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Abstract

This work is a sequel of a previous work of one of the authors (Y.Ô), which treated
certain congruence relation between an elliptic Gauss sum and a coefficient of power series
expansion at the origin of the lemniscate sine function. We extend the previous result (in [O])
which concerned only for non-vanishing elliptic Gauss sums. We give new congruence relations
between power series coefficients of the lemniscate cosine function, which hold if and only if
the corresponding elliptic Gauss sum vanishes.

Introduction
In the paper [H1], Hurwitz gave the following result :

Theorem 0.1. Let p > 3 be a rational prime, and let h(−p) be the class
number of the imaginary quadratic field Q(

√
−p ). Then we have

h(−p) ≡
{ −2B p+1

2
mod p if p ≡ 3 mod 4,

2−1E p−1
2

mod p if p ≡ 1 mod 4.

Here Bn is the n-th Bernoulli number, and En is the n-th Euler number1. Moreover,
the absolutely smallest residue of the right hand side exactly equals to h(−p).
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Each of these congruences in is proved by expressing the value at s = 1 of the
Dirichlet L-series L(s,

(
·
p

)
) as a trigonometric Gauss sums, which is defined by a sort

of Gauss sum using suitable trigonometric function instead of the exponential function
in the classical Gauss sum. Under the Birch Swinnerton-Dyer (BSD) conjecture, one of
the authors gave in [O] an analogue of Theorem 0.1 by replacing Dirichlet L-series and
the trigonometric Gauss sum by Hecke’s L-series and an elliptic Gauss sum, respectively,
in which the class number is replaced by a square root of the conjectural order of the
Tate-Shafarevich group, and the Bernoulli number or Euler number is done by certain
coefficient of the power series expansion at the origin of the lemniscate sine function.

Elliptic Gauss sums were used, in order to compute numerically the L-series at-
tached to some elliptic curves over Q, in the famous original paper [BSD] by Birch and
Swinnerton-Dyer. We wish to use them for investigation of L-series attached to some
elliptic curves defined over Q(i), where i =

√
−1 is the imaginary unit.

The paper [O] is written about such investigation only for the case where the
associated prime ℓ is congruent to 5 or 13 modulo 16, since the treated elliptic Gauss
sum for that case does not vanish and it is directly relates the order of Tate-Shafarevich
group. In this paper, we extend the result [O] to all the cases on modulo 16 of the primes
ℓ congruent to 1 modulo 4. The remarkable point is that, in the cases which were not
treated in [O], the corresponding elliptic Gauss sums indeed vanish often, which means
the associated Hecke L-series vanish as well. We verify such vanishing phenomenon by
the tables in [A]. So that, the corresponding elliptic curve, which is defined over the
Gaussian number field, is expected to be of positive Mordell-Weil rank.

We present certain Kummer type congruences (Theorem 7.1) on power series coef-
ficients of the lemniscate cosine function which are valid if and only if the corresponding
elliptic Gauss sum (hence the value at 1 of the corresponding Hecke L series) vanishes.

The corresponding elliptic curve (see the defining equations (3.4), (4.4), and (5.5))
is additive reduction modulo λ and our Kummer-type congruence is quite resemble to
the Kummer congruence which guarantees the existence of the Kubota-Leopoldt p-adic
L-function. So the authors hope that our result gives a hint for a construction of p-adic
L-functions for an elliptic curve which is additive reduction modulo p.

This paper is organized as follows. We setup fundamental background in §1 and §2.
From §3 to §4, we review the results in [A] and [O]. In §5, we review the result for the
rest cases which are omitted in [O]. In §6, we discuss some structure of the Mordell-Weil
group of the curve and how our theory relates to BSD conjecture. From §7 to §12, we
give the main result (Theorem 7.1) and its proof. Acknowledgment : The authors thank
Prof. G. Yamashita who informed them of Hurwitz’ paper [H1], which looks the earliest
literature in which Theorem 0.1 appeared. They also thank Prof. S. Yasuda to whose
advice they owe §11. We have special thanks to A. Goto who pointed out some crucial
misunderstanding of the authors.
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1 The lemniscate sine and cosine function
The inverse function u 7→ t of

t 7→ u =

∫ t

0

dt√
1− t 4

=
∞∑

n=0

(−1)n
(
− 1

2

n

)
t 4n+1

4n+ 1
= t+ · · ·

is called the lemniscate sine function, which is denoted by t = sl(u) and is expanded as

sl(u) = u− 1

10
u5 +

1

120
u9 − 11

15600
u13 + · · · =

∞∑
n=0

Cn u
n

with Cn in Q. Then we have Cn = 0 if n 6≡ 1 mod 4 and n!Cn belongs to Z. It is an
elliptic function whose period lattice is Ω = (1− i)ϖZ[i], where

(1.1) ϖ = 2

∫ 1

0

dt√
1− t 4

=

∫ ∞

1

dx

2
√
x3 − x

= 2.62205 · · · .

The divisor of sl(u) modulo Ω is given by

div(sl) = (0) + (ϖ)−
(

ϖ

1 + i

)
−
(

iϖ

1 + i

)
.

Throughout this paper, we denote

φ(u) = sl ( (1− i)ϖu ) .

The lemniscate cosine cl(u) is defined by

cl(u) = sl
(
u+

ϖ

2

)
.

Moreover, we use the notation

ψ(u) = cl ((1− i)ϖu) .
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Then both of functions φ(u) and ψ(u) have period lattice Z[i] of C. We define the
Dn’s by the expansion of cl(u) as

(1.2) cl(u) =
∞∑

n=0

Dn u
n = 1− u2 +

1

2
u4 − 3

10
u6 +

7

40
u8 − · · · .

Then, Dn = 0 for odd n and n!Dn is in Z.

2 The ray class field
We take a rational prime ℓ ≡ 1 mod 4, and we fix its decomposition ℓ = λλ in Z[i]

with λ ≡ 1 mod (1 + i)3. We fix a subset S of Z[i] (sometimes called a 1/4-set) such
that (Z[i]/(λ))

× ' S ∪ −S ∪ iS ∪ −iS, |S| = (ℓ− 1)/4. Moreover we define

(2.1)

Λ = φ
(
1
λ

)
, Oλ = “ the ring of integers in Q(i, Λ) ” ,

λ̃ = γ(S)−1
∏
r∈S

φ
(
r
λ

)
,

where


{±1, ±i} 3 γ(S) ≡

∏
r∈S

r mod λ if ℓ ≡ 5 mod 8,

{±i} 3 γ(S)2 ≡
∏
r∈S

r2 mod λ if ℓ ≡ 1 mod 8.

Here, we have ± sign ambiguity of γ(S) in the case of ℓ ≡ 1 mod 8. In any case, we
know (see for example p.106 of [A] or Lemma 1.11 in [O]) that

(2.2) Λ ∈ Oλ, (Λ)ℓ−1 = (λ), λ̃4 = −λ.

Note that Q(i, Λ) is the ray class field over Q(i) of conductor ((1+ i)3λ) (see Takagi
[T], §32, for instance).

Throughout this paper, we fix the identification

(2.3) Z[i]λ ' Zℓ,

where the left hand side is the λ-adic completion of Z[i]. Moreover, we consider they
are subrings of the algebraic closure Qℓ of Qℓ. We use the following notation. For
any element α in the integer ring Zℓ of Qℓ, we denote the ℓ-adic order by ord. For
example, for α in Z[i]λ, ord(α) = n if and only if λn divides α but λn+1 does not.

3 Asai’s theory
In this section we recall the results from [A] in order to go to the rest cases smoothly.
We assume here ℓ ≡ 13 mod 16 for simplicity. For the other cases, see [A]. We put
χ

λ
(r) =

( r
λ

)
4
. In this case, the elliptic Gauss sum is defined by

egs(λ) =
∑
r∈S

χ
λ
(r)φ

( r
λ

)
.

Since the terms of this summation are algebraic integers, so is egs(λ).
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Theorem 3.1. ([A]) There exists an odd Aλ in Z such that

egs(λ) = Aλ λ̃
3,

where λ̃ is defined by (2.1). In particular, egs(λ) 6= 0.

Remark 3.2. (1) This theorem is proved by using the functional equation for
the Hecke L-series corresponding to the suitable Hecke character associated to χ

λ
and

the formula of Cassels-Matthews (see [M]) for the classical quartic Gauss sum which
appears as the root number of the functional equation. It is expected to have another
proof of the formula of Cassels-Matthews if we get a part of BSD conjecture including
the parity of the order of the corresponding Tate-Shafarevich group.
(2) We call Aλ the coefficient of egs(λ) according to [A].

We recall the corresponding Hecke L-series. Still we are assuming ℓ ≡ 13 mod 16.
Taking { 1, i } as a set of complete representatives of

(
Z[i]

/
(1 + i )2

)×, we define

χ0(α) = ε2 for α ≡ ε mod (1 + i)2, ε ∈ { 1, i }, χ̃((α)) = χ
λ
(α)χ0(α)α.

Then χ̃ is a Hecke character of conductor
(
(1 + i)2λ

)
. Now we have the following

expression given by Asai [A] for the central value of the corresponding Hecke L-series.

Theorem 3.3. We have L(1, χ̃) = −ϖ (1− i)−1χ
λ
(2)λ−1 egs(λ).

Searching an elliptic curve whose conductor is the square of that of χ̃ (see [ST],
Theorem 12), we see that the elliptic curve corresponding to L(s, χ̃) is

(3.4) E−λ : y2 = x3 + λx, (λλ = ℓ ≡ 13 mod 16 ).

Deuring [D] showed that

(3.5) LE−λ/Q(i)(s) = L(s, χ̃)L(s, χ̃ ).

Especially, if ℓ ≡ 13 mod 16, then rank E−λ (Q(i)) = 0, which is shown by Theorems
3.1, 3.3, and Coates-Wiles theorem in [CW]. Moreover, we recall the following result
from [O].

Proposition 3.6. If the full statement of BSD conjecture for the curve E−λ is
true, then # X

(
E−λ/Q(i)

)
= Aλ

2.

4 Some congruence on the coefficients of elliptic Gauss sums
The former part of the following theorem is proved in [O] and reproved a sophisticated
method as Lemma 8.4 later. Let Cn be the coefficient of uj defined by (1.1). Since(
3
4 (ℓ− 1)

)
!C 3

4 (ℓ−1) is in Z, − 1
4 C 3

4 (ℓ−1) is in Zℓ.

Theorem 4.1. ([O]) Assuming ℓ ≡ 13 mod 16, we have Aλ ≡ − 1
4 C 3

4 (ℓ−1) mod

ℓ. The absolutely minimal residue of the right hand side is exactly equal to Aλ.

The latter part of Theorem 4.1 follows from the former part and the following lemma
which is proved in §12.
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Lemma 4.2. For any ℓ = λλ ≡ 1 mod 4, we have |Aλ| < 1
2 ℓ.

Remark 4.3. Observing Kanou’s manmouth table, the behavior of | egs(λ) |
with respect to ℓ→ ∞ is quite small. Indeed, the estimation |Aλ| < ℓ1/4 is hopeful.

Joining Proposition 3.6 and Theorem 4.1 together, we have a natural generalization
of Hurwitz’ congruence in Theorem 0.1.

For the case of ℓ ≡ 5 mod 16, we have a similar story which is described in [A] and
[O]. The corresponding elliptic curve for this case is

(4.4) E 1
4λ

: y2 = x3 − 1
4λx, (λλ = ℓ ≡ 5 mod 16 ),

for which we have rank E 1
4λ

(Q(i)) = 0, and the corresponding congruence as (4.1). So,
from the next section, we proceed to the remaining case of ℓ ≡ 1 mod 8.

5 The foregoing researches in the case of ℓ ≡ 1 mod 8

From now on, we denote by ℓ a prime number satisfying ℓ ≡ 1 mod 8, and write ℓ = λλ

with λ ≡ 1 mod (1 + i)3. We define χ
λ
(ν) =

(ν
λ

)
4
. Then we see χ

λ
(i) = i

ℓ−1
4 =

(−1)
ℓ−1
8 . Using ψ(u) = cl ((1− i)ϖu), the elliptic Gauss sum in this case is defined by

egs(λ) =
∑

ν∈S∪iS

χ
λ
(ν)ψ

(
ν

λ

)
.

Remark 5.1. For the elliptic Gauss sum egs(λ) in this case which is defined
in the next section, Asai observed for examples in his Table (see Remark in p.115 of
[A]) that egs(λ) = 0, only if ℓ ≡ 1 mod 16 and χλ(1 + i) = 1, or ℓ ≡ 9 mod 16 and
χλ(1 + i) = −i. About 76% in the former case, and about 70% in the later case, of
examples in Table of [A], we have, indeed, egs(λ) = 0.

In this paper ε always denotes any element in µ4 = {1, −1, i, −i}. Recalling the
canonical isomorphism µ4

∼→
(
Z[i]/(1 + i)3

)×, we define the character χ0 by

χ
0
(α) = ε if α ≡ ε mod (1 + i)3 ( α ∈ Z[i], (1 + i) 6 |α ).

(Case 1) If ℓ ≡ 1 mod 16, χ
λ
(i) = 1, we define χ

1
= χ

λ
χ

0
and χ̃((α)) = χ

1
(α)α.

(Case 2) If ℓ ≡ 9 mod 16, χ
λ
(i) = −1, we define χ

1
= χ

λ
χ

0
and χ̃((α)) = χ

1
(α)α.

In any case, we see χ̃ is a Hecke character of conductor ((1 + i)3λ). Then, as in
[A], we have the following expression :

(5.2) L(1, χ̃) = (−1)
1
8 (ℓ−1)ϖχ

λ
(1 + i) 2−1λ−1 egs(λ).

Theorem 5.3. ([A]) Let ζ8 = exp(2πi/8). There exists Aλ in Z[ζ8] such that

(5.4) egs(λ) = Aλ λ̃
3
.

Here, Aλ is given by the table (5.6) below with some aλ in Z.
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This theorem is also proved by using the formula of Cassels-Matthew and the
functional equation of L(s, χ̃). In [A], it is observed by Asai that aλ is in 2Z, but any
proof of this is not known yet.

Searching the elliptic curve whose conductor is
(
(1 + i)3λ

)2, which is square of
that of χ̃ ([ST], Theorem 12), we see the Hecke L-series associated to egs(λ) is a factor
of the L-series of the elliptic curve

(5.5) Eλ : y2 = x3 − λx, (λλ = ℓ ≡ 1 mod 8 ).

We have the same equation as (3.5) for this case as well. The reduction type at (1+i) is
of type III, and one at λ is of type I2

∗. Each Tamagawa number τp and the coefficients
Aλ of egs(λ) is given as follows :

(5.6)

χ
λ
(1 + i) 1 −1 i −i

Aλ i
√
2 · aλ

√
2 · aλ ζ8 · aλ iζ8 · aλ

ℓ ≡ 1 mod 16 τ(λ) 2 2 2 2
τ(1+i) 4 4 2 2

Aλ iζ8 · aλ ζ8 · aλ i
√
2 · aλ

√
2 · aλ

ℓ ≡ 9 mod 16 τ(λ) 2 2 2 2
τ(1+i) 2 2 4 4

Remark 5.7. Assume aλ 6= 0 and the full statement of BSD conjecture true.
Then we have aλ ∈ 2Z and

(
1
2 aλ

)2
= # X(Eλ)

Recall the numbers Dn defined in (1.2). Since
(
3
4 (ℓ − 1)

)
!D 3

4 (ℓ−1) is in Z,
− 1

2D 3
4 (ℓ−1) is in Zℓ. We keep in mind that Z[ζ8] is an Euclidean ring. Using the

method of [O] and Lemma 4.2, the following is shown.

Theorem 5.8. Let λ̃0 be a prime lying above λ in Q(ζ8) such that γ(S) ≡∏
r∈S

r mod λ̃0. We have

Aλ ≡ −1

2
D 3

4 (ℓ−1) mod λ̃0,

where Aλ is given by the table (5.6). Furthermore, Aλ is the minimal residue in ζ8 Z[i]

of the right hand side with respect to the absolute norm.

6 An analogue of the congruent numbers
The following is well-known (see, for example, Koblitz’ book [K]).

Proposition 6.1. Let n be a rational integer. For the elliptic curve En2 : y2 =

x3 − n2x, the following three are equivalent each other :
(1) There exist u, v in Q such that n2 = u4 − v2 ;
(2) n is a congruent number ;
(3) rank En2(Q) > 0.
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The claim (1) is just a rewording of the definition of congruent number for n. The
equivalence of (2) and (3) is described as Proposition 18 in [K].

Lemma 6.2. Let A be a square-free integer in Z[i] not equal to 1 ± 2i. Then
there are only two torsion points (0, 0) and ∞ in the group of Q(i)-rational points on
the elliptic curve EA : y2 = x3 −Ax.

Proof. This proof is a slight modification of the argument in [N]. Since A is
square-free, the equation x3−Ax = 0 has only root x = 0 in Q(i). Thus the 2-torsion
subgroup of Q(i)-rational points of EA is generated by (0, 0). Let (a, b) be a Q(i)-
rational point of EA. The x-coordinate of [1 + i](a, b) is x1+i =

(
b

(1+i)a

)2. Therefore,
x-coordinate of any point in [1 + i]EA(Q(i)) is square. Assume (a, b) is of finite
order. Then a and b belong to Z[i] (see [N], p.14, Theorem 2 or [C], §11 and §12). If
(a, b) satisfies [2](a, b) = (0, 0), we have

(
a2+A
2b

)2
= 0 on the x-coordinate, and hence

a2 = −A. It does not occur because A is square-free. Hence there does not exist any
Q(i)-rational point of order divided by 4. Assume that (a, b) is a Q(i)-rational point of
odd order. Since EA(Q(i))/[1 + i]EA(Q(i)) is an abelian group of exponent two, (a, b)
is in [1 + i]EA(Q(i)). Thus a is square in Z[i]. Since [1 + i](a, b) is of odd order and
x1+i is in Z[i], we have a | b and 1+ i | b. As a is square and b2 = a(a2 −A), we have
a = f2, b = f2g, a2 − A = f2g2 for some f , g in Z[i]. Since −A = f2(g2 − f2) and
A is square-free, f2 is unit. Thus we have f2 = ±1. Furthermore, [2](a, b) is of odd
order and x2 is in Z[i], we have 2b | a2 + A. Since f2 is unit, we have 2g | 2f2 − g2.
Thus we have 1 + i | g and g

1+i

∣∣ f2. Since f2 is an unit, g is equal to 1 + i up to
unit. Therefore we have A = 1± 2i, the exceptions of this lemma. This completes the
proof.

Remark 6.3. In the exceptional two cases of A = 1±2i of 6.2, we see the groups
of Q(i)-rational points of the curves are of rank 0 because the L-functions do not vanish
at 1 (see the proof of Lemma 2.11 (b) p.105, [A]). So that they are finite groups due
to [CW]. MAGMA says that the groups are of order 10 generated by (1± 2i, −1± 3i) for
each values A = 1± 2i, respectively.

We prove the following analogue of Proposition 6.1.

Proposition 6.4. Let λ be any Gaussian prime of degree 1 satisfying λ ≡ 1 mod

(1 + i)3. The following three statements are equivalent :
(1) There are infinitely many Q(i)-rational points on Eλ, namely, rank Eλ (Q(i)) > 0;
(2) The prime λ is of the form −α4 + β2i with α, β ∈ Q(i);
(3) The prime λ is of the form u4 − v2 with u, v ∈ Q(i).

Proof. (2)⇒(1). For the given expression λ = −α4 + β2i, we see (α2i, αβ) is a
Q(i)-rational point of infinite order on the curve Eλ because of Lemma 6.2 and

(α2i)3 − λ(α2i) = (α2i)3 − (−α4 + β2i)α2i = (αβ)2.



Arithmetic on a Certain Family of Elliptic Curves 9

(3)⇒(1). This is proved similarly. Indeed, if λ = u4 − v2, then (x, y) = (u2, uv) is a
point of infinite order on Eλ(Q(i)) because of x3−λx = u6−(u4−v2)u2 = (uv)2 = y2.
(1)⇒(3). Lemma 6.2 implies that the set of torsion points of Eλ(Q(i)) is {(0, 0),∞}.
We note that λ 6= 1 ± 2i, i.e. not an exceptional prime, since 1 ± 2i 6≡ 1 mod (1 + i)3.
So we assume there exists a non-torsion point (a, b), namely b2 = a3 −λa, with a, b in
Q(i). The duplication [2](a, b) is given by( (a2 + λ)2

4b2
,
a6 − 5λa4 − 5λ2a2 + λ3

8b3

)
.

We define u =
a2 + λ

2b
( 6= 0), v =

a4 − 6λa2 + λ2

4b2
. Then the point (u2, uv) is on the

curve, and λ = u4 − v2.
(1)⇒(2). This proof is given by 2-descent, which is a modification of the proof of
Proposition 1.4 in Chapter X, [Si]. We put

Tλ = { b ∈ Q(i)×/(Q(i)×)2
∣∣ ordπ(b) ≡ 0 mod 2 for all prime π 6 |λ }.

This is a subgroup of Q(i)×/(Q(i)×)2 of order four generated by i and λ. There is a
homomorphism

(6.5) Eλ(Q(i)) → Tλ defined by (x, y) 7→


x if x 6= 0,

λ if x = 0,

1 if x = ∞.

Indeed, if we put (x3, y3) = (x1, y1) + (x2, y2) which is an addition on Eλ, and

m =

{
(y1 − y2)/(x1 − x2) if x1 6= x2,

(3x21 − λ)/(2y1) if x1 = x2,

we have x1x2x3 = (−mx1 + y1)
2. Hence, x3 ∈ x1x2

(
Q(i)×

)2 if x1x2 6= 0. If x2 6= 0

and x1 = 0, we have

x3 =
( y2
x2

)2
− x2 =

−λx2
x22

∈ λx2
(
Q(i)×

)2
because of m2 = x1+x2+x3, so that (6.5) is a homomorphism. We show that the kernel
of (6.5) is [1+i]Eλ(Q(i)). Let (x1, y1) be a point in Eλ(Q(i)) and (x2, y2) = [i](x1, y1).
Then the first coordinate of (x3, y3) = (x1, y1) + (x2, y2) = [1 + i](x1, y1) is

x3 =
( y1
(1 + i)x1

)2
∈ (Q(i)×)2.

Therefore [1+i]Eλ(Q(i)) is contained in the kernel. Conversely, suppose [1+i](x1, y1) is
in Eλ(Q(i)) and its first coordinate

(
y1

(1+i)x1

)2 is in (Q(i)×)2. Then m = y1/((1+i)x1)

is in Q(i)×. On the other hand, since the second coordinate

y3 = −m3 − 1 + i

2
y1

of [1+i](x1, y1) is in Q(i)×, y1 belongs to Q(i)×, and x1 is also in Q(i)×. Accordingly,
the kernel is contained in [1 + i]Eλ(Q(i)). Therefore the induced homomorphism

Eλ(Q(i))/[1 + i]Eλ(Q(i)) −→ Tλ
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is injective, so that bijective. Summing up, for a Q(i)-rational point (x, y) different
from (0, 0) and ∞, either x or the first coordinate of (x, y) + (0, 0) is of the form α2i

with non-zero α ∈ Q(i). We write one of the obtained points with such property as
(α2i, αβ). Then α2β2 = −α6i− λα2i. This means λ = −α4 + β2i and the proof has
been completed.

Remark 6.6. We shall give some remarks on Proposition 6.4.
(1) A prime λ of the form in (2) or (3) of Proposition 6.4 should be called a Gaussian

congruent number.
(2) In the examples in [A] each one of the statements (1), (2), and (3) of Proposition

6.4 is satisfied if and only if egs(λ) = 0.
(3) In the examples of [A] such that egs(λ) = 0, except λλ = 4817 ≡ 1 mod 16, we

can take α, β in the integer ring Z[i]. See Example 6.7 below.
(4) We summarize the situation as follows:

λ is of the form −α4 + β2i
Prop. 6.4⇐==========⇒ rank Eλ (Q(i)) > 0

BSD⇐==
Coates-Wiles
=======⇒ L (1, χ̃) = 0

Asai⇐==⇒ egs(λ) = 0.

(5) In the proof of (1) ⇒ (2), we show that Eλ(Q(i))/[1 + i]Eλ(Q(i)) is generated by
(0, 0) and at most one non-torsion point. Thus the Z[i]-rank of Eλ(Q(i)) is at
most one. If egs(λ) = 0, then Eλ(Q(i)) has Z[i]-rank one, that is, MW-rank two.

Example 6.7. Take λ = 41 + 56 i, ℓ = λλ = 4817 ≡ 1 mod 16. Then for

u =
−7i(2 + i)(4 + i)

3(1 + 2i)(2 + 3i)
, v =

−(1 + i)5(3 + 2i)(7 + 8i)(6 + 11i)

32(1 + 2i)2(2 + 3i)2
,

we see λ = u4 − v2 and that P = (u2, uv) is a point of infinite order. This is given
by using MAGMA. It also says that the Mordell-Weil rank of Eλ is 2. We know another
rational point by MAGMA as follows. Let

α =
i(1 + 2i)(2 + 3i)

3
, β =

i 7(1 + i)(2 + i)(4 + i)

32
.

Then λ = −α4 + β2i and Q = (α2i, αβ) is in Eλ(Q(i)) and P = [1 + i]Q. We do
not know the point Q generates how much part of the MW-group.

7 Vanishing EGS and Kummer-type congruence
We rewrite the expansion (1.2) of cl(u). Namely, we define Gn in Z by

cl(u) =

∞∑
n=0

Gn
un

n!
= 1− 2

u2

2!
+ 12

u4

4!
− 216

u6

6!
+ 7056

u8

8!
− 368928

u10

10!
+ · · · .

Of course Gn = n!Dn. We denote by Hℓ the Hasse invariant of y2 = x3 − x at
ℓ (≡ 1 mod 4), namely,

Hℓ = λ+ λ ≡ (−1)(ℓ−1)/4

( ℓ−1
2

ℓ−1
4

)
mod ℓ.

Our main result is the following theorem.
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Theorem 7.1. The following three statements are equivalent :
(1) egs(λ) = 0 ;
(2) ℓ

∣∣ G 3
4 (ℓ−1) ; (This is a special case of (3).)

(3) For any integers a and n satisfying n>a ≥ 0, n + a(ℓ − 1) ≤ ℓ(ℓ − 1), and n ≡
3
4 (ℓ− 1) mod (ℓ− 1), it holds that

a∑
r=0

(
a

r

)
(−Hℓ)

a−r Gn+r(ℓ−1)

n+ r(ℓ− 1)
≡ 0 mod ℓ a+1.

Remark 7.2. (1) The conditions on a and n in Theorem 7.1(3) imply a < ℓ−1.
(2) Since the least ℓ with egs(λ) = 0 is 89, we need to calculate up to G7810, where
7810 = 3

4 (89 − 1) + (89 − 1)2, in order to observe the case a ≥ ℓ − 1, which is quite
difficult because of limitation of capacity of a computer.

8 ℓ-adic explicit formula of an elliptic Gauss sum
Recall our identification of Z[i]λ and Zℓ. As we treat a plenty of power series in Zℓ[[x]]

in this paper, we summarize convention on notation here. Let f(x) and g(x) be power
series in Zℓ[[x]]. For a rational number a in Q, we write

f(x) ≡ g(x) mod λa

if all the coefficients of the terms in f(x) − g(x) have ℓ-adic order at least a. For a
positive integer m, we write

f(x) ≡ g(x) mod degm

if f(x)− g(x) belongs to xm Zℓ[[x]]. Moreover, we write

f(x) ≡ g(x) mod degm, mod λa

if all the coefficients of the terms of degree less than m in f(x) − g(x) have ℓ-adic
order at least a. From now on, the number

d =
3

4
(ℓ− 1)

appears frequently. Taking a primitive (ℓ− 1)-th root ζ of 1 in Zℓ, we define

(8.1) Cl(u) =
1

2

ℓ−2∑
j=0

ζ−dj cl(ζju).

Then we have

Cl(u) =
ℓ− 1

2

∞∑
a=0

Gd+a(ℓ−1)
ud+a(ℓ−1)

(d+ a(ℓ− 1))!
.

Thus Gd+a(ℓ−1)/(d+a(ℓ−1)) is the coefficient of the term un/n! with n = d+a(ℓ−1)−1

in the power series expansion of 2
ℓ−1 Cl(u)/u.
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For a proof of Theorem 7.1, we give an ℓ-adic explicit formula of egs(λ) by using
the Lubin-Tate formal group.

Let LT(x, y) be the Lubin-Tate formal group over Zℓ corresponding to the λ-
plication [λ]LT(x) = λx+xℓ. Then non-zero points of the group LT[λ] of the λ-division
points are roots of λ + xℓ−1 = 0. Let f0(x) be the formal logarithm of LT(x, y). It
follows from [λ]LT(x) = f0

−1(λf0(x)) ≡ xℓ mod λ that λf0(x) ≡ f0(x
ℓ) mod λ by

Lemma 4.2 of Honda [Ho]. Namely, LT(x, y) is of type λ − T . Let ŝl (x, y) be the
formal group defined by

ŝl (x, y) = sl(sl−1(x) + sl−1(y)).

By the definition of ŝl (x, y), the λ-plication [λ]ŝl(x) satisfies

[λ]ŝl ◦ sl(x) = sl(λx).

Thus [λ]ŝl(x) is equal to the λ-plication of x = sl(u). We have

(8.2) [λ]ŝl(x) = x
ℓ−1∏
a=1

(
x− φ

(a
λ

))/ ℓ−1∏
a=1

(
1− φ

(a
λ

)
x
)
,

which is Example 2.6 in [A], p.101. Especially, Λ is a point of the group ŝl [λ] of
λ-division points. It is well-known (see for instance, Proposition 8.2 of [Le] or Theorem
1.28 in [O2] which gives another proof by using the relation ℘(u) = sl(u)−2 ), but is
shown also by using (8.2) that

[λ]ŝl(x) ≡ xℓ mod λ.

Hence, the formal group ŝl (x, y) is of type λ − T as well. Since the formal group
LT(x, y) is of the same type λ− T , there exists the unique strong isomorphism ι over
Zℓ from LT(x, y) to ŝl (x, y). Namely, there uniquely exists ι(x) in Zℓ[[x]] such that

ι
(
LT(x, y)

)
= ŝl

(
ι(x), ι(y)

)
, ι(x) ≡ x mod deg 2.

Then there exists η of the group LT[λ] of λ-division points of LT(x, y) such that

Λ = φ(1/λ) = ι(η).

We recall that ηℓ−1 = −λ (see (2.2)). Since

cl(u) = ϕ ◦ sl(u), where ϕ(x) =

√
1− x2

1 + x2
,

we have
ψ(1/λ) = ϕ ◦ ι(η).

We note that ϕ(x) is in Zℓ[[x]].
Taking a primitive (ℓ− 1)-th root ζ of 1 in Zℓ, we define

Sl(u) =
1

4

ℓ−2∑
j=0

ζ−dj sl(ζju).
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Then we have

Sl(u) =
ℓ− 1

4

∞∑
a=0

Cd+a(ℓ−1)u
d+a(ℓ−1)

as well as
Cl(u) =

ℓ− 1

2

∞∑
a=0

Dd+a(ℓ−1)u
d+a(ℓ−1).

Lemma 8.3. (1) If ℓ ≡ 5 mod 8, the equation egs(λ) = (Sl ◦ f0)(η) holds.
(2) If ℓ ≡ 1 mod 8, the equation egs(λ) = (Cl ◦ f0)(η) holds.

Proof. It follows from [ζ]ŝl(x) = sl(ζ sl−1(x)) ∈ Zℓ[[x]] that Sl ◦ sl−1(x) is in
Zℓ[[x]], and from sl−1◦ ι(x) = f0(x) that Sl ◦ f0(x) is also in Zℓ[[x]]. Since cl(u) =

ϕ ◦ sl(u) and ϕ(x) is in Zℓ[[x]], we see cl(ζsl−1(x)) = ϕ ◦ [ζ]ŝl(x) is in Zℓ[[x]]. Hence,
Cl ◦ f0(x) is in Zℓ[[x]]. For α in Z[i] coprime to λ, α ≡ ζj mod λ for some j.
Then φ(α/λ) = [α]ŝl(Λ) = [ζj ]ŝl(Λ). Since Λ = ι(η) and sl−1◦ ι(x) = f0(x), we have
φ(α/λ) = (sl ◦ ζj sl−1)(Λ) = (sl ◦ ζjf0)(η) . We also have ψ(α/λ) = (cl ◦ ζjf0)(η). Since
χλ(α) = χλ(ζ

j) = ζ−dj , we have

egs(λ) =
1

4

ℓ−1∑
α=1

χλ(α)φ
(α
λ

)
= (Sl ◦ f0)(η)

in the case of ℓ ≡ 5 mod 8, and

egs(λ) =
1

2

ℓ−1∑
α=1

χλ(α)ψ
(α
λ

)
= (Cl ◦ f0)(η)

in the case of ℓ ≡ 1 mod 8. This completes the proof of Lemma 8.3.

Lemma 8.4. (1) If ℓ ≡ 5 mod 8, it holds that

egs(λ) ≡ ℓ− 1

4
Cd η

d mod ηℓ.

(2) If ℓ ≡ 1 mod 8, it holds that

egs(λ) ≡ ℓ− 1

2
Dd η

d mod ηℓ.

Proof. Since λf0(x) = f0◦[λ]LT = f0(λx+x
ℓ), we have λf0(x) ≡ f0(λx) moddeg ℓ.

Thus we have f0(x) ≡ x moddeg ℓ and

Sl ◦ f0(x) ≡ Sl(x) ≡ ℓ− 1

4
Cd x

d mod deg ℓ.

Similarly we have

Cl ◦ f0(x) ≡ Cl(x) ≡ ℓ− 1

2
Dd x

d mod deg ℓ.

Since Sl ◦ f0(x) and Cl ◦ f0(x) belong to Zℓ[[x]], the assertion follows.
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Proof of Theorem 5.8. Because of λ̃ = γ(S)−1
∏
r∈S

φ(r/λ) ≡ η
ℓ−1
4 mod η

ℓ−1
4 +1

and egs(λ) = Aλλ̃
3, Lemma 8.4 implies

Aλ ≡ −1

2
Dd mod η

ℓ−1
4 +1.

Since both sides belong to Z[ζ8], we have the assertion of Theorem 5.8.

9 Application of the Hochschild formula
In this section, we use the following formula known as the Hochschild formula. For a
proof of this formula, see Matsumura [Ma], p.197, Theorem 25.5.

Lemma 9.1. Let R be a commutative ring of characteristic ℓ. Let δ be a
derivation over R. Then, for any element b in R, we have

(bδ)ℓ = bℓδℓ + ((bδ)ℓ−1(b)) · δ.

We put u = f0(x). By the definition of Hℓ, we have (λ−T )(λ−T ) = ℓ−HℓT +T 2.
Since λ−T is a unit in Zℓ[[T ]], any formal group over Zℓ of type λ−T is also of type
ℓ−HℓT + T 2.

Lemma 9.2. Let ϕ(x) be a power series in Zℓ[[x]]. Then

(9.3)
(( d

du

)ℓ
−Hℓ

d

du

)
ϕ(x) ∈ ℓZℓ[[x]].

Proof. Since du/dx = f0
′(x) is in Zℓ[[x]]

×, d
du = dx

du
d
dx is a derivation on Zℓ[[x]].

Since LT(x, y) is of type ℓ−HℓT + T 2, there exists h(x) in Zℓ[[x]] such that

ℓf0(x)−Hℓf0(x
ℓ) + f0(x

ℓ2) = ℓh(x).

This yields that
f0

′(x)−Hℓf0
′(xℓ)xℓ−1 ≡ h′(x) mod ℓ.

Differentiating this ℓ− 1 times by x, we have

f0
(ℓ)(x)−Hℓf0

′(xℓ)(ℓ− 1)! ≡ h(ℓ)(x) mod ℓ.

By (ℓ− 1)! ≡ −1 mod ℓ, f0′(x) in Zℓ[[x]], and h(ℓ)(x) ≡ 0 mod ℓ, we have

(9.4) f
(ℓ)
0 (x) +Hℓ(f0

′(x))ℓ ≡ 0 mod ℓ.

Let ϕ(x) be a power series in Zℓ[[x]].

0 ≡
(
d

dx

)ℓ
ϕ(x) ≡

(
du

dx

d

du

)ℓ

ϕ(x) mod ℓ.

By using the Hochschild formula (Lemma 9.1), we have

0 ≡
(
du

dx

)ℓ
dℓϕ

duℓ
+

(
du

dx

d

du

)ℓ−1
du

dx
· dϕ
du

≡
(
du

dx

)ℓ
dℓϕ

duℓ
+
dℓu

dxℓ
· dϕ
du

mod ℓ.

Thus we have
dℓϕ

duℓ
+

(
du

dx

)−ℓ
dℓu

dxℓ
· dϕ
du

≡ 0 mod ℓ.
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By (9.4) we have

(9.5)
dℓϕ

duℓ
−Hℓ

dϕ

du
≡ 0 mod ℓZℓ[[x]].

This completes the proof of Lemma 9.2.

Let c be a non-negative integer. Let ϕ(x) be any element in ℓc Zℓ[[x]]. We define
the expansion of ϕ ◦ sl(u) by

ϕ ◦ sl(u) =
∑
k≥0

bk
k!
uk (bk ∈ Qℓ).

We denote

Ωℓ =

(
d

du

)ℓ

−Hℓ
d

du
.

For any non-negative integer a, we see Ωℓ
a ϕ(x) in ℓa+c Zℓ[[x]] by (9.5). Since

Ωℓ
a

(∑
k≥0

bk
k!
uk
)

=
∑
k≥0

(
a∑

r=0

(
a

r

)
(−Hℓ)

a−r bk+a+r(ℓ−1)

)
uk

k!
∈ ℓa+c Zℓ[[x]] ⊂ ℓa+c Zℓ〈〈u〉〉,

we have

(9.6)
a∑

r=0

(
a

r

)
(−Hℓ)

a−r bk+a+r(ℓ−1) ≡ 0 mod ℓa+c.

10 Proof of the main theorem
We prove the implications (1) ⇒ (3) ⇒ (2) in Theorem 7.1.

Proof of (3) =⇒ (2) of Theorem 7.1. Plugging a = 0 and n = d in (3) of Theorem
7.1, we have

Gd

d
≡ 0 mod ℓ,

which is (2) in Theorem 7.1.

Lemma 10.1. If egs(λ) = 0, then (Cl ◦ f0)(x)/(λx+ xℓ) is in Zℓ[[x]].

Proof. Assume egs(λ) = 0 and put (Cl ◦ f0)(x) =
∑∞

n=0 bnx
n with bn in Zℓ.

Then, (Cl ◦ f0)(η) =
∑∞

n=0 bnη
n = 0 by Lemma 8.3. Therefore,

(Cl ◦ f0)(x) =
∞∑

n=0

bnx
n −

∞∑
n=0

bnη
n = (x− η)

∞∑
n=1

bn
xn − ηn

x− η
∈ Zℓ[η][[x]]

because x− η divides xn − ηn. Similarly, any conjugate of x− η divides (Cl ◦ f0)(x)
and x divides (Cl ◦ f0)(x). Hence, the assertion follows.

The following two lemmas are formulated little stronger than for use in the proof
of implication from (1) to (3) in Theorem 7.1.

Lemma 10.2. Let ν be a positive integer. Assume egs(λ) = 0. If n < νℓ (ℓ−1),
then the coefficient in λν−1(Cl ◦ f0)(x)/f0(x) of xn belongs to ℓZℓ.
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Proof. Since f0
′(x) is in Zℓ[[x]], it is seen that ξ−1f0(ξx) is in Zℓ[ξ][[x]] for any

ℓ-adic algebraic integer ξ with ord(ξ) = 1/(ℓ − 1) by calculating the ℓ-adic order of
each coefficients of its expansion. We put

g(x) =
λx+ xℓ

λf0(x)
=

λx+ xℓ

f0(λx+ xℓ)
.

Since ord(λξ
1
ℓ−1) = 1− 1/ℓ and ξ−1f0(ξx)/x is a unit in Zℓ[ξ][[x]],

g(ξ
1
ℓ x) =

ξ(λξ
1
ℓ−1x+ xℓ)

f0(ξ(λξ
1
ℓ−1x+ xℓ))

∈ Zℓ[ξ
1
ℓ ][[x]].

Thus the ℓ-adic order of the coefficient of xn of g(x) is greater than or equal to
−
⌊

n
ℓ(ℓ−1)

⌋
. Therefore, we see

λνg(x) ≡ 0 mod deg νℓ(ℓ− 1), modλ.

Thus, each coefficient of the terms of degree less than νℓ(ℓ− 1) in

λν−1Cl(u)

u
= λν−1 Cl ◦ f0(x)

f0(x)
=

Cl ◦ f0(x)
λx+ xℓ

· λνg(x)

is in ℓZℓ by Lemma 10.1.

Lemma 10.3. Assume that egs(λ) = 0. Let a, n, and ν be integers such that
n > a ≥ ν − 1 ≥ 0, n+ a(ℓ− 1) ≤ νℓ(ℓ− 1) and n ≡ d mod (ℓ− 1). Then it holds that

a∑
r=0

(
a

r

)
(−Hℓ)

a−r Gn+r(ℓ−1)

n+ r(ℓ− 1)
≡ 0 mod ℓa−ν+2.

Proof. We denote by ϕ(x) the sum of the terms in 2
ℓ−1 λ

ν−1(Cl ◦ f0(x))/f0(x) of
degree less than νℓ(ℓ−1) with respect to x. From Lemma 10.2, we see ϕ(x) in ℓZℓ[[x]].
Then the coefficient bk of uk

k! in the expansion of ϕ(x) with repect to u is given by

bk =

λν−1 Gk+1

k + 1
if k + 1 ≡ d mod (ℓ− 1) and k < νℓ(ℓ− 1),

0 if k + 1 6≡ d mod (ℓ− 1) and k < νℓ(ℓ− 1),

whereas we do not concern the other bks. Now, the last argument in the previous
section is applied for this ϕ(x) with c = 1. By using (9.6), for the integers a and n in
the statement, we have

(10.4) λν−1
a∑

r=0

(
a

r

)
(−Hℓ)

a−r Gn+r(ℓ−1)

n+ r(ℓ− 1)
≡ 0 mod ℓ a+1,

hence the desired congruence.

Proof of (1) =⇒ (3) of Theorem 7.1. Done by setting ν = 1 in Lemma 10.3.

Remark 10.5. (1) On the classical Bernoulli numbers, if b ≤ d, then

Bd

d
≡

Bd+mpb−1(p−1)

d+mpb−1(p− 1)
mod pb.
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Here the condition b ≤ d is essential. However, for any b, d, and m, it is known that

(10.6) (1− pd−1)
Bd

d
≡
(
1− pd+mpb−1(p−1)−1

) Bd+mpb−1(p−1)

d+mpb−1(p− 1)
mod pb.

Of course, the extra factors are no other than Euler p-factors of the Riemann ζ-function.
From this consideration we are interested in the following problem. Assuming egs(λ) =

0, does the congruence

(10.7)
Ge+mℓb(ℓ−1)

e+mℓb(ℓ− 1)
≡ Hℓ

mℓb · Ge

e
mod ℓ b+2

hold for any non-gegative integers m, b, and e with e ≡ d mod (ℓ− 1) or not? Namely,
there might be required no additional condition on b and e, which is suggested by the
fact that the Euler λ-factor of the Hecke L-function for E±λ is 1.
(2) On Kubota-Leopoldt p-adic L-function, it is fundamental that the special values
of the corresponding complex L-function is given by (generalized) Bernoulli numbers
and they satisfy (10.6) involving Euler p-factor of the complex L-series. However the
congruence (10.7) is a relation on the numbers which are not exactly the special values
but only their residues modulo some power of ℓ.

11 Central value of the Hecke L-function
In this section we refer to Koblitz [K]. We modify §5 and §6 of Chapter 2 in [K].

Put O = Z[i] and take β in O. Let χ̃ be a Hecke character of modulus (β) of
weight one. Namely, χ̃((ν)) = χ1(ν)ν, where χ1 is a character form (O/(β))× to C×

satisfying χ1(i) = i. We define the Hecke L-function by

L(s, χ̃) =
∑
a

χ̃(a)

Nas
=

1

4

∑
ν∈O

χ1(ν)ν

| ν |2s

=
1

4

∑
γ mod β

χ1(γ)
∑
α∈O

γ + αβ

| γ + αβ |2s
,

where a runs over the non-zero integral ideals of O and Na = # O/a is the norm of a.
We use a method which obtains the following classically known fact.

Theorem 11.1. The function defined by

Λ(s, χ̃) =

(
2π√
4N(β)

)−s

Γ(s)L(s, χ̃)

satisfies
Λ(s, χ̃) = C(χ̃) Λ(2− s, χ̃),

where C(χ̃) = −iβ−1
∑

λ mod β

χ1(λ) e
2πiRe(λ/β).

We do not need the result above itself but the following bi-product of its proof.
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Lemma 11.2. We have the estimation∣∣L(1, χ̃)∣∣ < 4

eπ/|β| − 1
.

Proof. First of all, we note that
(
2π/

√
4N(β)

)−s
= |β |s π−s because of |β | =√

N(β). We give an outline of proof which is divided into four steps.
(Step 1) We define

F (t, χ̃) =
1

4

∑
ν∈O

χ1(ν)νe
−πt| ν |2 .

Then, by using
∫ ∞

0

e−ctts
dt

t
= c−sΓ(s), we have

(11.3) π−sΓ(s)L(s, χ̃) =

∫ ∞

0

F (t, χ̃)ts
dt

t
.

(Step 2) The function F (t, χ̃) is rewritten

F (t, χ̃) =
1

4

∑
γ mod β

χ1(γ)
∑
α∈O

βα+γ e−πt |βα+γ|2

=
β

4

∑
γ mod β

χ1(γ)
∑
α∈O

α+
γ

β
e−πt|β|2|α+ γ

β |2

By using a vector in R2, we write the inner sum. For a given γ, we put γ
β = u1 + u2i

with u = (u1, u2) in Q2, α = m1 +m2i with m = (m1,m2) in Z2. Then we have∑
α∈O

α+
γ

β
e−πt |β|2|α+ γ

β |2 =
∑

m∈Z2

(m+ u) · (1, i) e−πt|β|2|m+u|2

=
∑

m∈Z2

(m+ u) · (1,−i) e−πt|β|2|m+u|2 ,

where · stands for the inner product. For u in R2 and w in C2, we define

θu(t) =
∑

m∈Z2

(m+ u) ·w e−πt|m+u |2 .

Setting w = (1,−i), we have, for u = (u1, u2) ∈ Q2 defined before depending on γ,

F (t, χ̃) =
β

4

∑
γ mod β

χ1(γ) θu(|β|2t).

(Step 3) For u in R2 and w in C2, we define

θu(t) =
∑

m∈Z2

m ·w e2πim·ue−πt|m |2 .

Then, we have (cf. [K], p.85, (5.16))

(11.4) θu(t) = − i

t2
θu
(1
t

)
.
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By using the functional equation (11.4), we prove that of F (t, χ̃).

F
( 1

|β |2t
, χ̃
)
=
β

4

∑
γ mod β

χ1(γ) θu

(1
t

)
=
β

4

∑
γ mod β

χ1(γ)(−it2)θu(t).

By the definition of θu(t), we calculate the right hand side.

F
( 1

|β |2t
, χ̃
)
=
β

4

∑
γ mod β

χ1(γ)(−it2)
∑

m∈Z2

m · (1,−i)e2πim·ue−πt|m |2

=
β

4
(−it2)

∑
m∈Z2

m · (1,−i)e−πt|m |2
∑

γ mod β

χ1(γ)e
2πim·u.

It follows from m · u = m1u1 +m2u2 = Re
(
(m1 −m2i)(u1 + u2i)

)
= Re

(
α γ

β

)
that the

sum inside is essentially Gauss sum and∑
γ mod β

χ1(γ) e
2πim·u = χ1(α)

∑
γ mod β

χ1(αγ) e
2πiRe(αγ/β)

= χ1(α)
∑

γ mod β

χ1(γ) e
2πiRe(γ/β) = χ1(α) iβ C(χ̃).

Since ∑
m∈Z2

m · (1,−i) e−πt|m |2 =
∑
α∈O

αe−πt|α |2 =
∑
α∈O

αe−πt|α |2

and χ̃(ν) = χ1(ν)ν,

(11.5) F
( 1

|β |2t
, χ̃
)
=
ββ

4
t2C(χ̃)

∑
α∈O

χ1(α)αe
−πt|α |2 = |β |2t2C(χ̃)F (t, χ̃).

(Step 4) From (11.3) we have

π−s Γ(s)L(s, χ̃) =

∫ ∞

0

ts F (t, χ̃)
dt

t

=

∫ 1
|β|

0

tsF (t, χ̃)
dt

t
+

∫ ∞

1
|β|

tsF (t, χ̃)
dt

t
,

in which the former integration is rewritten as∫ 1
|β|

0

tsF (t, χ̃)
dt

t
= |β |−2s

∫ ∞

1
|β|

v−sF
( 1

|β|2v
, χ̃
)dv
v

= |β |2−2sC(χ̃)

∫ ∞

1
|β|

v2−sF (v, χ̃)
dv

v

by replacing t = 1
| β |2v and dt

t = −dv
v . In the case of s = 1, we have

π−1L(1, χ̃) = C(χ̃)

∫ ∞

1
|β|

F (t, χ̃)dt+

∫ ∞

1
|β|

F (t, χ̃)dt.
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We put
L(s, χ̃) =

∞∑
m=1

bm
ms

(bm ∈ O).

Then we have

L(s, χ̃) =

∞∑
m=1

bm
ms

,

F (t, χ̃) =
∞∑

m=1

bme
−πmt,

F (t, χ̃) =
∞∑

m=1

bme
−πmt.

It follows from | bm | = | bm | that

|F (t, χ̃) | ≤
∞∑

m=1

| bm |e−πmt, |F (t, χ̃) | ≤
∞∑

m=1

| bm |e−πmt.

As |C(χ̃) | = 1, we see

π−1|L(1, χ̃) | ≤ 2

∫ ∞

1
|β|

∞∑
m=1

| bm |e−πmtdt = 2

∞∑
m=1

| bm |
πm

e−πm/| β |.

Multiplying by π on both sides and by using | bm | ≤ σ0(m)
√
m ≤ 2m, where σ0(m)

denotes the number of positive divisors of m (cf. [K], p. 96, Prob. 4 of p. 97), we have

|L(1, χ̃) | ≤ 4
∞∑

m=1

e−πm/| β | =
4e−π/| β |

1− e−π/| β | =
4

eπ/| β | − 1

as desired.

12 Estimate of the coefficients of elliptic Gauss sums
In this section we show (2) implies (1) in Theorem 7.1. At first we prove Lemma 4.2
whose proof has been reserved.

Proof of Lemma 4.2. Since 1/
(
eπ/|β| − 1

)
< |β|/π, we have

∣∣L(1, χ̃)∣∣ < 4× |β|/π.
For ℓ ≡ 1 mod 8 and the conductor (β) = ((1 + i)3λ), we see

4 · 2
√
2 · |λ|
π

>
∣∣L(1, χ̃)∣∣ = ϖ

1

2
|Aλ| |λ|−1 |λ| 34 = ϖ

1

2
|Aλ| |λ|−

1
4

from Theorem 5.3, (5.2), and Lemma 11.2. So that we have |Aλ| < (16
√
2/πϖ) |λ| 54 .

The right hand side is smaller than 1
2 ℓ for ℓ ≥ 97 because 97

3
8 = 5.55 · · · > 32

√
2

πϖ =

5.49 · · ·. For ℓ < 97, the inequality |Aλ| < ℓ/2 actually holds by the tables in [A].

Proof of (2) ⇒ (1) of Theorem 7.1. Assume that ℓ |Gd. Then by Lemma 8.4 we
have ℓ | egs(λ). By Theorem 5.2, we have λ̃0 |Aλ, where λ̃0 is the prime defined in
Theorem 5.8, and we see ℓ |aλ. On the other hand, by Theorem 5.3 and Lemma 4.2,
we have |aλ| ≤ |Aλ| ≤ ℓ/2. Thus we have aλ = Aλ = 0 and egs(λ) = 0.
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