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Frobenius-Stickelberger-Type Formulae for General Curves
Yoshihiro Onishi

Abstract. We generalize classical formula of Frobenius-Stickelberger (see (0) below) to the most general curve of type of Buchstaber-Enolskii-Leykin.

The original Frobenius-Stickelberger. For the curve y?+(uqx+u3)y = x>+ tox?+ LaX + g,
| | T x(m®) yu®) x2(u®) xy(u®) -
o (D441, M) HK]-a(u(l)—u(])) 1 x(@®) y@®) @) xy®) ---

H?:l a(u(j))” I . . . .

(n X n determinant),

i x(l:t(n)) y(lz.t(”)) xZ(;/l(n)) xy(;/t(n))

(x(u),y(u)) dx
where u = f .
oo 2y + X + U3

The curve. (d,q)is a given pair of integers with 0 < d < g, gcd(d,q) =1, and let

Foe ) =y + pry? L+ pa()y T+ -+ g (0 — pal).
where p(x) is a polynomial of x of degree I'%] and p,4(x) is monic. Coefficients are suitably
suffixed and denoted by 1:;s. We consider the non-singular complete curve defined by

G f(x,y) =0.

This has unique point co at infinity and of genus ¢ = (d_l)z(q_l).

Example : (d,q) = (3,4), y° + (u1x + 1a)y? + (Uox? + sx + 1g)y = x* + 13> + 116X + ioX + 1115,

Arithmetic parameter at co. There exists a local parameter ¢ of the form t = x?y” with
integers 4, b such that x and y are expanded in terms of ¢ with the coefficients in Z[{u j}].

Example: If (d,q) = (3,4), thent = x/y.
Symplectic homology base. {a;,f}i=1,. ¢ 1s a symplectic basis ot H1(¢', Z).

Weierstrass gap sequence at 0. Let {wqe(=29-1), Wo_1, **+, Wy, Wi (=1)} be the

sequence of Weierstrass gaps at oo in descending order.

Canonical base of the space of differential forms of 1st kind. Let
{a1d + b1 (=0), apd + byl (=d), azgd+bzq, ---

be the increasing sequence of Weierstrass non-gaps at co on €. Then!
{ } { x“lybldx( dx ) x“2yb2dx( v dx ) Xiylidx x*2yPedx }
a) , a) , e o p a) — — , — , o o0 , , o o0 ,
: ’ ¢ fy(x,]/) fy(x/y) f]/(x/ ]/) fy(x/y) f}/(xrl/)

, ﬂ]d + b]q, ...... }

- f]/(xr ]/)
form a basis of the space I'(%,Q!) of holomorphic 1-forms on . We simply denote

w=(wy, -+, Wg)

Differentials of the 2nd kind.
Using canonical isomorphism HY(%, C) = HO(%, dlii)nﬁ’(n-oo)) / dlii)nHO(%, ﬁ’(n-oo)), we
define intersection form * on this space as follows. For any @ and 7 in this space,

R o e o SB[

where ¢t p. is a regular polygon of the Riemann surface associated to 4. This prod-
uct is just the transported one from usual symplectic structure on H{(¥¢, Z) ® C under
HY(¢, €)= H'(¢, C)" = H (%, Z) ® C. Note that w; * w;j = 0.

We extend {wq, -, a)g} to a symplectic base

{a)]_l Tty C()g, 171/ Tty ng}
of H{(%, C) (i.e. w;* 1 j = 0jj, nj * n; =0) by requiring the following two conditions:

The conditions (Klein’s fundamental 2-form). The required conditions are

g
L IEDZTED) 422y o pingte o)
j=1

d
D The 2-form &(x,y;z, w) = wqi(x, y) dz(x — 2) Yy —w

(Klein’s fundamental 2-form) on ¢ X ¢, with (x,y) and (z,w) € €, is symmetric,
ie. §(x,y,z,w) =&z w;x,y), and
1
Q &x,yzw) €
(tp — t1)?

parameter of (x,y) and (z, w) on €, respectively.

+ Z[ulllty,t2]], where t; and tp are the arithmetic local

Though such choice of {1} is not unique, we chose the “simplest” one.

el o} ]

J

We set

[
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Period matrices.

Period lattice. Let A = w"Z8 + "' Z8 be the lattice of the periods with respect to {w }.

The Jacobian variety and standard embedding of the curve.

Let | = C&/A be the Jacobian variety of €, : € < | is the canonical embedding sending
oo to the origin of J, and « is the modulo A mapping C& — | = C8/A. Then k(%) is
a universal Abelian covering of €.

The stratification. Let Wl is the image of canonical map Sym”™(%) — ] sending the
n-tuple of the point co to the origin of J. Let @1 = wltl y [-1]Wl". Then we have the
following stratification :

o€ € =Sym'€ c Sym>€ C .- c Sym8~ ¢ c Symd¥

! ! L ! !
Oe€ 1(P) = W[l] C W[z] C eeeennn C W[g_l] C W[g]

| N N e I [

O olll - @k ~ ....... c ol < elsl=7=csa

Discriminant. Let

Ry = rsltx(rslty( £(x, v), 5o/ (), wslty(f(x, ), 5.1 (6, )
Ry = rslty(rsltx( f(x, ), 50 ), wsltal fx, ), 5 ()

where r1slt; is Sylvester’s resultant with respect to z. Then R is a perfect d-th power
Z|u]. We detfine D € Z[u] a d-th power root of R. D is called the discriminant of €.

}, R = gecd(Ry,Rp)  in Z[y]

2 in

Riemann constant. Regarding co on ¢ the base point of ¢, the Riemann constant

K = o'~ is written by o', 0" € (%Z/Z)g as w’'K =06=w'0 + "0 € %A. Note

that, in this case, the canonical class is K¢ = 2(¢ — 1)co because we can choose wlz% as a
y

representative of the class.

Coordinate of the whole space. C38 = {u = (U apgy Uiy _yyr =+ Uaoy))}-

Weight. We define wt(-) by taking Wt(u<w].>) = wj, wit(u ]-) = —7, wt(x) = —=d, wt(y) = —4.

IPlease do not confuse italic d with Roman d.

2Although this is very plausible, I do not have any proof.
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Definition of the sigma function.
Definition. The sigma function of € is an entire function on the space
CS = {1/[ = (M(wg>, u<wg_1>, AL M<w1>)} defined by

_ o', _ _
o(u) =c exp( — %tun’a)’ 1u) \9[5,](60' L o),

1 (det(w’))1/2
D/8\ (2m)8
Note that o(u) is independent of choice of {a;, §}.

where the theta series is usual one, ¢ = ,and T = 3.141592 - - ..

Properties of the sigma function.

Lemma.

2_1)(g2—
G 12)21 Y s odd or even integer,

D The function o(u) is an odd or even function according to
and has poles of order 1 along kL(@ls—1),
Q It satisfies the following translational relation :
o(u+€) = x(O)ouyexpLu+ 3¢, 8) forall €€ A,
where L(u, v'o’+0"w") = tu@'n’ +9"'n"") withu € C8, v’,v"” € RS,
and x(0) = exp (2mi (06" + 175" + Yeer)).
@ For P,Q, P, Q, 1£k<Q) on 6,

(LofLHLAELD ey
G(Lw_;ﬁorw)g(fmw—;fmrw) =1V JP,

The Galois action. Associating to the covering 4 — P! givenby (x, y) — x, we consider

the Galois group Gal(¢/ PL). We denote by [y] the action of y € Gal(%/ PL) on the space
[ylu =(0,0,---,0) for u e C3.

yeGal(€ /P?)

C$ induced from y. Then

Special derivative oy, (1) of o(u).
We define special multi-indices [ with respect to {wy, -+, wy, wy}. We shall explain the
definition of this by an example.

for (d,q) =3,5),¢=6,
(D write a ¢ X g table as follows,

For example, to get 2

@ line up the Weierstrass gaps {wg, - -+, Wy, w1} in the last column,

@ put into other boxes naturally increasing non-negative integers as follows,
@ extract (g —n) X (g —n) = 4 X 4 minor matrix in the lower right corner,

® remove all the rows and columns including 0.

©® Finally, read the numbers along off-diagonal.

6/ 789[10]|11
3/4/5/6/7 8
0/1/2/3/4|5 213145 2|3
0/1/2[3]4 1121314 |14
012 01 2
01 01
Then, we have
&2
i =(1,5) and op(u) = 041 5),(1) = ————o(u).
U(1)oU(5)

Moreover, let ff = ! and b =42

Functions x(u#) and y(u). We define x(u), y(u) for u € K_l(@[l]) = x L(¥) as the
(x,y)

coordinates (x,y) determined by u = f (w1, wp, -+, wy).

(0.0

Key Conjecture. (almostly a theorem)

Let I be a multi-index with respect to {wg, - -+, wp, w1}.
@D If wt(l) < wt(g") then op(u) =0 identically on k1@,
Q If wt(I) = wt(g") then the translational formula holds :
or(u+€) = x(€) or(u) exp L(u + %5, {) for uc K_l(@[n]) and € € A,

and or(u) is equal to an integer times Opn(1) on )

® For u € x 1@+l
Opr1(t) =0 & u € k1@l

@ For u=u®+---+u” e x 1 @O with u» e x 1O and v e x 1)),

we have

v > Oy (U + v)} - {v = [y]u" (modA)

vanishes forsome 1< j<n and y € Gal(¢/ P,  id.

® We have the expansion
Ghn+1(u +0) = Ghn(u)Ua)wg_”_(g_n)_'_l + O(U<1>wg_”_(g_n)+2)
with respect to vy for u € k1@ and v e x 1O,

Main results.
Theorem 1. Let n = 2 be an integer. For u® € x1(€) (1 £ i £ n), the following equality holds
if the “Key Conjecture” is valid :

O (U + u® + -+ + ") 1_[ 1_[ oy (u® + [y]u?)

<] yeGal(%¢/IP?)

#id | o
- — = =x (xa]j]'/bf)(u(i))‘. (x]'_'l)(u(i))‘ .
(Gﬁ(u(j))(d—l)(n—j)+1 1_[ Gﬁ([V]u(j))j_l) 1<ij<n L<iisn
j=1 yEGal(%/lPl)
y#id
Theorem 2. The “Key Conjecture” is proved for (d,s) = (2,”any”), (3,4), (3,5), (4,5), (5,6),
etcetera.

(Proc. Edinburgh Math. Soc., 48(2005)705-742, Internat. J. of Math., 20(2009)427-441, - - -)



