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Let ℘w(u) be the usual ℘-function of Weierstrass satisfying(
d
du
℘w(u)

)2
= 4℘w(u)

3 − g2 ℘w(u)− g3,

where g2 and g3 are constant complex numbers such that g2
3 − 27g3

2 ̸= 0. We shall put
suffix “w” to distinguish functions defined by Weierstrass from new functions redefined in
this paper. According to Weierstrass paper [7], his sigma function σw(u) is characterized by

σw(u) = u+O(u5), ℘w(u) = − d2

du2 log σw(u).

In [7], Weierstrass gave a recursion relation on the coefficients of power series expansion
σw(u) with respect to u as follows:

σw(u) =
∑
m,n

am,n

(
1
2
g2
)m

(2g3)
n u4m+6n+1

(4m+ 6n+ 1)!
,

a0,0 = 1, am,n = 0 if m < 0 or n < 0,

am,n = 3(m+ 1)am+1,n−1 +
16
3
am−2,n+1 − 1

3
(2m+ 3n− 1)(4m+ 6n− 1)am−1,n.

This recursion relation implies am,n ∈ Z[1
3
] for all (m,n). In other words, the power series

expansion of σw(u) with respect to u is of Hurwitz integral (see the definition in the next
page) over Z[1

3
, g2

2
, 2g3]. Actually, computing first several coefficients by using his recursion,

one finds that 1
3
seems to be unnecessary, namely,

am,n ∈ Z.

However, it is difficult to remove 1
3
by using his recursion relation. This was pointed out by

V. Buchstaber to the author.
On the other hand, the most general form defining any elliptic curve is

y2 + (µ1x+ µ3)y = x3 + µ2x
2 + µ4x+ µ6.

Here the coefficients µjs are assumed to be constant complex numbers, but they can be
replaced by indeterminates at the final stage of this paper. We denote the elliptic curve
defined by the equation above by E . Since Weierstrass theory seems to ignore on the places
at 2 and 3 of base rings, applying his theory on such places becomes often quite complicated
calculation. In this paper, we naturally redefine the Weierstrass sigma function, which is
rather directly associated with the elliptic curve E itself, and not with the function ℘w(u) for
g2, g3 of E .
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While exact relation between the two sigma functions is described in the last Section, the
new σ(u) coincides with σw(u) if and only if µ1

2 + 4µ2 = 0, where, in that case, the g2 and
g3 are given by

g2 = −(2µ3µ1 + 4µ4), g3 = −(µ3
2 + 4µ6).

The main result of this paper is to show the power series expansion of the new σ(u) is
of Hurwitz integral. More precisely, we show that the power series expansion of the square
σ(u)2 with respect to u is of Hurwitz integral over the ring Z[µ1, µ2, µ3, µ4, µ6], and that σ(u)
itself is of Hurwitz integral over Z[µ1

2
, µ2, µ3, µ4, µ6] (see Theorem 2.29). Especially, using

our result, we can easily show that the power series expansion of σw(u) is of Hurwitz integral
over Z[g2

2
, 2g3] (see Theorem 6.5).

The key of our result is the relation (see Lemma 2.31) between the sigma function and
the fundamental 2-form of Klein (defined by (1.34)). In the other part of this paper, we
treat only formal power series.

The method used in this paper seems not to be applicable for higher genus case. For
higher genus sigma functions, we can prove similar result by using Nakayashiki’s result [4].
However, since such general method is quite a big tool, the author decided to describe this
paper only by elementary method.

As an application of the obtained power series expansion, we give first several terms of
n-plication polynomial of E .

Our results might closely relate with the papers [1] and [2] by Mazur, Stein and Tate.
In [2], “p-adic sigma function” is defined only over a local field whose residue field is of
characteristic p not 2 and is replaced by the square of the sigma function if the defining field
has residue field of characteristic 2.

Conventions. As usual we denote by Z the ring of rational integers, and by C the field of
complex numbers. For an integral domain A and indeterminates z1, · · ·, zn, we denote by
A[[z1, · · · , zn]] the ring of formal power series of z1, · · ·, zn with coefficients in A. A formal
power series of the form

(0.1)
∑

z1≧0,··· ,zn≧0

ak1,··· ,kn
z1

k1 · · · znkn
k1! · · · kn!

(ak1,··· ,kn ∈ A)

is said to be of Hurwitz integral over A with respect to z1, · · ·, zn. We denote by

(0.2) A⟨⟨z1, · · · , zn⟩⟩

the ring of Hurwitz integral series over A with respect to z1, · · ·, zn.
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1 The Fundamental Differential Form

1.1 The most general elliptic curve

Let E be the elliptic curve defined by

(1.1) y2 + (µ1x+ µ3)y = x3 + µ2x
2 + µ4x+ µ6,

where the coefficients µjs are complex numbers such that this equation defines a non-singular
curve. Once our main result is established, these coefficients can be regarded as indetermi-
nates. In the sequel, we use the notations

(1.2)

f(x, y) = y2 + (µ1x+ µ3)y − (x3 + µ2x
2 + µ4x+ µ6),

fx(x, y) =
∂
∂x
f(x, y) = µ1y − (3x2 + 2µ2x+ µ4),

fy(x, y) =
∂
∂y
f(x, y) = 2y + (µ1x+ µ3).

We use

(1.3) t = −x/y

as a local parameter at the point ∞ at infinity on E , which is called the arithmetic parameter
of E .

Since we consider several kinds of variables for a function or formal power series, we must
distinguish them clearly. Especially, if we consider a function or a power series with variable
t, we denote the value of it at t by writing ⟨t⟩. For example, the x-coordinate of E is written
as x⟨t⟩. We regards the coordinate x as a function of another variable u later, which will be
denoted by x(u).

Using new function,

(1.4) s = 1/x,

the equation f(x, y) = 0 is changed to

(1.5) s = (1 + µ2s+ µ4s
2 + µ6s

3)t2 + (µ1s+ µ3s
2)t.

Using this recursively, we have

(1.6)
s = t2 + µ1t

3 + (µ1
2 + µ2)t

4 + (µ1
3 + 2µ2µ1 + µ3)t

5+

(µ1
4 + 3µ2µ1

2 + 3µ3µ1 + µ2
2 + µ4)t

6 + · · · .

By (1.6), we have

(1.7)
x⟨t⟩ = t−2 − µ1t

−1 − µ2 − µ3t− (µ3µ1 + µ4)t
2 − (µ3µ1

2 + µ4µ1 + µ2µ3)t
3 + · · · ,

y⟨t⟩ = −t−3 + µ1t
−2 + µ2t

−1 + µ3 + (µ3µ1 + µ4)t+ (µ3µ1
2 + µ4µ1 + µ2µ3)t

2 + · · · .

Here we note that all the coefficients belong to Z[µ]. Let define a weight that is denoted by
wt by setting

(1.8) wt(x) = −2, wt(y) = −3, wt(µj) = −j.
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Then all the equations in this paper are of homogeneous weight.
The space of holomorphic one forms, that is differential forms of 1st kind, on E is spanned

by

(1.9) ω1(x, y) =
dx

fy(x, y)
=

dx

2y + µ1x+ µ3

.

Then we see

(1.10)
ω1(x, y) =

dx

2y + µ1x+ µ3

=
dx
dt
dt

2y + µ1x+ µ3

∈ (1 + tZ[1
2
,µ][[t]])dt,

ω1(x, y) = − dy

fx(x, y)
∈ (1 + tZ[1

3
,µ][[t]])dt,

so that

(1.11)
ω1(x, y) = (1 + µ1t+ (µ2 + µ1

2)t2 + (2µ1µ2 + 2µ3 + µ1
3)t3 + · · · )dt

∈ (1 + tZ[µ][[t]])dt.

1.2 The fundamental 2-form

For two variable points (x, y) and (z, w) on E , we define

(1.12) Ω(x, y, z, w) =
y + w + µ1z + µ3

x− z
ω1(x, y) =

(y + w + µ1z + µ3)dx

(x− z)(2y + µ1x+ µ3)
.

This has a pole of order 1 with residue 1 at (z, w) regarding as a form with variable (x, y)
and (z, w) fixed. Indeed, since (2w + µ1z + µ3) = fy(z, w) when (x, y) = (z, w), the residue
at (z, w) is 1, and the zeroes of numerator and denominator at (x, y) = (z,−w − µ1z − µ3)
is canceled. We denote by t′, namely by writing ′, the value such that x⟨t′⟩ = x⟨t⟩ different
from t. Then because of y⟨t⟩+ y⟨t′⟩ = −(µ1x⟨t⟩+ µ3), we see

(1.13)
t′ = −x⟨t

′⟩
y⟨t′⟩

=
x⟨t⟩

y⟨t⟩+ µ1x⟨t⟩+ µ3

= −t− µ1t
2 − µ1

2t3 + (−µ1
3 − µ3)t

4 + (−µ1
4 − 3µ3µ1)t

5 + · · · ∈ tZ[µ1, µ3][[t]].

By the first equality, we have

(1.14)

tt′ =
x⟨t⟩2

(y⟨t⟩+ µ1x⟨t⟩+ µ3)y⟨t⟩
=

x⟨t⟩2

x⟨t⟩3 + µ2x⟨t⟩2 + µ4x⟨t⟩+ µ6

=
1

x⟨t⟩(1 + µ2
1

x⟨t⟩ + µ4
1

x⟨t⟩2 + µ6
1

x⟨t⟩3 )

= 1
x⟨t⟩(1− µ2

1
x⟨t⟩ + · · · ).

Hence,

(1.15) 1
x⟨t⟩ = tt′ + µ2(tt

′)2 + · · · ∈ tt′ Z[µ][[(tt′)]].
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If we denote x1 = x⟨t1⟩, y1 = y⟨t1⟩, et cetera, then Weierstrass preparation theorem (see
Corollary 5.7 in the last section) implies that, in Z[µ][[t1, t2]],

(1.16) x2
−1 − x1

−1 = −(t1 − t2)(t1 − t2
′) p(t1, t2),

where (by executing an explicit calculation also)

(1.17)
p(t1, t2) = 1 + µ1t1 + µ2t2

2 + (µ2 + µ1
2)t1

2 + µ1µ2t2
3 + · · ·

∈ x1
−1/t1

2 + t2Z[µ][[t1, t2]].

The last equality is checked by setting t2 = 0. Moreover, we see

(1.18)

y1 + y2 + µ1x2 + µ3 = −x⟨t1⟩
t1

+
x⟨t2′⟩
t2

′

= −x⟨t1⟩
t1

+
x⟨t2⟩
t1

− x⟨t2⟩
t1

+
x⟨t2′⟩
t2

′

= − 1

t1
(x⟨t1⟩ − x⟨t2⟩)− x⟨t2⟩

( 1

t1
− 1

t2
′

)
and

(1.19)

x2

( 1

t1
− 1

t2
′

) 1

x2 − x1
=

−x1−1

x2−1 − x1−1

( 1

t1
− 1

t2
′

)
=

−x1−1

(t2 − t1)(t2
′ − t1) p(t1, t2)

( 1

t1
− 1

t2
′

)
=

−x1−1

(t2 − t1)(t2
′ − t1) (x1−1/t1

2 + “a series in t2 Z[µ][[t1, t2]]”)
t2

′ − t1
t1t2

′

=
−x1−1

(t2 − t1)t1t2
′ (x1−1/t1

2 + “a series in t2 Z[µ][[t1, t2]]”)

=
t1

(t2 − t1)t2
· t2
t2

′ ·
−x1−1/t1

2

(x1−1/t1
2 + “a series in t2 Z[µ][[t1, t2]]”)

.

Here we note that

(1.20) t2
′/t2 ∈ −1 + t2 Z[µ1, µ3][[t2]].

At the last part in (1.19), since x1
−1/t1

2 ∈ 1 + t1Z[µ][[t1]], we have

(1.21)

x2

( 1

t1
− 1

t2
′

) 1

x2 − x1
= −

( 1

t2 − t1
− 1

t2

)
(“a series in 1 + t2 Z[µ][[t1, t2]]”)

=
1

t2
− 1

t2 − t1
(“a series in 1 + t2 Z[µ][[t1, t2]]”)

+ (“a series in Z[µ][[t1, t2]]”).

Therefore,

(1.22)

y1 + y2 + µ1x2 + µ3

x2 − x1
=

1

t1
− x2
x2 − x1

( 1

t1
− 1

t2
′

)
=

1

t1
− 1

t2
+ (“a series in Z[µ][[t1, t2]]”)

+
1

t2 − t1
(“a series in 1 + t2Z[µ][[t1, t2]]”).
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Now let b⟨t1, t2⟩ ∈ Z[µ][[t1, t2]] be a series satisfying

(1.23)

(y1 + y2 + µ1x2 + µ3

x1 − x2
− 1

t1
+

1

t2

)
ω1⟨t1⟩

= Z[µ][[t1, t2]]ω1⟨t1⟩ −
1

t2 − t1
b⟨t1, t2⟩dt1.

Then

(1.24)
lim
t2→t1

x1 − x2
y1 + y2 + µ1x2 + µ3

1

t2 − t1
=

dx
dt
⟨t1⟩

2y1 + µ1x1 + µ3

= ω1⟨t1⟩/dt1.

So that

(1.25) b⟨t1, t1⟩ = 1.

Hence

(1.26) b⟨t1, t2⟩ ∈ 1 + (t2 − t1)Z[µ][[t1, t2]].

We describe this as a theorem:

Theorem 1.27. One has

(1.28)
(y1 + y2 + µ1x2 + µ3

x2 − x1
− 1

t1
+

1

t2

)
ω1⟨t1⟩+

dt1
t1 − t2

∈ Z[µ][[t1, t2]]dt1.

An explicit calculation shows that

(1.29)

(y1 + y2 + µ1x2 + µ3

x2 − x1
− 1

t1
+

1

t2

)
ω1⟨t1⟩+

dt1
t1 − t2

=
(
− µ2t1 − µ3t2t1

− (µ2µ1 + 2µ3)t1
2

− (2µ3µ1 + µ4)t2t1
2

− (µ3µ1 + µ4)t2
2t1

− (µ2µ1
2 + 4µ3µ1 + µ2

2 + 2µ4)t1
3

− (µ3µ1
2 + µ4µ1 + µ2µ3)t2

3t1

− (2µ3µ1
2 + 2µ4µ1 + µ2µ3)t2

2t1
2

− (3µ3µ1
2 + 2µ4µ1 + 2µ2µ3)t2t1

3

− (µ2µ1
3 + 6µ3µ1

2 + 2µ2
2µ1 + 4µ4µ1 + 6µ2µ3)t1

4 − · · ·
)
dt1.

By using Ω in (1.12), we define

(1.30) ξ(x, y; z, w) = d
dz
Ω(x, y; z, w)dz − ω1(x, y)η1(z, w).

Then, it is easy to check that the differential form of the 3rd kind

(1.31) η1(x, y) =
−xdx

2y + µ1x+ µ3
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is a unique form up to addition of a constant times ω1 that satisfies

(1.32) ξ(x, y; z, w) = ξ(z, w;x, y).

Its expansion with respect to t is given by

(1.33)
η1(x, y) = −t−2 − µ3t− (µ4 + 2µ1µ3)t

2 − (2µ1µ4 + 2µ3µ2 + 3µ1
2µ3)t

3 − · · ·
∈ −t−2 + tZ[µ][[t]].

Under the situation above, ξ in (1.30) is given by

(1.34) ξ =
F (x, y; z, w)dxdz

(x− z)2fy(x, y)fy(z, w)
,

where

(1.35)
F (x, y; z, w) = xz(x+ z) + (µ1

2 + 2µ2)xz + µ1(zy + xw)

+ (µ3µ1 + µ4)(x+ z) + 2yw + µ3(y + w) + µ3
2 + 2µ6.

1.3 The lattice of periods and Legendre relation

Let the pair of α and β be a basis of the fundamental group of E , and define

(1.36) ω′ =

∫
α

ω1(x, y), ω′′ =

∫
β

ω1(x, y),

We define

(1.37) Λ = Zω′ + Zω′′.

This is a lattice in C. We define also

(1.38) η′ =

∫
α

η1(x, y), η′′ =

∫
β

η1(x, y).

Then the Legendre relation

(1.39) ω′′η′ − ω′η′′ = 2πi

holds.
The space of differential forms of the 1st and the 2nd kinds with at most poles only at

∞ modulo the space of exact forms is naturally isomorphic to the 1st cohomology group
H1(E ,C). The intersection form on H1(E ,Z) naturally induces an intersection form on
H1(E ,C). The pair of two forms ω1 and η1 is a symplectic basis of H1(E ,C) with respect
to the induced intersection form1. The relation (1.39) is direct consequence from this fact.

1The author learned this fact from A.Nakayashiki.
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2 The sigma function

2.1 Construction of the sigma function

Here we construct σ(u) by a similar method as described in [8], pp.447-449.
We start at the following equation on C :

(2.1) u =

∫ (x,y)

∞
ω1,

where (x, y) is a variable point on E . Regarding the coordinates x and y as functions of u
on C and are denoted by

(2.2) u 7→ x(u), u 7→ y(u).

By this definition, we have

(2.3) x(−u) = x(u), y(−u) = y(u) + µ1x(u) + µ3

for ℓ ∈ Λ. Both of them has a pole only at u = 0 and expanded as

(2.4)
x(u) = u−2 − ( 1

12
µ1

2 + 1
3
µ2) + ( 1

240
µ1

4 + 1
30
µ2µ1

2 − 1
10
µ3µ1 +

1
15
µ2

2 − 1
5
µ4)u

2 + · · · ,
y(u) = −u−3 − 1

2
µ1u

−2 + ( 1
24
µ1

3 + 1
6
µ2µ1 − 1

2
µ3) + · · · .

The variable u is of weight 1 : wt(u) = 1.
For the variable u ∈ C and arbitrarily fixed u(0) ∈ C−Λ, there exists a function u 7→ ζ(u)

satisfying

(2.5)

∫ (x,y)

(x(0),y(0))

η1 = ζ(u)− ζ(u(0)).

Indeed, the derivative of the left hand side with respect to u is

(2.6) η1(x(u), y(u))
dx(u)
du

= x(u).

So that we can take ζ(u) as an integral of x(u) with respect to u. Note that ζ(u) is none
other than Weierstrass zeta function if µ1 = µ2 = µ3 = 0. Here we fix ζ(u) by the formal
integral un 7→ 1

n+1
un+1 (n ̸= −1) without constant term :

(2.7) ζ(u) =

∫
formal

x(u)du = u−1 − ( 1
12
µ1

2 + 1
3
µ2)u+ · · · .

As a Laurent series on C, this has positive radius of convergence, and has meromorphic
continuation to the whole complex plane. For any u ∈ C, there is unique pair of u′ and
u′′ ∈ R satisfying u = u′ω′ + u′′ω′′. Especially, for any lattice point ℓ ∈ Λ, we denote as
ℓ = ℓ′ω′ + ℓ′′ω′′. We define

(2.8) L(u, v) = u (v′η′ + v′′η′′)

for two variables u and v ∈ C.
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The left hand side of (2.5) increases ℓ′η′ + ℓ′′η′′ that is the period of η1 when the path of
the integral is added by an amount corresponding to ℓ ∈ Λ, namely,

(2.9) ζ(u+ ℓ) = ζ(u) + ℓ′η′ + ℓ′′η′′.

After integrating ζ(u), by taking exponential, we get the sigma function σ(u). In other
words, the sigma function is defined by

(2.10) − d

du
log σ(u) = ζ(u)

up to none zero multiplicative constant. This yields that σ(u) = 0 if and only if ζ(u) has
a pole, namely, u ∈ Λ. To fix the multiplicative constant, we suppose that its power series
expansion at the origin is of the form

(2.11) σ(u) = u+O(u2).

By (2.3), the sigma function is an odd function :

(2.12) σ(−u) = −σ(u).

From (2.9), we see

(2.13) σ(u+ ℓ) = c(ℓ)σ(u) exp
(
u(ℓ′η′ + ℓ′′η′′)

)
,

where c(ℓ) is a constant depending on ℓ. In this situation, for ℓ ∈ Λ, ̸∈ 2Λ, we see that
σ(1

2
ℓ) ̸= 0 and

(2.14) σ(1
2
ℓ) = −c(ℓ)σ(1

2
ℓ) exp

(
− 1

2
ℓ(ℓ′η′ + ℓ′′η′′)

)
.

Hence, using notation of (2.8)

(2.15) c(ℓ) = − exp
(
1
2
ℓ(ℓ′η′ + ℓ′′η′′)

)
= − expL(1

2
ℓ, ℓ).

Therefore

(2.16) σ(u+ ℓ) = −σ(u) expL(u+ 1
2
ℓ, ℓ) (ℓ ∈ Λ, ̸∈ 2Λ).

If ℓ ∈ 2Λ, after derivating both sides of (2.13) by u, the similar calculation shows that

(2.17) σ(u+ ℓ) = σ(u) expL(u+ 1
2
ℓ, ℓ) (ℓ ∈ 2Λ)

because σ(−1
2
ℓ) = 0. In order to unify these two cases, we define2

(2.18) χ(ℓ) = exp
[
2πi
(
1
2
ℓ′ + 1

2
ℓ′′ + 1

2
ℓ′ℓ′′
)]
.

Then we have

(2.19) σ(u+ ℓ) = χ(ℓ)σ(u) expL(u+ 1
2
ℓ, ℓ) (ℓ ∈ Λ).

2Note that χ is not a character on Λ.
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2.2 Solution to Jacobi’s inversion problem

We define3

(2.20) ℘(u) = − d2

du2 log σ(u).

The previous discussion implies that

(2.21) ℘(u) = x(u),

and this function is expanded as

(2.22) ℘(u) =
1

u2
+

∑
ℓ∈Λ,ℓ̸=0

( 1

(u− ℓ)2
− 1

ℓ2

)
− µ1

2 + 4µ2

12
.

This expansion is shown by (2.4) and the situation of zeroes of σ(u). If µ1 = µ2 = µ3 = 0,
this function is none other than Weierstrass ℘-function with g2 = −4µ4 and g3 = −4µ6 in
usual notation. Summing up our discussion, we have under the equation (2.1) that

(2.23) ℘(u) = x, ℘′(u) = 2y + µ1x+ µ3.

This is the solution of what we call Jacobi’s inversion problem for (2.1).

2.3 Another construction of the sigma function

Now let us construct the sigma function by using a theta series. Firstly, we define

(2.24) R = gcd
(
rsltx

(
rslty(f, fy), rslty(f, fy)

)
, rslty

(
rsltx(f, fy), rsltx(f, fy)

))
,

Here x and y are regarded as indeterminates and rslt means Silvester’s resultant with respect
to the suffixed variable. Then R is a square element in Z[µ]. We take D = R1/2, a square
root of this. D is explicitly written as

(2.25) D = −b22b8 − 8b4
3 − 27b6

2 + 9b2b4b6,

where

(2.26)
b2 = µ1

2 + 4µ2, b4 = 2µ4 + µ1µ3, b6 = µ3
2 + 4µ6,

b8 = µ1
2µ6 + 4µ2µ6 − µ1µ3µ4 + µ2µ3

2 − µ4
2.

Using the standard notation of theta series, the sigma function is analytically defined by

(2.27) σ(u) = D−1/8
( π
ω′

)1/2
exp

(
− 1

2
u2η′ω′−1)

ϑ

[
1
2
1
2

]
(ω′−1

u
∣∣ω′−1

ω′′).

Here we fix the 8th root of D and square root of the second factor by the condition that the
power series expansion of σ(u) is as (2.11).

3This is a proposal of redefinition of Weierstrass ℘-function from the view point of the theory Abelian
functions.
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Remark 2.28. (1) Once we have defined the sigma function by (2.27), we should show
that it does not depend on the choice of a basis α, β of the fundamental group of E . As
is well-known, a proof of this is done by using the transformation property of Dedekind’s η
function (see Theorem in p.180 of [5]). From this, up to a multiplicative constant σ(u) is
invariant Jacobi form under standard action of SL2(Z).
(2) This definition shows clearly that σ(u) is an entire function.
These facts above yield that σ(u) has power series whose coefficients depends on only {µj}.
(3) To fix the first two factors as (2.11) holds, we need Jacobi’s derivative formula ([3], p.64)
and theta zero values for three even theta series due to Jacobi.
(4) Using (1.39), we can show that σ(u) defined as above satisfies (2.19).
(5) The zeroes of the theta series used in (2.27) is well-known ([5], pp.167–168). This shows
that σ(u) has zeroes of order 1 on Λ and no other zeroes.

The following theorem is one of the main results :

Theorem 2.29. The power series expansion of σ(u)2 at the origin belongs to
Z[µ1, µ2, µ3, µ4, µ6]⟨⟨u⟩⟩, and one of σ(u) belongs to Z[µ1

2
, µ2, µ3, µ4, µ6]⟨⟨u⟩⟩. First several

terms of the expansion of σ(u) is given by

(2.30)

σ(u) = u+ ((µ1

2
)2 + µ2)

u3

3!
+ ((µ1

2
)4 + 2µ2(

µ1

2
)2 + µ3µ1 + µ2

2 + 2µ4)
u5

5!

+ ((µ1

2
)6 + 3µ2(

µ1

2
)4 + 6µ3(

µ1

2
)3 + 3µ2

2(µ1

2
)2 + 6µ4(

µ1

2
)2

+ 6µ3µ2
µ1

2
+ µ2

3 + 6µ4µ2 + 6µ3
2 + 24µ6)

u7

7!
.+ · · ·

The following Lemma is the key in the following discussion :

Lemma 2.31. The sigma function and the 2-form ξ relates by

(2.32)

σ

(∫ (x,y)

∞
ω1 −

∫ (x1,y1)

∞
ω1

)
σ

(∫ (z,w)

∞
ω1 −

∫ (z1,w1)

∞
ω1

)
σ

(∫ (x,y)

∞
ω1 −

∫ (z1,w1)

∞
ω1

)
σ

(∫ (z,w)

∞
ω1 −

∫ (x1,y1)

∞
ω1

) = exp

(∫ (x,y)

(z,w)

∫ (x1,y1)

(z1,w1)

ξ

)
.

Proof. We increase the path of integrals form ∞ to (x, y) by an amount corresponding to
ℓ′·α1 + ℓ′′·β1 (ℓ′, ℓ′′ ∈ Z), and denotes the integrals by

(2.33)
˜∫ (x,y)

∞
ω,

˜∫ (x,y)

(z,w)

ξ, et cetera.

Then the left hand side is multiplied by

(2.34) exp
[
L
(
−
∫ (x1,y1)

∞
ω +

∫ (z1,w1)

∞
ω ℓ′ω′ + ℓ′′ω′′

)]
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because of (2.19), and the part in the exponential is changed to

(2.35)

˜∫ (x,y)

(z,w)

∫ (x1,y1)

(z1,w1)

ξ(X, Y ;Z,W )

=

∫ (x1,y1)

(z1,w1)

([
Ω(X, Y ;Z,W )

](x,y)
(z,w)

− ω1(X, Y )
(∫ (x,y)

(z,w)

η1(Z,W ) + ℓ′η′ + ℓ′′η′′
))

=

∫ (x1,y1)

(z1,w1)

∫ (x,y)

(z,w)

ξ(X, Y ;Z,W )−
∫ (x1,y1)

(z1,w1)

ω1(X,Y )·
(
ℓ′η′ + ℓ′′η′′

)
=

∫ (x1,y1)

(z1,w1)

∫ (x,y)

(z,w)

ξ(X, Y ;Z,W )− L
(∫ (x1,y1)

(z1,w1)

ω1(X, Y ), ℓ′ω′ + ℓ′′ω′′
)

because of (1.30) and (1.32). Therefore the transformations of the two sides are exactly the
same. We can check this for other variables (z, w), (x1, y1), and (z1, w1). Moreover, both
sides take value 1 when (x1, y1) = (z1, w1) or (x, y) = (z, w). Hence the two sides must
coincide. □

Remark 2.36. Taking double derivative by u of logarithm of (2.32), we see that

(2.37) ℘
(∫ (x,y)

∞
ω1 −

∫ (z,w)

∞
ω1

)
=
F (x, y; z, w)

(x− z)2
.

This relation would be helpful to understand where the 2-form ξ comes from.

2.4 Frobenius-Stickelberger formula

Lemma 2.38. One has

(2.39)
σ(u+ v) σ(u− v)

σ(u)2σ(v)2
= x(u)− x(v).

Proof. By (2.19), we see both sides are periodic function in u and v with respect to the
lattice Λ. On the other hand, since σ(u) has poles of order 1 at u ∈ Λ, the divisors of the
two sides coincide. Because both sides are expanded with respect to u as 1/u2 + · · ·, the
equality holds. □
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3 Hurwitz Integrality

Derivating

(3.1) f(x⟨t⟩, y) = (y − y⟨t⟩)(y − y⟨t′⟩),

by y, we have

(3.2)
fy(x⟨t⟩, y) = (y − y⟨t⟩) + (y − y⟨t′⟩)

∴ fy(x⟨t⟩, y⟨t⟩) = y⟨t⟩ − y⟨t′⟩.

This yields that

(3.3) fy(x⟨t⟩, y⟨t⟩) =
1

(tt′)3
(t− t′)(t2 + “higher terms in Z[µ][[t]]”)

We are going to prove Theorem 2.29. If

(3.4) u =

∫ (x,y)

∞
ω1,

(1.11) shows that

(3.5) u = t+ “higher terms” ∈ Z[µ]⟨⟨t⟩⟩, t = u+ “higher terms” ∈ Z[µ]⟨⟨u⟩⟩.

Using (1.28), (1.30), (1.33), and (1.11), we have

(3.6) ξ⟨t1, t2⟩ −
dt1dt2

(t1 − t2)2
∈ Z[µ][t1, t2]dt1dt2.

Explicit calculation gives that

(3.7)

ξ⟨t1, t2⟩ =
(

1

(t1 − t2)2
+ µ3(t1 + t2) + (3µ3µ1 + 2µ4)t1t2

+ (2µ3µ1 + µ4)(t1
2 + t2

2)

+ (5µ3µ1
2 + 4µ4µ1 + 3µ2µ3)(t1

2t2 + t1t2
2)

+ (3µ3µ1
2 + 2µ4µ1 + 2µ2µ3)(t1

3 + t2
3)

+ (8µ3µ1
3 + 7µ4µ1

2 + 11µ2µ3µ1 + 3µ3
2 + 4µ4µ2 + 3µ6)t1

2t2
2

+ (7µ3µ1
3 + 6µ4µ1

2 + 10µ2µ3µ1 + 4µ3
2 + 4µ4µ2 + 4µ6)(t1

3t2 + t1t2
3)

+ (4µ3µ1
3 + 3µ4µ1

2 + 6µ2µ3µ1 + 3µ3
2 + 2µ4µ2 + 2µ6)(t1

4 + t2
4)

+ · · ·
)
dt1dt2.

Then we have

(3.8)

∫ t2′

t1′

∫ t2

t1

ξ⟨T1, T2⟩

= − log
(
−(t2

′ − t1)(t2 − t1
′)

(t2
′ − t2)(t1 − t1

′)

)
+
µ3

2

(
(t2

′2 − t1
′2)(t2 − t1) + (t2

2 − t1
2)(t2

′ − t1
′)
)

+ “a series in Z[µ]⟨⟨t1, t2⟩⟩ of total degree ≧ 4”.
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Recall (1.16) :

(3.9)
x⟨t2⟩ − x⟨t1⟩ =

(t2
′ − t1)(t2 − t1) p(t1, t2)

x⟨t1⟩−1x⟨t2⟩−1
,

p(t1, t2) = 1 + µ1t1 + µ2t2
2 + (µ2 + µ1

2)t1
2 + µ1µ2t2

3 + · · · .

Exchanging t1 and t2, we have

(3.10)

x⟨t2⟩ − x⟨t1⟩ = −x⟨t2⟩
−1 − x⟨t1⟩−1

x⟨t1⟩−1x⟨t2⟩−1

= −(t1
′ − t2)(t1 − t2) p(t2, t1)

x⟨t1⟩−1x⟨t2⟩−1
.

Let u and v be analytic coordinates corresponding to t1 and t2, respectively. Dividing both
sides of (2.39) by u− v and dx

du
= 1/fy(x, y) yield that

(3.11)
σ(2u)

σ(u)4
=

d

du
x(u) = 1

/du
dx

= fy(x(u), y(u)).

So that

(3.12)

σ(2u)

σ(u)4
= fy⟨t⟩ = fy(x⟨t⟩, y⟨t⟩)

= y⟨t⟩ − y⟨t′⟩

= −y⟨t
′⟩−1 − y⟨t⟩−1

y⟨t⟩−1y⟨t′⟩−1

= −x⟨t⟩
t

+
x⟨t⟩
t′

= (t− t′)
x⟨t⟩
tt′

.

Using these, we see that

(3.13)

(
x(u)− x(v)

)2
=

(
σ(u+ v)σ(u− v)

σ(u)2σ(v)2

)2

(∵ (2.39))

=
σ(u+ v)2

σ(2u)σ(2v)

σ(2u)

σ(u)4
σ(2v)

σ(v)4
σ(u− v)2

= exp
(
−
∫ t2′

t1′

∫ t2

t1

ξ⟨T1, T2⟩
)
fy⟨t1⟩fy⟨t2⟩σ(u− v)2 (∵ (2.32))

= exp
(
− log

(t2
′ − t2)(t1 − t1

′)

(t2
′ − t1)(t2 − t1

′)

+ “a series in Z[µ][[t1, t2]] of degree ≧ 3”
)
fy⟨t1⟩fy⟨t2⟩σ(u− v)2

=

(
(t2

′ − t1)(t2 − t1
′)

(t2
′ − t2)(t1 − t1

′)
× “a series of the form 1 + · · · in Z[µ]⟨⟨t1, t2⟩⟩”

)
× fy⟨t1⟩fy⟨t2⟩σ(u− v)2.

Summing up, we have arrived the main result as follows :
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Theorem 3.14. Let u and v be analytic coordinates corresponding values t1 and t2 of
the arithmetic parameter (1.3), respectively. Then the sigma function is expressed as
the following product of formal power series :

(3.15) σ(u− v)2 = (t2 − t1)
2 q(t1)q(t2) p(t1, t2) p(t2, t1) r(t1, t2),

where

(3.16)

p(t1, t2) =
x⟨t2⟩−1 − x⟨t1⟩−1

(t2
′ − t1)(t2 − t1)

= 1 + µ1t1 + µ2t2
2 + (µ2 + µ1

2)t1
2 + · · ·

∈ Z[µ][[t1, t2]],
q(t) = −x⟨t⟩tt′ = 1− µ2t

2 − µ2µ1t
3 − (µ2µ1

2 + µ4)t
4

− (µ2µ1
3 + 2µ4µ1 + µ2µ3)t

5 + · · · ∈ Z[µ][[t]],

r(t1, t2) = exp

[ ∫ t2′

t1′

∫ t2

t1

(
ξ⟨T1, T2⟩ −

dT1dT2
(T2 − T1)2

)]
= 1− ( 1

12
µ1µ3 +

1
6
µ4)(t1 − t2)

4 − (1
6
µ1

2µ3 +
1
3
µ4µ1)(t1 − t2)

4(t1 + t2)

+
(
− ( 1

30
µ3

2 + ( 43
180
µ1

3 + 11
90
µ2µ1)µ3 +

43
90
µ4µ1

2 + 11
45
µ2µ4 +

2
15
µ6)(t1

4 + t2
4)

+ ( 2
15
µ3

2 + (11
90
µ1

3 + 7
45
µ2µ1)µ3 +

11
45
µ4µ1

2 + 14
45
µ2µ4 +

8
15
µ6)t1t2(t1

2 + t2
2)

+ (−1
5
µ3

2 + ( 7
30
µ1

3 − 1
15
µ2µ1)µ3 +

7
15
µ4µ1

2 − 2
15
µ2µ4 +

1
5
µ6)t1

2t2
2
)
(t1 − t2)

2

+ · · · ∈ Z[µ]⟨⟨t1, t2⟩⟩.

Since t1 = u+ · · · ∈ Z[µ]⟨⟨u⟩⟩ and t2 = v + · · · ∈ Z[µ]⟨⟨v⟩⟩, one has

(3.17) σ(u− v)2 ∈ (u− v)2(1 + “higher terms in Z[µ]⟨⟨u, v⟩⟩”).

First several terms of the expansions above when t1 = t and t2 = 0 is given as follows :

(3.18)

σ⟨t⟩2 = t2 + µ1t
3 +

(
µ1

2 + µ2

)
t4 +

(
µ3 + µ1

3 + 2µ2µ1

)
t5

+
(
35
12
µ1µ3 + µ1

4 + 3µ2µ1
2 + 5

6
µ4 + µ2

2
)
t6

+
(
(23
4
µ1

2 + 3µ2)µ3 + µ1
5 + 4µ2µ1

3 + (5
2
µ4 + 3µ2

2)µ1

)
t7 + · · · ,

σ⟨t⟩ = t+ µ1
t2

2!
+
(
9(µ1

2
)2 + 3µ2

)
t3

3!
+
(
12µ3 + 60(µ1

2
)3 + 18µ2µ1

)
t4

4!

+
(
145µ1µ3 + 525(µ1

2
)4 + 450µ2(

µ1

2
)2 + 50µ4 + 45µ2

2
)
t5

5!
+ · · · .

Remark 3.19. When t1 = t and t0 = 0, because of

(3.20) q(t)·p(0, t) = −1, q(0) = 1, p(t, 0) = −x⟨t⟩−1/t2,

we have

(3.21) σ⟨t⟩2 = x⟨t⟩−1 r(0, t).

We shall compare with4

(3.22) σ(u) = u· exp
(∫ u

0

∫ u

0

( 1

u2
− ℘(u)

)
dudu

)
4This formula is mentioned also in, for example, p.589 of [1] to compute σ⟨t⟩. Since we use the definitions

(2.10) or (2.27) of σ(u) and (2.20) of ℘(u), the p-adic modular form E2 in [1] is unnecessary.
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that is immediately shown by (2.20) and (2.23). Although these two formulae (3.21) and
(3.22) are resemble each other, it seems quite difficult to show that the expansion of σ(u) is
of Hurwitz integral despite the case that we know the power series expansion of the function
℘(u) at the beginning.

The following lemma shows Hurwitz integrality of the square root σ(u) of σ(u)2.

Lemma 3.23. Let A be a integral domain contains Z and z be an indeterminate. Let

(3.24) h(z) = 1 + 2a1
z

1!
+ 2a2

z2

2!
+ 2a3

z3

3!
+ · · ·

be a power series with aj ∈ A (j = 1, · · ·). Then a power series φ(z) satisfying

(3.25) h(z) = φ(z)2

belongs to A⟨⟨z⟩⟩.

Proof. Expanding φ(z) shows

(3.26)

(
1 + 2a1

z

1!
+ 2a2

z2

2!
+ · · ·

)− 1
2

= 1− 1

1!

1

2

(
2a1z + 2a2

z2

2!
+ 2a3

z3

3!
+ · · ·

)
+

1

2!

1

2

3

2

(
2a1z + 2a2

z2

2!
+ 2a3

z3

3!
+ · · ·

)2
− 1

3!

1

2

3

2

5

2

(
2a1z + 2a2

z2

2!
+ 2a3

z3

3!
+ · · ·

)3
+ · · ·

= 1− 1

1!

(
a1z + a2

z2

2!
+ a3

z3

3!
+ · · ·

)
+

1

2!
·1·3
(
a1z + a2

z2

2!
+ a3

z3

3!
+ · · ·

)2
− 1

3!
·1·3·5

(
a1z + a2

z2

2!
+ a3

z3

3!
+ · · ·

)3
+ · · · .

The claim follows from this immediately. □

This lemma and Theorem 3.14 yields that

(3.27) σ(u) ∈ Z[µ1

2
, µ2, µ3, µ4, µ6]⟨⟨u⟩⟩.

By an explicit calculation when v = 0, namely t2 = 0, the first several terms is seen as
follows:

(3.28) σ(u) = u+
(
(µ1

2
)2 + µ2

)
u3

3!
+ “higher terms in Z[µ1

2
, µ2, µ3, µ4, µ6]⟨⟨u⟩⟩”.

This in none other than (2.30).

Remark 3.29. (1) Our result is seen to be suggesting the algebraic behavior of σ(u) might
go back to investigation of the 2-form ξ.
(2) The main result of ours might strongly relate with the result in [2]. Because of the limited
knowledge, the author could not explain such relation.
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4 n-plication formula
The power series expansion of sigma is useful to get n-plication polynomial for E .

4.1 The case of odd n

For an odd n, the n-plication formula is of the form :

(4.1)
ψn(u) : =

σ(nu)

σ(u)n2 = nx(u)
n2−1

2 + C1 x(u)
n2−5

2 y(u) + C2 x(u)
n2−3

2

+ C3 x(u)
n2−7

2 y(u) + C4 x(u)
n2−5

2 + · · ·+ Cn2−1.

Namely, the roots (x(u), y(u)) of this polynomial, or the roots u mod Λ is just the set of
n-torsion points of E . After expanding both sides in terms of u, comparing the coefficients
of the two sides gives Cj as follows :

(4.2)

C1 = 0, C2 =
1
24
n(n2 − 1)µ1

2 + 1
6
n(n2 − 1)µ2, C3 = 0,

C4 =
1

1920
n(n2 − 1)(n2 − 9)µ1

4 + 1
240

n(n2 − 1)(n2 − 9)µ2µ1
2

+ 1
120

n(n2 − 1)(n2 + 6)µ3µ1 +
1

120
n(n2 − 1)(n2 − 9)µ2

2 + 1
60
n(n2 − 1)(n2 + 6)µ4,

C5 = 0,

C6 =
1

322560
n(n2 − 1)(n2 − 32)(n2 − 52)µ1

6 + 1
26880

n(n2 − 1)(n2 − 32)(n2 − 52)µ2µ1
4

+ 1
6720

n(n2 − 1)(n2 − 32)(n2 + 10)µ3µ1
3 + 1

6720
n(n2 − 1)(n2 − 32)(n2 − 52)µ2

2µ1
2

+ 1
3360

n(n2 − 1)(n2 − 32)(n2 + 10)µ4µ1
2 + 1

1680
n(n2 − 1)(n2 − 32)(n2 + 10)µ3µ2µ1

+ 1
5040

n(n2 − 1)(n2 − 32)(n2 − 52)µ2
3 + 1

840
n(n2 − 1)(n2 − 32)(n2 + 10)µ4µ2

+ 1
840

n(n2 − 1)(n4 + n2 + 15)µ3
2 + 1

210
n(n2 − 1)(n4 + n2 + 15)µ6.

Here all the fractions are indeed integers for odd n.

4.2 The case of even n

For an even n, the n-plication formula is of the form

(4.3)
ψn(u) : =

σ(nu)

σ(u)n2 = nx(u)
n2−4

2 y(u) + C1 x(u)
n2−2

2 + C2 x(u)
n2−6

2 y(u)

+ C3 x(u)
n2−4

2 + C4 x(u)
n2−8

2 y(u) + · · ·+ Cn2−1.

and by the same method its first several terms are given as follows :

(4.4)

C1 = −1
2
nµ1, C2 = − 1

24
n(n2 − 22)µ1

2 − 1
6
n(n2 − 22)µ2,

C3 = − 1
48
n(n2 − 22)µ1

3 − 1
12
n(n2 − 22)µ2µ1 − 1

2
nµ3,

C4 = − 1
1920

n(n2 − 22)(n2 − 42)µ1
4 − 1

240
n(n2 − 22)(n2 − 42)µ2µ1

2

− 1
120

n(n2 − 22)(n2 + 9)µ3µ1 − 1
120

n(n2 − 22)(n2 − 42)µ2
2

− 1
60
n(n2 − 22)(n2 + 9)µ4,

C5 = − 1
3840

n(n2 − 22)(n2 − 42)µ1
5 − 1

480
n(n2 − 22)(n2 − 42)µ2µ1

3

− 1
240

n(n2 − 22)(n2 + 14)µ3µ1
2 − 1

240
n(n2 − 22)(n2 − 42)µ2

2µ1

− 1
120

n(n2 − 22)(n2 + 9)µ4µ1 − 1
12
n(n2 − 22)µ3µ2.

The fractions in these coefficients are indeed integers for even n.
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5 Weierstrass preparation theorem

In this Section, we describe certain type of Weierstrass preparation theorem that is used to
show (1.16). Since it was not able to find a reference of this type of Weierstrass preparation
theorem, we give a proof which is based on the remark due to H.Serbin [6]. Here let O be a
integral domain (with unity), and z1, z2, · · ·, zm be m indeterminates.

Lemma 5.1. Assume that P and Q ∈ O[[z1, z2, · · · , zm]] are given, and that

(5.2)
P (z1, 0, 0, · · · , 0) = ck z1

k + ck+1 z1
k−1 + · · ·

(ck ∈ O×; ck+1, ck+2, · · · ∈ O).

Then there is unique pair of the 2 polynomials A and B ∈ O[[z1, z2, · · · , zm]] such that

(5.3) Q− PA = B

and that B does not have higher terms of z1 greater than (k − 1).

Proof. We prove this by induction on m. Let

(5.4)
P =

∞∑
j=0

pj zm
j, Q =

∞∑
j=0

qj zm
j, A =

∞∑
j=0

aj zm
j, B =

∞∑
j=0

bj zm
j,

(pj, qj, aj, bj ∈ O[[z1, · · · , zm−1]]).

Our statement is equivalent to existence of a solution of

(5.5) (qj − a0 pj − a1 pj−1 − · · · − aj−1 p1)− aj p0 = bj, (j = 0, 1, 2, · · · ).

Because this equation is recursive on j, it reduces to the case m = 0. If P ∈ O× and Q ∈ O,
then

(5.6) A = Q·P−1 ∈ O, B = 0.

and the our claim has been proved. □

Corollary 5.7. (Weierstass preparation theorem) For a given F (w ; z) ∈ O[[w, z2, · · · , zm]],
assume F (w ; 0, · · · , 0) = wk + · · · ∈ wk (O[[w]])×. Then there exist uniquely an element
U ∈ O[[w, z2, · · · , zm]] and a polynomial G ∈ O[w][[z2, · · · , zm]] that is monic and of degree
k in w such that

(5.8) F = GU.

Proof. In the Lemma above, by setting w = z1, Q = wk, and P = F , we see there is unique
C ∈ O[[w, z2, · · · , zm]] such that

(5.9) wk − FC = −b1(z)wk−1 − b2(z)w
k−2 − · · · − bk−1(z) (z = (z2, · · · , zm)).

By plugging z1 = · · · = zm = 0, we have

(5.10) wk − (wk + · · · )C(w ; 0, · · · , 0) = −b1(0)wk−1 − b2(0)w
k−2 − · · · − bk−1(0),
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so that

(5.11) C(w ; 0, · · · , 0) = 1 +O(w).

The Lemma 5.1 for Q = 1 and P = C shows that there is unique U(w ; z) ∈ O[[w, z2, · · · , zm]]
such that

(5.12) 1− UC = 0.

Hence,

(5.13) F (w ; z) = (wk + b1(z)w
k−1 + b2(z)w

k−2 + · · ·+ bk−1(z))U(w; z),

and the proof has completed. □

6 Hurwitz integrality of the Weierstrass sigma function

Here we mention datailed relation of the original σw(u) recalled in the Introduction and our
new σ(u).

Changing the coordinates of E as Y = 2y + µ1x+ µ3, X = x− 1
3
(µ2 +

1
4
µ1

2) transforms
the equation of E to

(6.1) Y 2 = 4X3 + (−3λ2
2 + 2µ3µ1 + 4µ4)X + (λ2

3 − µ1µ3λ2 − 1
3
µ4λ2 + µ3

2 + 4µ6),

where

(6.2) λ2 =
1
6
(µ1

2 + 4µ2).

Therefore the Weierstrass wpw(u) for E satisfies the differential equation obtained from the
above by substitution

(6.3) X = ℘w(u), Y = d
du
℘w(u).

Then we see that the new and Weierstrass sigma functions relate as

(6.4) σ(u) = σw(u) exp
(

1
24
(µ1

2 + 4µ2)u
2
)

from (2.22), the first two terms of (2.30), and the condition σw(u) = u + O(u5) mentioned
in the Introduction.

Finally, we show the following theorem.

Theorem 6.5. The power series expansion of σw(u) with respect to u is of Hurwitz integral
over Z[g2

2
, 2g3].

Proof. We assume that µ1 = µ2 = µ3 = 0. Then σ(u) = σw(u) because µ1
2 +4µ2 = 0 holds.

This assumption does not ruin the generality of our claim as follows. For arbitrary pair of
algebraically independent complex numbers g2 and g3, we set µ4 = −1

4
g2 and µ6 = −1

4
g3.

Then our result 2.29 states that σw(u) is of Hurwitz integral over Z[µ4, µ6] = Z[g2
4
, g3

4
].

However, as is explained in the Introduction, the recursion relation due to Weierstrass in [7]
shows that it is of Hurwitz integral over Z[1

3
, g2

2
, g3], so that over Z[1

3
, g2

2
, 2g3]∩Z[g2

4
, g3

4
] which

is Z[g2
2
, 2g3]. □
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