ v⋆)σ(u+ v⋆⋆)

σ(u)3σ(v)σ(v⋆)σ(v⋆⋆)
=

1

2
(℘′(u) + ℘′(v)),

where v, v⋆, v⋆⋆ are so-called conjugate variables satisfying ℘′(v) = ℘′(v⋆) =

℘′(v⋆⋆), v + v⋆ + v⋆⋆ = 0. These conjugate variables are the generalisations

of v, ζv, ζ2v in the equianharmonic case.



Addition Formulae for Weierstrass Functions 3

2. Preliminaries

The reader is referred to [8] for the details of the material in this section.

Define

(2.1) f(x, y) = y2 + (µ1x+ µ3)y − (x3 + µ2x
2 + µ4x+ µ6).

We consider the curve C defined by f(x, y) = 0 with the unique point

∞ at infinity. Although we assume C is non-singular, the formulae in our

theorems are valid even if C is singular. It is known that any elliptic curve

over any perfect field is written in this form (see [1], Chapter 8, or [10],

Section 3 of Chapter 3). The results for this curve are valid as identities on

power series over quite general base rings and are not restricted to the case

of the complex numbers.

We may define weights, denoted wt, by

wt(x) = −3, wt(y) = −2, wt(µj) = −j.

From this definition, it is easy to see that any formula in this paper is of

homogeneous weight. In general a numerical subscript throughout this paper

will refer to the corresponding (negative) weight, except for the classical

constants g2 and g3, which have weight −4 and −6 respectively.

Any differential of the first kind is a constant multiple of

ω = ω(x, y) =
dx

fy(x, y)
=

dx

2y + (µ1x+ µ3)
= − dy

fx(x, y)
,

where fy and fx denote ∂
∂y
f and ∂

∂x
f , respectively. Let Λ denote the lattice

consisting of the integrals of this differential along any closed paths:

Λ =

{∮
ω

}
.

We define two meromorphic functions x(u) and y(u) by the set of equalities

(2.2) u =

∫ (x(u),y(u))

∞
ω, f

(
x(u), y(u)

)
= 0.

Clearly, these are periodic with respect to Λ and have poles only at the

points in Λ. Note that it follows from these definitions that the variable u

is of weight 1 : wt(u) = 1.

From the definitions in (2.2) we have

x(−u) = x(u), y(−u) = y(u) + µ1x(u) + µ3.

Both x(u) and y(u) have a pole only at u = 0, of order 2 and 3, respectively.

Let us take a local parameter t around the point ∞ satisfying

(2.3) y =
1

t3
.
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This choice of a local parameter is different from the usual one : t = −x/y.
Using (2.3) and (2.2), we can obtain the power series expansions of x(u)

and y(u) beginning with

(2.4)

x(u) = u−2 − ( 1
12
µ1

2 + 1
3
µ2)

+ ( 1
240

µ1
4 + 1

30
µ2µ1

2 − 1
10
µ3µ1 +

1
15
µ2

2 − 1
5
µ4)u

2 + · · · ,

y(u) = −u−3 − 1
2
µ1u

−2 + ( 1
24
µ1

3 + 1
6
µ2µ1 − 1

2
µ3) + · · · .

For two variable points (x, y) and (z, w) on C , we define

Ω(x, y, z, w) =
y + w + µ1z + µ3

x− z
,

ω(x, y) =
(y + w + µ1z + µ3)dx

(x− z)(2y + µ1x+ µ3)
.

These have a pole of order 1 with residue 1 at (z, w) when regarded as a form

with variable (x, y) and (z, w) fixed. Indeed, since (2w+µ1z+µ3) = fy(z, w)

when (x, y) = (z, w), the residue at (z, w) is 1, and the zeroes of numerator

and denominator at (x, y) = (z,−w − µ1z − µ3) is cancelled.

For a differential η of the 2nd kind with pole only at ∞, we define

ξ(x, y; z, w) = d
dz
Ω(x, y; z, w)dz − ω(x, y)η(z, w),

where (x, y), (z, w) ∈ C . Then, the differential of the second kind

(2.5) η(x, y) =
−xdx

2y + µ1x+ µ3

,

chosen as in [8], satisfies

ξ(x, y; z, w) = ξ(z, w; x, y).

We fix the notation η for the form (2.5) from now on. Let α and β be a pair

of two closed paths on C which is a representative of a symplectic base of

the homology group H1(C ,Z). We let η′ and η′′ be periods of η with respect

to the closed paths α and β. In general, for a given v ∈ C, we denote by v′

and v′′ the real numbers such that

v = v′ω′ + v′′ω′′.

Let

L(u, v) = u(v′η′ + v′′η′′)

for u and v ∈ C. We define the sigma function of C by

(2.6) σ(u) = ηDed(ω
′−1

ω′′)
−3
· ω

′

2π
· exp

(
− 1

2
u2η′ω′−1)

ϑ

[
1
2
1
2

]
(ω′−1

u
∣∣ω′−1

ω′′),

where ηDed(ω
′−1ω′′) is the value of Dedekind’s eta function at ω′−1ω′′. It is

easily checked that

(2.7) σ(−u) = −σ(u).



Addition Formulae for Weierstrass Functions 5

It is known that the σ-function does not depend on the choice of symplectic

base α and β of H1(C ,Z), and that it has the following quasi-periodicity

property:

Lemma 2.8. The σ-function satisfies

(2.9) σ(u+ ℓ) = χ(ℓ)σ(u) expL(u+ 1
2
ℓ, ℓ) (ℓ ∈ Λ).

The σ-function may be represented by a series expansion starting with

σ(u) = u+ (µ1
2 + µ2)(

1
3!
)u3 + (µ1

4 + 2µ2µ1
2 + µ3µ1 + µ2

2 + 2µ4)(
1
5!
)u5

+ (µ1
6 + 3µ2µ1

4 + 6µ3µ1
3 + 3µ2

2µ1
2 + 6µ4µ1

2

+ 6µ3µ2µ1 + µ2
3 + 6µ4µ2 + 6µ3

2 + 24µ6)(
1
7!
)u7 + · · · ,

where µ1 = µ1/2.

Throughout this paper, for simplicity, we use Z[µ1, µ2, µ3, µ4, µ6] = Z[µ]
and Q[µ1, µ2, µ3, µ4, µ6] = Q[µ]. We remark here that (Hurwitz integrality)

this expansion is of the form

(2.10) σ(u) =
∞∑
n=1

An
un

n!
with An ∈ Z[µ1, µ3, µ2, µ4, µ6].

However, it is known that

(2.11) σ(u)2 =
∞∑
n=2

A′
n

un

n!
with A′

n ∈ Z[µ].

The reader is referred to the discussion in [8]. This integrality of the coeffi-

cients of this expansion is taken up in Remark 4.7 below. Logically, in this

paper, we need only the fact that An ∈ Q[µ].

We now define as usual the elliptic functions

(2.12) ℘(u) = − d2

du2
log σ(u), ℘′(u) =

d

du
℘(u).

Then we have

(2.13) ℘(−u) = ℘(u) and ℘′(−u) = −℘′(u).

by (2.7). Our ℘(u) for the general curve is slightly different from Weier-

strass’s. Our ℘(u) has the expansion,

℘(u) =
1

u2
+

∑
ℓ∈Λ,ℓ̸=0

( 1

(u− ℓ)2
− 1

ℓ2

)
− µ1

2 + 4µ2

12
,

which is shown by the situation of zeroes of σ(u).

Comparing the power series expansions in (2.4) and the essential part of

the expansion of ℘(u) with respect to u obtained by (2), we have

(2.14)
℘(u) = x(u),

℘′(u) = 2y(u) + µ1x(u) + µ3.
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If the parameters in (2.1) take values µ1 = µ2 = µ3 = 0, µ4 = −1
4
g2,

µ6 = −1
4
g3, then the function ℘(u) defined by (2.12) satisfies the classical

equation (1.1). Moreover the function σ(u) defined in (2.6) is exactly the

same as the Weierstrass σ-function. Under such a transformation the results

of this section map to the well-known results for the Weierstrass functions.

3. Conjugate points

For a variable point (x, y) on C , we have three points (up to multiplicity)

with the same second coordinate y. We will denote them by

(x, y), (x⋆, y), and (x⋆⋆, y).

Moreover, for

(3.1) v =

∫ (x,y)

∞
ω,

we define

v⋆ =

∫ (x⋆,y)

∞
ω, and v⋆⋆ =

∫ (x⋆⋆,y)

∞
ω.

Here the paths of integration are defined as the continuous transformations

by taking ⋆ or ⋆⋆ for all points on the path in (3.1).

Lemma 3.2. In the above notation we have

(3.3) v + v⋆ + v⋆⋆ = 0.

Proof. Summing up the holomorphic differential ω on all three sheets of the

covering we get a holomorphic differential on the base P1 (the right hand

side of (1.6)), which must vanish, implying (3.3).

Alternatively, an algebraic proof is as follows. Since, for a given y, the x,

x⋆, x⋆⋆ are the solution of the equation f(X, y) = 0 of X, we see f(X, y) =

−(X − x)(X − x⋆)(X − x⋆⋆). So

fx(x, y) = −(x− x⋆)(x− x⋆⋆),

fx(x
⋆, y) = −(x⋆ − x)(x⋆ − x⋆⋆),

fx(x
⋆⋆, y) = −(x⋆⋆ − x)(x⋆⋆ − x⋆).

Since
1

(x− x⋆)(x− x⋆⋆)
+

1

(x⋆ − x)(x⋆ − x⋆⋆)
+

1

(x⋆⋆ − x)(x⋆⋆ − x⋆)
= 0,

we find

− dy

fx(x, y)
− dy

fx(x⋆, y)
− dy

fx(x⋆⋆, y)
= 0

and hence the desired equality. �
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Note that if ℓ ∈ Λ then ℓ⋆, ℓ⋆⋆ ∈ Λ, and that ℓ+ ℓ⋆ + ℓ⋆⋆ = 0 by Lemma

3.2.

In the Weierstrass case when the parameters in (2.1) take values µ1 =

µ2 = µ3 = 0, µ4 = −1
4
g2, µ6 = −1

4
g3, then we have ℘′(v) = ℘′(v⋆) = ℘′(v⋆⋆).

Using the curve equation (2.1) and a local parameter (2.3) we may obtain

an expansion beginning

(3.4)

x = t−2 +
1

3
µ1t

−1 − 1

3
µ2 +

(
− 1

34
µ1

3 − 1

32
µ2µ1 +

1

3
µ3

)
t

+

(
1

35
µ1

4 +
1

33
µ2µ1

2 − 1

32
µ3µ1 +

1

3
µ2

2 − µ4

)
t2

+

(
− 4

38
µ1

6 − 5

36
µ2µ1

4 +
5

35
µ3µ1

3 +
(
− 2

34
µ2

2 +
1

33
µ4

)
µ1

2

+
2

33
µ2µ3µ1 −

1

32
µ3

2 − 2

34
µ2

3 +
1

32
µ4µ2 −

1

3
µ6

)
t4 +O(t5).

By looking at the recursion relation giving this expansion, we see this ex-

pansion belongs to Z[µ][[1
3
t]].

Throughout this paper, ζ is a fixed primitive cube root of unity. Trans-

forming t→ ζt and t→ ζ2t gives rise to similar expansions of x⋆ and x⋆⋆ in

terms of t. Using the definition of ω and a formal reversing of the function

t 7→ v, we expand the function v 7→ t. Substituting this into the expansions

of t 7→ x⋆ and t 7→ x⋆ gives expansions

(3.5)
v⋆ = ζv + · · · ∈ Z[µ, ζ][[1

3
v]],

v⋆⋆ = ζ2v + · · · ∈ Z[µ, ζ][[1
3
v]],

This implies that σ(v⋆)/σ(v) and σ(v⋆⋆)/σ(v) are power series of v with

coefficients in Q[µ].

4. New Addition formula (General form)

First, we describe the general structure of our new class of addition

formula, before constructing explicit examples in the following sections.

Theorem 4.1. Let u(1), u(2), · · ·, u(n) be n-variables. Then

(4.2)
σ(u(1) + u(2) + · · ·+ u(n))

∏
i<j σ(u

(i) + u(j)⋆)σ(u(i) + u(j)⋆⋆)∏n
j=1 σ(u

(j))2n+1−2jσ(u(j)⋆)jσ(u(j)⋆⋆)j

may be expressed as a polynomial in the x(u(j)) and y(u(j)) for j = 1, ... ,

n of weight −(n2 − 1) over the ring Q[µ]. Moreover, if µ1 = µ2 = µ4 = 0,

it is symmetric with respect to any exchange(
x(u(i)), y(u(i))

)
←→

(
x(u(j)), y(u(j))

)
.
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Proof. Regarding (4.2) as a function of each u(j), we can check that it is

meromorphic and periodic with respect to Λ, (see the proof of Theorem 5.1

for details on such checks). Hence, it must have a rational expression in

terms of x(u(j)), y(u(j)) for j = 1, ... , n. For arbitrarily fixed j, let v = u(j).

Then as a function of v, (4.2) has its only pole at v = 0 (of order 2n − 1).

By counting, it is of weight 1+n(n− 1)−n(2n− 1) = −(n2− 1). Therefore

(4.2) is a polynomial of the x(u(j)) and y(u(j)) of weight −(n2 − 1).

Hence an addition formula may be derived by taking (4.2) as the left hand

side and constructing the described polynomial for the right hand side To

find the right hand side we use the method of undetermined coefficients as

follows. Firstly, we prepare the monomials

(4.3)
n∏

j=1

x(u(j))
pj
y(u(j))

εj

of weight −(n2 − 1) or larger, where pj are non-negative and εj are 0 or

1. By looking at the leading terms of these monomials, we see that they

are linearly independent over Q(µ). Of course, there are only finitely many

such monomials. Secondly, set the right hand side as

(4.4)
∑

{pj ,εj}

C{pj ,εj}

n∏
j=1

x(u(j))
pj
y(u(j))

εj

with undetermined coefficients C{pj ,εj} ∈ Q(µ). Then, after rewriting the

right hand side by using (2.14) as a rational function of σ(u(j)), σ′(u(j)),

σ′′(u(j)), σ′′′(u(j)) for j = 1, · · ·, n, where σ′(u) = d
du
σ(u), σ′′(u) = d2

du2σ(u),

and σ′′′(u) = d3

du3σ(u), we multiply

n∏
j=1

σ(u(j))2n−1

to the both sides. Then we get the following equality:

σ(u(1) + u(2) + · · ·+ u(n))
∏
i<j

σ(u(i) + u(j)⋆)σ(u(i) + u(j)⋆⋆)

×(a power series of u(j)s with coefficients in Q[µ])

= a polynomial of σ(u(j)), σ′(u(j)), σ′′(u(j)) for j = 1, · · ·, n.

Here, we used that σ(u⋆)/σ(u) and σ(u⋆⋆)/σ(u) are power series of u with

coefficients in the ring Q[µ]. Now, we focus to each term of the form

(4.5)
n∏

j=1

σ′(u(j))sj σ(u(j))kj
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for some set {sj > 0, kj > 0} in the right hand side. Since

x(u) =
σ′′(u)σ(u)− σ′(u)2

σ(u)2
and

y(u) =
−1

2
σ′′′(u)σ(u)2 + 3

2
σ′′(u)σ′(u)σ(u)− σ′(u)3

σ(u)3

− µ1

2
·σ

′′(u)σ(u)− σ′(u)2

σ(u)2
+

µ3

2
,

it is clear that the term (4.5) comes from a unique term of (4.3). So that, if

we expand the right hand side as a power series with respect to {u(j)}, the
leading terms

(4.6)
n∏

j=1

u(j) kj

from (4.5) comes from a unique term of (4.4), say

C{pj ,εj}

n∏
j=1

x(u(j))
pj
y(u(j))

εj
,

and has the coefficient ±C{pj ,εj}. Now, by comparing the two sides with

respect to the term (4.6), we see the coefficient C{pj ,εj} must belong to Q[µ].

The last assertion is proved by the following formula: if µ1 = µ2 = µ4 = 0,

we have

σ(ζu) = ζσ(u)

(See [4], Lemma 4.1), and that u⋆ = ζu, u⋆⋆ = ζ2u. Namely, the left hand

side in this case is symmetric with respect to any exchange u(i) ←→ u(j). �

Remark 4.7. Our computations suggest that the expression of (4.2) in

terms of x(u(j))s and y(u(j))s has coefficients in Z[µ]. This phenomenon

may follow from (2.10) and (2.11). Because of this, Theorem 4.1 may be

valid as a power series identity over quite general base rings and is not

restricted to the case of the complex numbers.
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5. New Addition formula (2-variable case)

The first explicit main result of this paper now follows.

Theorem 5.1. Using the notation of the previous sections, we have

(5.2)

−σ(u+ v)σ(u+ v⋆)σ(u+ v⋆⋆)

σ(u)3σ(v)σ(v⋆)σ(v⋆⋆)
= y(u)− y(−v)

= y(u) + y(v) + µ1x(v) + µ3

=
1

2

(
℘′(u) + ℘′(v)

)
+

µ1

2

(
℘(u)− ℘(v)

)
.

Remark 5.3. We comment on how our formula is modified when special-

izing the curve.

1. For a fixed x, we have two points on the curve. If one point is denoted

say (x, y), then the other point is (x,−y − µ1x − µ3). In this situation, if

u =
∫ (x,y)

∞ ω then −u =
∫ (x,−y−µ1x−µ3)

∞ ω. So, if we replace the sigma function

in (1.2) in the Introduction by the most general sigma function (2.6), the

left hand side of (1.2) has the same form as equation (1.2). The right hand

side for the fully general curve C has exactly the same form as the right

hand side of (1.2), which can be easily checked.

2. As we mentioned just after (2.14), when the parameters in (2.1) take

values µ1 = µ2 = µ3 = 0, µ4 = −1
4
g2, µ6 = −1

4
g3, the function ℘(u) defined

by (2.12) satisfies the classical equation (1.1). In this case, by (2.13) and

(2.14), the right hand side of the formula reduces to the addition formula

(1.7) given in the introduction.

3. If we do consider the equianharmonic case (by setting further µ4 = g2 =

0) then Theorem 5.1 reduces to Proposition 5.1 of [4], with equation (5.2)

becoming (1.4) from the Introduction.

Proof. (of Theorem 5.1.) The left hand side of (5.2) is a meromorphic func-

tion of both u and v. Using (3.2) and (2.8), we see the left hand side is

invariant with respect to the transformations u 7→ u + ℓ, v 7→ v + ℓ for

ℓ ∈ Λ. Indeed, for the transformation u 7→ u + ℓ, the exponent of the

exponential factor becomes

L(u+ v + 1
2
ℓ, ℓ) + L(u+ v⋆ + 1

2
ℓ, ℓ) + L(u+ v⋆⋆ + 1

2
ℓ, ℓ)− 3L(u+ 1

2
ℓ, ℓ)

= L(v + v⋆ + v⋆⋆, ℓ)

= L(0, ℓ)

= 0,
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While for v 7→ v + ℓ, it becomes

L(u+ v + 1
2
ℓ, ℓ) + L(u+ v⋆ + 1

2
ℓ⋆, ℓ⋆) + L(u+ v⋆⋆ + 1

2
ℓ⋆⋆, ℓ⋆⋆)

− L(v + 1
2
ℓ, ℓ)− L(v⋆ + 1

2
ℓ⋆, ℓ⋆)− L(v⋆⋆ + 1

2
ℓ⋆⋆, ℓ⋆⋆)

= L(u, ℓ) + L(u, ℓ⋆) + L(u, ℓ⋆⋆)

= L(u, ℓ+ ℓ⋆ + ℓ⋆⋆)

= L(u, 0)

= 0.

Therefore, the left hand side is a function of u modulo Λ. It also has a

unique pole at u = 0. It is well-known that such a function is a polynomial

of ℘(u) and its higher order derivatives. In this case the poles are of order 3,

so we need only use ℘ and ℘′. Since the equation must be of homogeneous

weight (weight −3 on both sides), we know that the left hand side must be

of the form

a1℘
′(u) + a2℘

′(v) + b1µ1℘(u) + b2µ1℘(v) + c1µ1
3 + c2µ1µ2 + c3µ3

with absolute constants a1, a2, b1, b2, c1, c2 and c3. However, for arbitrary

fixed v, as a function of u, the left hand side has zeroes at u = −v, u = −v⋆,
u = −v⋆⋆ (of order 1 each), and no other zeros. Using the fact that the ℘(u)

is an even function we have that

a2 = a1 (= a say), −b2 = b1 (= b say), c1 = c2 = c3 = 0.

Substituting the truncated expansion (3.4) up to the constant term and

(3.5) into (5.2) gives

− 1

u3
− 1

v3
+

1

2
µ1

(
1

u2
− 1

v2

)
+ · · · .

Since

℘(u) =
1

u2
+ · · · ,

we find the coefficients are as stated

(5.4) a = 1
2
, b = 1

2
,

concluding the proof. �

We finish the section with some further remarks on the formula (1.7). It

could be argued that this formula lacks symmetry as the variables u and v

are treated differently. We can replace u by u⋆ and u⋆⋆ in turn, remembering

that ℘(u) = ℘(u⋆) = ℘(u⋆⋆), then add the three to get

3∑
i=1

[ ∏3
j=1 σ(ui + vj)

σ(ui)3
∏3

j=1 σ(vj)

]
=

3

2
(℘′(u) + ℘′(v))
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where for typographical convenience we use ui, i = 1, 2, 3, to represent u, u⋆,

and u⋆⋆ respectively. However in producing such a formula we are throwing

away information, in particular by subtracting two of the three relations

described above we can get

σ(u+ v)σ(u+ v⋆)σ(u+ v⋆⋆)

σ(u)3
=

σ(u⋆ + v)σ(u⋆ + v⋆)σ(u⋆ + v⋆⋆)

σ(u⋆)3
,

and similarly for (u, u⋆) and (u⋆, u⋆⋆). A similar equation is seen in Corollary

12.2 of [9].

6. New Addition formula (3-variable case)

The second main result below, is a natural three variable extension of

Theorem 5.1, (see also [7] and [9]).

Theorem 6.1. Let u, v, and w be variables. Denote, for brevity, (xu, yu) =

(x(u), y(u)) and similarly for v and w. With the notation of the previous

sections we have a new addition formula with left hand side

σ(u+ v + w)σ(u+ v⋆)σ(u+ v⋆⋆)σ(u+ w⋆)σ(u+ w⋆⋆)σ(v + w⋆)σ(v + w⋆⋆)

σ(u)5σ(v)3σ(v⋆)σ(v⋆⋆)σ(w)σ(w⋆)2σ(w⋆⋆)2

and right hand side given by
∑8

i=0 ri with the ri as below. Each ri is a

polynomial in xu, xv, xw, yu, yv, yw, and the {µj} (of combined weight i).

r0 = (yuyv + yuyw + yvyw − xuxvxw)(xu + xv + xw)

− x2
ux

2
v − x2

ux
2
w − x2

vx
2
w,

r1 = µ1(xvxuyv + 2xvxuyw + 2ywx
2
u + xwxuyw − x2

wyu + xvxuyu

+ xwyvxu + yvx
2
u + ywx

2
v),

r2 = (x2
uxv − xux

2
w + ywyu)µ

2
1 − (x2

vxw − yvyu + x2
uxv + xux

2
w

+ 2xvxwxu − ywyu − ywyv + xvx
2
w + x2

uxw + xux
2
v)µ2,

r3 = µ3
1ywxu + (xuyv + 2ywxu + xvyw − xwyu)µ2µ1

+ (yv + yw + yu)(xu + xv + xw)µ3,

r4 = −µ2
1xuµ2xw + (x2

u − x2
w + 2xuxv + xuxw)µ3µ1

− (xuxv + xvxw + xuxw)µ
2
2 − (x2

u + x2
v + x2

w)µ4,

r5 = µ2
1ywµ3 − (yu − yw)µ4µ1 + (yv + yw + yu)µ3µ2,

r6 = −µ2
1xuµ4 + (xu − xw)µ3µ2µ1 − (xu + xv + xw)(µ2µ4 − µ6 − µ2

3),

r7 = 0,

r8 = −µ1µ3µ4 + (µ6 + µ2
3)µ2 − µ2

4.
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Proof. The left hand side of the new formula is meromorphic in u, v, and w.

Moreover, we can check easily that it is periodic with respect to Λ. Hence

it may be expressed in terms of elliptic functions. Further, we can check

that the left hand side has poles of order five each in u, v and w and so

the right hand side must have an expression in ℘(u), ℘(v) and ℘(w) and

their derivatives up to third order. More specifically, the right hand side

will be a sum of terms, each a product of three functions, one in each of the

variables and with all functions taken from the set {1, ℘, ℘′, ℘′′, ℘′′′}. Such
an expression is clear from the linear algebra when considering the space of

elliptic functions graded by pole order, (for more details on such spaces see

for example [2, 6]). This also clarifies why r7 = 0: since there is no elliptic

function of weight 1 to include in the right hand side.

The coefficients of this right hand side may then be determined using the

series expansions of the functions discussed earlier. Since the left hand side

is of weight −8 the expansions used need to contain terms with monomials

in µi up to weight −8. Maple was used to implement this calculation (with

details on similar calculations given in [2]). The right hand side presented

above was then obtained by making the substitutions implied by (2.14). �

Remark 6.2. Using the mappings in (2.14) we can rewrite the right hand

side of the formula in Theorem (6.1) in terms of ℘ and its first derivative.

Remark 6.3. Let

f2 = xu + xv + xw + µ2,

f4 = xuxv + xvxw + xuxw − µ4 + µ1yw.

where the suffices of f are chosen to denote the weight. Each of these van-

ishes when v = u⋆ and w = u⋆⋆ at the same time since then y(u) = y(u⋆) =

y(u⋆⋆) and x(u), x(u⋆), x(u⋆⋆) are the three solutions of the cubic equation

X3 + µ2X
2 + (µ4 − µ1y(u))X + µ6 − y(u)2 − µ3y(u) = 0.

A calculation with Gröbner bases implemented with Maple shows that the

right hand side of the formula presented in Theorem 6.1 lies in the ideal

generated by f2 and f4. Specifically, we have that

8∑
i=0

ri = Q6f2 +Q4f4,
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where

Q6 = ywµ
3
1 − (µ4 − xvxw − xuxv)µ

2
1

+ (xuµ3 − µ3xw − xwyw − xwyu + 2ywxu + xuyv)µ1

− (xuxv + xvxw + xuxw)µ2 + µ2
3 + (yv + yw + yu)µ3 − xux

2
v + µ6

− xux
2
w + ywyu − x2

vxw + yvyu − xvx
2
w + ywyv − xvxwxu − xuµ4,

Q4 = (yu + µ3)µ1 − (µ2 + xv + xw)µ
2
1 + (xv + xw)µ2

+ µ4 + x2
w + xvxw + x2

v.

This expression, along with (3.3) shows that both sides of the equation in

Theorem (6.1) vanish when v = u⋆ and w = u⋆⋆.

Remark 6.4. In Remark 5.3 we discussed how the 2-variable formula col-

lapsed to known results when restricting the curve. We note here some

similar restrictions for the 3-variable result.

1. If µ1 = µ2 = µ3 = 0, µ4 = −1
4
g2, µ6 = −1

4
g3 in (2.1), then the right

hand side of the formula in Theorem 6.1 becomes

(6.5)

− 1
16
g22 +

1
4
g2(℘(v)

2 + ℘(w)2 + ℘(u)2)

− ℘(u)2℘(w)2 − ℘(v)2℘(w)2 − ℘(u)2℘(v)2

− 1
4
(℘(u) + ℘(v) + ℘(w))

(
4℘(u)℘(v)℘(w) + g3

− ℘′(u)℘′(v)− ℘′(v)℘′(w)− ℘′(u)℘′(w)
)
.

2. If instead one simplifies by setting µ1 = µ2 = µ4 = 0 then we of course

get another simplification of the right hand side, but also a simplification

of the left hand side. In this case x3 is the only term in the curve equation

with x and so the starred variables can all be described using roots of unity

acting on the non-starred variables. So in this case we have

(6.6)

σ(u+ v + w)σ(u+ζv)σ(u+ζ2v)σ(u+ζw)σ(u+ζ2w)σ(v+ζw)σ(v+ζ2w)

σ(u)5σ(v)3σ(ζv)σ(ζ2v)σ(w)σ(ζw)2σ(ζ2w)2

= (xv + xu + xw)µ6 + (xv + xu + xw)µ
2
3

+ (yu + yv + yw)(xv + xu + xw)µ3 − x2ux
2
w − x2vx

2
w − x2ux

2
v

− (xv + xu + xw)(xvxwxu − yvyw − yuyw − yvyu).

3. The equianharmonic case is a sub-case of the both the previous cases.

Here we will have the simplified left hand side from (6.6) and a further

reduced right hand side which may be obtained by setting g2 = 0 in (6.5).

Using ℘-coordinates analogously to (1.4), we have the right hand side

1
4
(℘(u) + ℘(v) + ℘(w))(℘′(u)℘′(v) + ℘′(v)℘′(w) + ℘′(u)℘′(w)

− g3 − 4℘(v)℘(w)℘(u))− ℘(u)2℘(v)2 − ℘(u)2℘(w)2 − ℘(v)2℘(w)2.
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7. Further remarks

1. In the rational case, µi = 0, (gi = 0), all the equations collapse to simple

algebraic identities.

2. For the equianharmonic curve y2 = x3 + µ6, there is an action of the

group of the sixth roots of unity acts on this curve, and on the coordinate

space C of ℘(u) and σ(u). Let ζ = exp(2πi/3), a third root of unity. In [4],

we gave a 3-variable formula of the form

σ(u+ v + w)σ(u+ ζv + ζ2w)σ(u+ ζ2v + ζw)

σ(u)3σ(v)3σ(w)3

as a polynomial of ℘(u), ℘(v), ℘(w), and their first order derivatives. If we

consider a naive generalization of this in our setting, namely,

σ(u+ v + w)σ(u+ v⋆ + w⋆⋆)σ(u+ v⋆⋆ + w⋆)

σ(u)3σ(v)σ(v⋆)σ(v⋆⋆)σ(w)σ(w⋆)σ(w⋆⋆)
,

we find this is no longer a periodic function with respect to Λ, as may be

checked by the translational formula (2.9). This means that, if we increase

v to v + ℓ (and similarly for w), the factors which appear in (2.9) do not

cancel out.

3. As described in Theorem 4.1, there will be generalisations of such for-

mulae to cases with n variables. However, we find that trying to derive the

expanded form of the right hand side in the 4-variable case using naive se-

ries expansions greatly exceeds the memory limits of the current machines

available to us. We expect that progress would follow from the discovery

of a more compact expression for these right hand sides, for example, as a

determinant.

4. Our result might be generalized to higher genus curves. For example,

the natural analogue for Theorem 5.1 for the curve

y2 + (µ1x
2 + µ3x+ µ5)y = x5 + µ2x

4 + µ4x
3 + µ6x

2 + µ8x+ µ10

could be obtained by considering five roots of x for a fixed y.
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