ADDITION FORMULAE OVER THE JACOBIAN PRE-IMAGE OF HYPERELLIPTIC WIRTINGER VARIETIES

J.C. EILBECK, V.Z. ENOLSKII, S. MATSUTANI, Y. ÔNISHI AND E. PREVIATO

Abstract

Using results on Frobenius-Stickelberger-type relations for hyperelliptic curves (Y. Ônishi, Proc. Edinb. Math. Soc. (2), 48 (2005) p.705-742), we provide certain addition formulae for any symmetric power of the curves, which hold on the strata W_{k}, the pre-images in the Jacobian of the classical Wirtinger varieties. As an appendix, we give similar relations for a trigonal curve $y^{3}=\left(x-b_{1}\right)\left(x-b_{2}\right)\left(x-b_{3}\right)\left(x-b_{4}\right)$.

1. INTRODUCTION

In this paper we investigate certain types of addition laws on the Jacobian variety of hyperelliptic curves.

For an elliptic curve C_{1} given by $y^{2}=4 x^{3}-g_{2} x-g_{3}$, the addition law is determined by the addition formula

$$
\begin{equation*}
\frac{\sigma\left(u_{1}+u_{2}\right) \sigma\left(u_{1}-u_{2}\right)}{\sigma\left(u_{1}\right)^{2} \sigma\left(u_{2}\right)^{2}}=-\wp\left(u_{1}\right)+\wp\left(u_{2}\right), \tag{1.1}
\end{equation*}
$$

where σ and \wp are the usual functions of Weierstrass. If we apply $\frac{d}{d u_{1}}\left(\frac{d}{d u_{1}}+\frac{d}{d u_{2}}\right) \log$ to both sides, we obtain addition formulae for the \wp-function, $\wp(u)=-\frac{d^{2}}{d u^{2}} \log \sigma(u)$.

Since we can regard $\left(\wp(u), \frac{d \wp(u)}{d u}\right)$ as a point of the curve C_{1}, we write the relation (1.1) as

$$
\begin{equation*}
\frac{\sigma\left(u_{1}+u_{2}\right) \sigma\left(u_{1}-u_{2}\right)}{\sigma\left(u_{1}\right)^{2} \sigma\left(u_{2}\right)^{2}}=-x_{1}+x_{2}, \quad \text { for } u_{a}=\int_{\infty}^{\left(x_{a}, y_{a}\right)} \frac{d x}{y} \tag{1.2}
\end{equation*}
$$

We shall consider (1.1) and (1.2) as coming from two different kinds of general formulae. Formula (1.1) was generalized to the case of higher-genus hyperelliptic curves by using Klein's sigma function, which is a natural generalization of the Weierstrass elliptic σ function to higher genera, for the case $g=2,3$ by Baker [Ba2], and for general genus by Buchstaber et al. in [BEL].

In this article, we study addition formulae of type (1.2) over subvarieties in the Jacobian \mathcal{J}_{g} of a hyperelliptic curve where the sigma function vanishes; derivatives of sigma will occur instead. The case $n=m=g=1$ of Theorem 5.1 corresponds to (1.2).

For a hyperelliptic curve C_{g} given by the equation $y^{2}=\prod_{i=1}^{2 g+1}\left(x-b_{i}\right)$, where the $b_{i} \mathrm{~S}$ are distinct complex numbers, and a smooth point ∞ at infinity, the Jacobian \mathcal{J}_{g} of C_{g} is a complex torus \mathbb{C}^{g} / Λ with $\Lambda \subset \mathbb{C}^{g}$ a complete lattice. The Abel-Jacobi theorem says that we have a birational map ϕ_{g}, depending on the choice of a basepoint in C_{g}, from
the symmetric product $\mathrm{S}^{g}\left(C_{g}\right)$ to the Jacobian \mathcal{J}_{g}. Henceforth we fix the basepoint to be ∞ and we transform the natural stratification of $\mathrm{S}^{g}\left(C_{g}\right)$ to \mathcal{J}_{g}. We consider the k th symmetric product $\mathrm{S}^{k}\left(C_{g}\right)$ for $k \geqq 1$ and the analogous maps ϕ_{k} from $\mathrm{S}^{k}\left(C_{g}\right)$ to \mathcal{J}_{g}. We introduce subvarieties in \mathcal{J}_{g}, whose 2:1 images under the level-two theta map are classically known as the Wirtinger varieties [G],

$$
W_{k}=\phi_{k}\left[\mathrm{~S}^{k}\left(C_{g}\right)\right]
$$

Then we see $W_{k} \subset W_{k+1}$ in general, and $W_{n}=\mathcal{J}_{g}$ if $n \geq g$. The natural projection is denoted by

$$
\kappa: \mathbb{C}^{g} \rightarrow \mathcal{J}_{g}=\mathbb{C}^{g} / \Lambda
$$

For hyperelliptic curves, Riemann's singularity theorem (cf. [ACGH] VI.1) characterizes each W_{k} as the zero-locus of multi-derivatives of the Riemann theta function in the affine coordinate $u \in \mathbb{C}^{g}=\kappa^{-1}\left(\mathcal{J}_{g}\right)$. Indeed, our choice of a base point which is a Weierstrass point makes it possible to relate the dimension of a linear series with its degree. In general, it is still a difficult and important question to relate the Wirtinger varieties to vanishing properties of the theta function (cf. [G] for a survey).

By investigating the algebraic and analytic structure of the subvarieties W_{k}, some among the present authors [EMO] extended the formula (1.2) to the subvarieties W_{k}, based on the results in [O1], as follows.

Theorem 1.1. Let (m, n) be a pair of positive integers (m, n) such that $m+n \leq g+1$. Let $\left(x_{1}, y_{1}\right) \cdots,\left(x_{m}, y_{m}\right),\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right) \in C_{g}, u \in \kappa^{-1}\left(W_{m}\right)$, and $v \in \kappa^{-1}\left(W_{n}\right)$ be points satisfying $\kappa(u)=\phi_{m}\left(\left(x_{1}, y_{1}\right) \cdots,\left(x_{m}, y_{m}\right)\right)$ and $\kappa(v)=\phi_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)$. Then the following relation holds:

$$
\left.\frac{\sigma_{\mathrm{h}^{m+n}}(u-v) \sigma_{\mathrm{h}^{m+n}}}{}(u+v)\right)=\delta(g, n) \prod_{i=1}^{m} \prod_{j=1}^{n}\left(x_{i}-x_{j}^{\prime}\right),
$$

Here $\sigma_{\mathfrak{h}^{m}}$ is a certain (higher) derivative of σ given in Table 1, and $\delta(g, n)=(-1)^{g n+\frac{1}{2} n(n-1)}$.
Note that we changed the notation of $\delta(g, n)$ from [EMO]. In this article, we generalize this theorem for all pairs of positive integers m and n by a more direct application of the results in [O1] than [EMO]. In an Appendix, we give similar relations for a trigonal curve $y^{3}=\left(x-b_{1}\right)\left(x-b_{2}\right)\left(x-b_{3}\right)\left(x-b_{4}\right)$ as an application of the generalized FrobeniusStickelberger formulae for this curve([O2]). In essence, the strategy in [O1] and [O2] consists of comparing zero and pole-divisors of two meromorphic functions on the Jacobian, and finally conclude they are equal by determining the leading term(s) of their power-series expansions in suitable abelian coordinates. The present contribution consists in defining the appropriate derivatives of the sigma function, and exploiting previously found indentities to obtain a cancellation.

This article started during a visit of the authors to Tokyo Metropolitan University in 2005 , supported by JSPS grant 16540002 . We thank Prof. M. Guest of TMU for extending
his department's hospitality. We also thank Dr. J. Gibbons of Imperial College for some comments on this work.

2. Geometrical setting of hyperelliptic curves

Let us consider a hyperelliptic curve defined by

$$
y^{2}=x^{2 g+1}+\lambda_{2 g} x^{2 g}+\cdots+\lambda_{0}
$$

together with a smooth point ∞ at infinity.
We fix a basis of holomorphic one-forms

$$
d u_{1}=\frac{d x}{2 y}, \quad d u_{2}=\frac{x d x}{2 y}, \quad \cdots, \quad d u_{g}=\frac{x^{g-1} d x}{2 y} .
$$

We also fix a homology basis for the curve X so that

$$
\mathrm{H}_{1}(X, \mathbb{Z})=\bigoplus_{j=1}^{g} \mathbb{Z} \alpha_{j} \oplus \bigoplus_{j=1}^{g} \mathbb{Z} \beta_{j},
$$

where the intersections are given by $\left[\alpha_{i}, \alpha_{j}\right]=0,\left[\beta_{i}, \beta_{j}\right]=0$ and $\left[\alpha_{i}, \beta_{j}\right]=-\left[\beta_{i}, \alpha_{j}\right] \delta_{i j}$. We take the half-period matrices of X with respect to the given bases,

$$
\omega^{\prime}=\frac{1}{2}\left[\int_{\alpha_{j}} d u_{i}\right], \quad \omega^{\prime \prime}=\frac{1}{2}\left[\int_{\beta_{j}} d u_{i}\right], \quad \omega=\left[\begin{array}{c}
\omega^{\prime} \\
\omega^{\prime \prime}
\end{array}\right] .
$$

Let Λ be the lattice in \mathbb{C}^{g} generated by the column vectors in $2 \omega^{\prime}$ and $2 \omega^{\prime \prime}$. The Jacobian variety of X is denoted by \mathcal{J}_{g} and is identified with \mathbb{C}^{g} / Λ. We denote by κ the map given by modulo Λ :

$$
\kappa: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g} / \Lambda .
$$

For a non-negative integer k, we define the Abel map from k-th symmetric product $\mathrm{S}^{k}(X)$ of the curve X to \mathcal{J}_{g} by,

$$
\phi_{k}: \mathrm{S}^{k}(X) \rightarrow \mathcal{J}_{g}, \quad \phi_{k}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{k}, y_{k}\right)\right)=\sum_{i=1}^{k} \int_{\infty}^{\left(x_{i}, y_{i}\right)}\left(\begin{array}{c}
d u_{1} \\
\vdots \\
d u_{g}
\end{array}\right) \bmod \Lambda .
$$

The image of ϕ_{k} is denoted by $W_{k}=\phi_{k}\left(\mathrm{~S}^{k}\left(X_{g}\right)\right)$. The mapping ϕ_{g} is surjective by Abel's theorem, and is injective if we restrict the map to the pre-image of the complement of a specific connected Zariski closed subset of dimension at most $g-2$ in \mathcal{J}_{g}, by Jacobi's theorem (see Theorem 5.13 in [I]).

3. Sigma function and its derivatives

In this section, we will introduce the hyperelliptic θ-functions, and the σ-function, which is a natural generalization of the Weierstrass σ-function.

We define differentials of the second kind,

$$
d r_{j}=\frac{1}{2 y} \sum_{k=j}^{2 g-j}(k+1-j) \lambda_{k+1+j} x^{k} d x, \quad(j=1, \cdots, g)
$$

and complete hyperelliptic integrals of the second kind

$$
\eta^{\prime}=\frac{1}{2}\left[\int_{\alpha_{j}} d r_{i}\right], \quad \eta^{\prime \prime}=\frac{1}{2}\left[\int_{\beta_{j}} d r_{i}\right] .
$$

For this basis of the $2 g$-dimensional space of meromorphic differentials, the half-periods $\omega^{\prime}, \omega^{\prime \prime}, \eta^{\prime}, \eta^{\prime \prime}$ satisfy the generalized Legendre relation

$$
\mathfrak{M}\left(\begin{array}{cc}
0 & -1_{g} \tag{3.1}\\
1_{g} & 0
\end{array}\right) \mathfrak{M}^{T}=\frac{\imath \pi}{2}\left(\begin{array}{cc}
0 & -1_{g} \\
1_{g} & 0
\end{array}\right) .
$$

where $\mathfrak{M}=\left(\begin{array}{cc}\omega^{\prime} & \omega^{\prime \prime} \\ \eta^{\prime} & \eta^{\prime \prime}\end{array}\right)$. Let $\mathbb{T}=\omega^{\prime-1} \omega^{\prime \prime}$. The theta function on \mathbb{C}^{g} with modulus \mathbb{T} and characteristics $\mathbb{T} a+b$ is given by

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z)=\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z ; \mathbb{T})=\sum_{n \in \mathbb{Z}^{g}} \exp \left[2 \pi i\left\{\frac{1}{2}^{t}(n+a) \mathbb{T}(n+a)+{ }^{t}(n+a)(z+b)\right\}\right]
$$

for g-dimensional complex vectors a and b. The σ-function ([Ba1], p.336,[BEL]), an analytic function on the space \mathbb{C}^{g} and a theta series having modular invariance of a given weight with respect to \mathfrak{M}, is given by the formula

$$
\sigma(u)=\gamma_{0} \exp \left\{-\frac{1}{2}{ }^{t} u \eta^{\prime} \omega^{\prime-1} u\right\} \vartheta\left[\begin{array}{l}
\delta^{\prime \prime} \\
\delta^{\prime}
\end{array}\right]\left(\frac{1}{2} \omega^{\prime-1} u ; \mathbb{T}\right)
$$

where δ and δ^{\prime} are half-integer characteristics giving the vector of Riemann constants with basepoint at ∞ and γ_{0} is a certain non-zero constant. The σ-function vanishes only on $\kappa^{-1}\left(W_{g-1}\right)$ (see for example [Ba1], p. 252).

Let $\left\{\varphi_{i}\right\}$ be an ordered set of $\mathbb{C} \cup\{\infty\}$-valued functions over X defined as follows

$$
\varphi_{i}=\left\{\begin{array}{cc}
x^{i} & \text { for } i \leq g \tag{3.2}\\
x^{\lfloor(i-g) / 2\rfloor+g} & \text { for } i>g, i-g \text { even, } \\
x^{\lfloor(i-g) / 2\rfloor} y & \text { for } i>g, i-g \text { odd. }
\end{array}\right.
$$

Following [O1], we introduce a multi-index \mathfrak{q}^{n}. For n with $1 \leq n<g$, we let \natural^{n} be the set of positive integers i such that $n+1 \leq i \leq g$ with $i \equiv n+1 \bmod 2$. Namely,

$$
t^{n}= \begin{cases}\{n+1, n+3, \cdots, g-1\} & \text { if } g-n \equiv 0 \bmod 2, \\ \{n, n+2, \cdots, g\} & \text { if } g-n \equiv 1 \bmod 2 ;\end{cases}
$$

and partial derivative over the multi-index \vdash^{n}

$$
\sigma_{\mathfrak{h}^{n}}=\left(\prod_{i \in \natural^{n}} \frac{\partial}{\partial u_{i}}\right) \sigma(u) .
$$

For $n \geq g$, we define \hbar^{n} as empty and $\sigma_{\natural^{n}}$ as σ itself. The first few examples are given in the following table, where we let \sharp denote \hbar^{1} and b denote t^{2}.

For $u \in \mathbb{C}^{g}$, we denote by u^{\prime} and $u^{\prime \prime}$ the unique vectors in \mathbb{R}^{g} such that

$$
u=u^{\prime} 2 \omega^{\prime}+u^{\prime \prime} 2 \omega^{\prime \prime} .
$$

We define

$$
\begin{aligned}
L(u, v) & ={ }^{t} u\left(2 \eta^{\prime} v^{\prime}+2 \eta^{\prime \prime} v^{\prime \prime}\right), \\
\chi(\ell) & =\exp \left\{2 \pi \imath\left({ }^{t} \ell^{\prime} \delta^{\prime \prime}-{ }^{t} \ell^{\prime \prime} \delta^{\prime}+\frac{1}{2} \ell^{\prime} \ell^{\prime} \ell^{\prime \prime}\right)\right\}(\in\{1,-1\})
\end{aligned}
$$

for $u, v \in \mathbb{C}^{g}$ and for $\ell\left(=\ell^{\prime} 2 \omega^{\prime}+\ell^{\prime \prime} 2 \omega^{\prime \prime}\right) \in \Lambda$. Then $\sigma_{\natural^{n}}(u)$ for $u \in \kappa^{-1}\left(W_{1}\right)$ satisfies the translational relation ([O1], Lemma 6.3):

$$
\begin{equation*}
\sigma_{\natural^{n}}(u+\ell)=\chi(\ell) \sigma_{\natural^{n}}(u) \exp L\left(u+\frac{1}{2} \ell, \ell\right) \text { for } u \in \kappa^{-1}\left(W_{1}\right) . \tag{3.3}
\end{equation*}
$$

Further for $n \leqq g$, we note that

$$
\begin{align*}
\sigma_{\mathfrak{\natural}^{n}}(-u) & =(-1)^{n g+\frac{1}{2} n(n-1)} \sigma_{\natural^{n}}(u) \text { for } u \in \kappa^{-1}\left(W_{n}\right), \text { especially, } \\
\sigma_{b}(-u) & =-\sigma_{b}(u) \text { for } u \in \kappa^{-1}\left(W_{2}\right) \tag{3.4}\\
\sigma_{\sharp}(-u) & =(-1)^{g} \sigma_{\sharp}(u) \text { for } u \in \kappa^{-1}\left(W_{1}\right)
\end{align*}
$$

by Proposition 6.5 in [O1].
Table 1

genuS	$\sigma_{\sharp} \equiv \sigma_{\mathrm{h}^{1}}$	$\sigma_{\mathrm{b}} \equiv \sigma_{\mathrm{h}^{2}}$	$\sigma_{\mathrm{h}^{3}}$	$\sigma_{\mathrm{h}^{4}}$	$\sigma_{\mathrm{h}^{5}}$	$\sigma_{\mathrm{h}}{ }^{6}$	$\sigma_{\mathrm{h}^{7}}$	$\sigma_{\mathrm{h}}{ }^{8}$	\cdots
1	σ	\cdots							
2	σ_{2}	σ	\cdots						
3	σ_{2}	σ_{3}	σ	σ	σ	σ	σ	σ	\cdots
4	σ_{24}	σ_{3}	σ_{4}	σ	σ	σ	σ	σ	\cdots
5	σ_{24}	σ_{35}	σ_{4}	σ_{5}	σ	σ	σ	σ	\cdots
6	σ_{246}	σ_{35}	σ_{46}	σ_{5}	σ_{6}	σ	σ	σ	\cdots
7	σ_{246}	σ_{357}	σ_{46}	σ_{57}	σ_{6}	σ_{7}	σ	σ	\cdots
8	σ_{2468}	σ_{357}	σ_{468}	σ_{57}	σ_{68}	σ_{7}	σ_{8}	σ	\cdots
\vdots	\ddots								

4. Generalized Frobenius-Stickelberger formula

We recall the generalized Frobenius-Stickelberger formula, which was given by one of the authors ([O1], Theorem 7.2).

Definition 4.1. For a positive integer $n \geq 1$ and a point $\left(x_{1}, y_{1}\right) \cdots,\left(x_{n}, y_{n}\right)$ in X, we define

$$
\begin{aligned}
& \Delta_{n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right) \\
& =\left|\begin{array}{cccccc}
1 & \varphi_{1}\left(x_{1}, y_{1}\right) & \varphi_{2}\left(x_{1}, y_{1}\right) & \cdots & \varphi_{n-2}\left(x_{1}, y_{1}\right) & \varphi_{n-1}\left(x_{1}, y_{1}\right) \\
1 & \varphi_{1}\left(x_{2}, y_{2}\right) & \varphi_{2}\left(x_{2}, y_{2}\right) & \cdots & \varphi_{n-2}\left(x_{2}, y_{2}\right) & \varphi_{n-1}\left(x_{2}, y_{2}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \varphi_{1}\left(x_{n-1}, y_{n-1}\right) & \varphi_{2}\left(x_{n-1}, y_{n-1}\right) & \cdots & \varphi_{n-2}\left(x_{n-1}, y_{n-1}\right) & \varphi_{n-1}\left(x_{n-1}, y_{n-1}\right) \\
1 & \varphi_{1}\left(x_{n}, y_{n}\right) & \varphi_{2}\left(x_{n}, y_{n}\right) & \cdots & \varphi_{n-2}\left(x_{n}, y_{n}\right) & \varphi_{n-1}\left(x_{n}, y_{n}\right)
\end{array}\right|
\end{aligned}
$$

Proposition 4.2. For a positive integer $n>1$, let $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ in X, and $u^{(1)}, \cdots, u^{(n)}$ in $\kappa^{-1}\left(W_{1}\right)$ be points such that $\kappa\left(u^{(i)}\right)=\phi_{1}\left(\left(x_{i}, y_{i}\right)\right)$. Then the following relation holds:

$$
\begin{equation*}
\frac{\sigma_{\mathfrak{t}^{n}}\left(\sum_{i=1}^{n} u^{(i)}\right) \prod_{i<j} \sigma_{b}\left(u^{(i)}-u^{(j)}\right)}{\prod_{i=1}^{n} \sigma_{\sharp}\left(u^{(i)}\right)^{n}}=\epsilon_{n} \Delta_{n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right), \tag{4.1}
\end{equation*}
$$

where $\epsilon_{n}=(-1)^{g+n(n+1) / 2}$ for $n \leq g$ and $\epsilon_{n}=(-1)^{(2 n-g)(g-1) / 2}$ for $n \geq g+1$.

5. The generalized addition formula

Now we are ready to describe the main result. Our motivation is found in [EEP] and [BES]. A special case of our main result appeared in [EEP] (see formula (34) and the analogous formula above (32)) in the process of deriving Baker's addition formula by the technique given in [O1] for genus 2. Another special case is the formula (3.21) in [BES].

Theorem 5.1. Assume that (m, n) is a pair of positive integers. Let $\left(x_{i}, y_{i}\right)(i=$ $1, \cdots, m),\left(x_{j}^{\prime}, y_{j}^{\prime}\right)(j=1, \cdots, n)$ in X and $u \in \kappa^{-1}\left(W_{m}\right), v \in \kappa^{-1}\left(W_{n}\right)$ be points such that $\kappa(u)=\phi_{m}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)\right)$ and $\kappa(v)=\phi_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)$. Then the following relation holds:

$$
\begin{align*}
& \frac{\sigma_{\mathrm{h}^{m+n}}(u+v) \sigma_{\mathrm{h}^{m+n}}(u-v)}{\sigma_{\mathrm{h}^{m}}(u)^{2} \sigma_{\mathrm{h}^{n}}(v)^{2}} \\
& =\delta(g, m, n) \frac{\prod_{i=0}^{1} \Delta_{m+n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right),\left(x_{1}^{\prime},(-1)^{i} y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime},(-1)^{i} y_{n}^{\prime}\right)\right)}{\left(\Delta_{m}\left(\left(x_{1}, y_{1}\right) \cdots,\left(x_{m}, y_{m}\right)\right) \Delta_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)\right)^{2}} \tag{5.1}\\
& \times \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\Delta_{2}\left(\left(x_{i}, y_{i}\right),\left(x_{j}^{\prime}, y_{j}^{\prime}\right)\right)}
\end{align*}
$$

where $\delta(g, m, n)=(-1)^{g n+\frac{1}{2} n(n-1)+m n}$.
To show this, we introduce the following symbol:

Definition 5.2. Let k be a positive integer. In general, for any k points $u^{(j)}(j=1, \cdots$, k) in $\kappa^{-1}\left(W_{1}\right)$, we define

$$
q\left(u^{(1)}, \cdots, u^{(k)}\right)=\frac{\sigma_{\mathrm{t}^{k}}\left(u^{(1)}+\cdots+u^{(k)}\right)}{\prod_{j=1}^{k} \sigma_{\sharp}\left(u^{(j)}\right)} .
$$

Remark 5.3. By the translational relation (3.3), we see that $q\left(u^{(1)}, \cdots, u^{(k)}\right)^{2}$ is a function on $\mathrm{S}^{k}(X)$. However, $q\left(u^{(1)}, \cdots, u^{(k)}\right)$ is in general only a function on the fibre product taken over \mathcal{J}_{g} with respect to the Abel map $\psi_{k}: \mathrm{S}^{k}(X) \rightarrow \mathcal{J}_{g}$ and the duplication map [2]: $\widetilde{\mathcal{J}}_{g} \rightarrow \mathcal{J}_{g}$, where $\widetilde{\mathcal{J}}_{g}$ is an Abelian variety which has \mathcal{J}_{g} as a 2:1 image.

Proof of Theorem 5.1. In the course of this proof, we let $u^{(i)}$ and $v^{(j)}$ be points such that $\kappa\left(u^{(i)}\right)=\phi_{1}\left(\left(x_{i}, y_{i}\right)\right)$ and $\kappa\left(u^{(j)}\right)=\phi_{1}\left(\left(x_{j}^{\prime}, y_{j}^{\prime}\right)\right)$ in W_{1}, respectively. Then we have $\kappa\left(-u^{(i)}\right)=\phi_{1}\left(\left(x_{i},-y_{i}\right)\right)$ and $\kappa\left(-v^{(j)}\right)=\phi_{1}\left(\left(x_{j}^{\prime},-y_{j}^{\prime}\right)\right)$. By (4.1) and (3.4), we have

$$
\begin{align*}
& q\left(u^{(1)}, \cdots, u^{(m)}, \pm v^{(1)}, \cdots, \pm v^{(n)}\right) \\
& \quad \cdot \prod_{i_{1}<i_{2}} q\left(u^{\left(i_{1}\right)}, \pm u^{\left(i_{2}\right)}\right) \prod_{i, j} q\left(u^{(i)}, \pm v^{(j)}\right) \prod_{j_{1}<j_{2}} q\left(\pm v^{\left(j_{1}\right)}, v^{\left(j_{2}\right)}\right) \\
& =\frac{\sigma_{\neq} m+n}{}\left(u^{(1)}+\cdots+u^{(m)} \pm v^{(1)} \pm \cdots \pm v^{(n)}\right) \tag{5.2}\\
& \prod_{i=1}^{m} \sigma_{\sharp}\left(u^{(i)}\right) \prod_{j=1}^{n} \sigma_{\sharp}\left(\pm v^{(j)}\right) \\
& \quad \cdot \prod_{i_{1}<i_{2}} \frac{\sigma_{b}\left(u^{\left(i_{1}\right)}-u^{\left(i_{2}\right)}\right)}{\sigma_{\sharp}\left(u^{\left(i_{1}\right)}\right) \sigma_{\sharp}\left(-u^{\left(i_{2}\right)}\right)} \cdot \prod_{i, j} \frac{\sigma_{b}\left(u^{(i)} \mp v^{(j)}\right)}{\sigma_{\sharp}\left(u^{(i)}\right) \sigma_{\sharp}\left(\mp v^{(j)}\right)} \cdot \prod_{j_{1}<j_{2}} \frac{\sigma_{b}\left(\pm v^{\left(j_{1}\right)} \mp v^{\left(j_{2}\right)}\right)}{\sigma_{\sharp}\left(u^{\left(j_{1}\right)}\right) \sigma_{\sharp}\left(\mp v^{\left(j_{2}\right)}\right)} \\
& =(-1)^{g\left(\frac{1}{2} m(m-1)+m n+\frac{1}{2} n(n-1)\right)} \epsilon_{m+n} \\
& \quad \cdot \Delta_{m+n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right),\left(x_{1}^{\prime}, \pm y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, \pm y_{n}^{\prime}\right)\right),
\end{align*}
$$

and

$$
\begin{align*}
& q\left(u^{(1)}, \cdots, u^{(m)}\right) \prod_{i_{1}<i_{2}} q\left(u^{\left(i_{1}\right)},-u^{\left(i_{2}\right)}\right)=(-1)^{\frac{1}{2} g m(m-1)} \epsilon_{m} \Delta_{m}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)\right), \tag{5.3}\\
& q\left(v^{(1)}, \cdots, v^{(n)}\right) \prod_{j_{1}<j_{2}} q\left(v^{\left(j_{1}\right)},-v^{\left(j_{2}\right)}\right)=(-1)^{\frac{1}{2} g n(n-1)} \epsilon_{n} \Delta_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right) .
\end{align*}
$$

We regard both sides of (5.1) as functions on $\mathrm{S}^{m}(X) \times \mathrm{S}^{n}(X)$. By (5.2) and (5.3), the left hand side of (5.1) is equal to

$$
\begin{equation*}
(-1)^{g n} \frac{q\left(u^{(1)}, \cdots, u^{(m)}, v^{(1)}, \cdots, v^{(n)}\right) q\left(u^{(1)}, \cdots, u^{(m)},-v^{(1)}, \cdots,-v^{(n)}\right)}{q\left(u^{(1)}, \cdots, u^{(m)}\right)^{2} q\left(v^{(1)}, \cdots, v^{(n)}\right)^{2}} . \tag{5.4}
\end{equation*}
$$

Using (5.2) and (5.3), we see that (5.4) is equal to

$$
(-1)^{g n} \frac{\prod_{ \pm} \Delta_{m+n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right),\left(x_{1}^{\prime}, \pm y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, \pm y_{n}^{\prime}\right)\right)}{\Delta_{n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)\right)^{2} \Delta_{m}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)^{2}} \times Q
$$

where

$$
Q=\frac{\prod_{i<j}^{m} q\left(u^{(i)},-u^{(j)}\right)^{2} \prod_{i<j}^{n} q\left(v^{(i)},-v^{(j)}\right)^{2}}{\prod_{ \pm}\left[\prod_{i<j}^{m} q\left(u^{(i)},-u^{(j)}\right) \prod_{i<j}^{n} q\left(\pm v^{(i)}, \mp v^{(j)}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} q\left(u^{(i)}, \mp v^{(j)}\right)\right]} .
$$

Since

$$
\begin{equation*}
q(-u, v)=\frac{\sigma_{b}(-u+v)}{\sigma_{\sharp}(-u) \sigma_{\sharp}(v)}=\frac{-\sigma_{b}(u-v)}{\sigma_{\sharp}(u) \sigma_{\sharp}(-v)}=-q(u,-v) \tag{5.5}
\end{equation*}
$$

for u, v in $\kappa^{-1}\left(W_{1}\right)$, we have

$$
\begin{aligned}
Q & =(-1)^{n(n-1) / 2} \frac{1}{\prod_{ \pm}\left[\prod_{i=1}^{m} \prod_{j=1}^{n} q\left(u^{(i)}, \mp v^{(j)}\right)\right]} \\
& =(-1)^{n(n-1) / 2} \frac{1}{\prod_{i=1}^{m} \prod_{j=1}^{n} q\left(u^{(i)}, v^{(j)}\right) q\left(u^{(i)},-v^{(j)}\right)} .
\end{aligned}
$$

Using (3.4) and (4.1) again, we see

$$
\begin{align*}
q(u, v) q(u,-v) & =\frac{\sigma_{b}(u+v) \sigma_{b}(u-v)}{\sigma_{\sharp}(u)^{2} \sigma_{\sharp}(v) \sigma_{\sharp}(-v)} \\
& =(-1)^{g} \frac{\sigma_{b}(u+v) \sigma_{b}(u-v)}{\sigma_{\sharp}(u)^{2} \sigma_{\sharp}(v)^{2}} \tag{5.6}\\
& =-\Delta_{2}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)
\end{align*}
$$

for u, v in $\kappa^{-1}\left(W_{1}\right)$ and $(x, y),\left(x^{\prime}, y^{\prime}\right)$ in X such that $\kappa(u)=\phi_{1}((x, y))$ and $\kappa(v)=$ $\phi_{1}\left(\left(x^{\prime}, y^{\prime}\right)\right)$. Hence we obtain

$$
Q=(-1)^{n(n-1) / 2}(-1)^{m n} \frac{1}{\prod_{i=1}^{m} \prod_{j=1}^{n} \Delta_{2}\left(\left(x_{i}, y_{i}\right),\left(x_{j}^{\prime}, y_{j}^{\prime}\right)\right)}
$$

and have proved the assertion.
Note that Theorem 1.1 follows as a special case, since $\Delta_{2}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=-\left(x-x^{\prime}\right)$.
Remark 5.4. We note that definition 5.2 for the q 's is behind the Frobenius-Stickelberger relations. This is a relation that governs the automorphy factor of the σ function. In turn, such automorphy factor defines the line bundle corresponding to the point of the Jacobian, cf. [F], (5). The Jacobian appears in the long exact sequence of cohomology for

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O} \rightarrow \mathcal{O}^{*} \rightarrow 1
$$

so the behavior of the automorphy factor derives from the exact sequence,

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^{*} \rightarrow 1
$$

Indeed, if $f: \mathbb{C} \rightarrow \mathbb{C}^{*}$ is a group homomorphism,

$$
\frac{f\left(u^{(1)}+u^{(2)}+\cdots+u^{(n)}\right)}{\prod_{i=1}^{n} f\left(u^{(i)}\right)}=1
$$

Appendix : The case of purely trigonal genus 3 curves

Our technique can be generalized for the recent result on the Frobenius-Stickelberger relation for the curve whose affine part is given by [O2],

$$
y^{3}=x^{4}+\lambda_{3} x^{3}+\lambda_{2} x^{2}+\lambda_{1} x+\lambda_{0}
$$

where $\lambda_{j} \mathrm{~s}$ are complex numbers. We denote the curve defined by this equation with a unique point ∞ at infinity as X. In this appendix, we will give an analog for X of Theorem 5.1.

Geometrical setting. We take a basis of the holomorphic one-forms:

$$
d u_{1}=\frac{d x}{3 y^{2}}, \quad d u_{2}=\frac{x d x}{3 y^{2}}, \quad d u_{3}=\frac{d x}{3 y} .
$$

We use the same symbol as in the case of hyperelliptic curves, hoping that this causes no confusion. Then, the rest of the notation for the period matrices, the coordinate space \mathbb{C}^{3} associated to the forms above, the lattice Λ in the coordinate space, the Jacobian variety $\mathcal{J}_{3}=\mathbb{C}^{3} / \Lambda$, the Abel maps ϕ_{k} and the varieties W_{k}, is the same as in section 2 above. The relevant modulo- Λ map is $\kappa: \mathbb{C}^{3} \rightarrow \mathcal{J}_{3}$. The Abel-Jacobi theorem ensures that $\kappa^{-1}\left(W_{k}\right)$ fills \mathbb{C}^{3} for $k \geq 3$ and ϕ_{3} is a birational map from $S^{3}(X)$ to \mathcal{J}_{3}. We have $W_{1} \subset W_{2} \subset$ $W_{3}=W_{4}=\cdots=\mathcal{J}_{3}$. We should be careful to note that W_{k} for $k=1$ and 2 is not stable under the operation of taking the additive inverse, $[-1]:\left(u_{1}, u_{2}, u_{3}\right) \mapsto\left(-u_{1},-u_{2},-u_{3}\right)$ in \mathcal{J}_{3}.

Let $\left\{\varphi_{i}\right\}$ be the sequence of $\mathbb{C} \cup\{\infty\}$-valued functions over X defined by

$$
\varphi_{i}=\left\{\begin{array}{cc}
x & \text { for } i=3 \tag{A.1}\\
y & \text { for } i=4 \\
x^{(i-3) / 3+2} & \text { for } i>3, i \equiv 0 \text { modulo 3, } \\
x^{(i-3) / 3+1} y & \text { for } i>3, i \equiv 1 \text { modulo 3, } \\
x^{(i-3) / 3} y^{2} & \text { for } i>3, i \equiv 2 \text { modulo 3. }
\end{array}\right.
$$

We need again a sigma function $\sigma(u)=\sigma\left(u_{1}, u_{2}, u_{3}\right)$ for X; this is a theta function on the space \mathbb{C}^{3}, only the quadratic form entering its definition is not the same as Riemann's. We omit this definition and the details, referring the reader to [O2]. Following [O2], we define (partial) derivatives over the multi-index \vdash^{n} :

$$
\sigma_{\mathrm{t}^{n}}(u)=\left\{\begin{array}{cl}
\frac{\partial^{2}}{\partial u^{2}} \sigma(u) & \text { for } n=1, \\
\frac{\partial}{\partial u_{3}} \sigma(u) & \text { for } n=2, \\
\sigma(u) & \text { for } n>2 .
\end{array}\right.
$$

Let ζ be a primitive cube root of 1 . The automorphism of the curve, $(x, y) \mapsto(x, \zeta y)$, induces an action $[\zeta]$ on $\kappa^{-1}\left(W_{n}\right)$, namely, for

$$
u=\left(u_{1}, u_{2}, u_{3}\right)=\left(\int_{\infty}^{\left(x_{1}, y_{1}\right)}+\int_{\infty}^{\left(x_{2}, y_{2}\right)}+\int_{\infty}^{\left(x_{3}, y_{3}\right)}\right)\left(\begin{array}{l}
d u_{1} \\
d u_{2} \\
d u_{3}
\end{array}\right)
$$

we let

$$
[\zeta] u=\left(\zeta u_{1}, \zeta u_{2}, \zeta^{2} u_{3}\right)=\left(\int_{\infty}^{\left(x_{1}, \zeta y_{1}\right)}+\int_{\infty}^{\left(x_{2}, \zeta y_{2}\right)}+\int_{\infty}^{\left(x_{3}, \zeta y_{3}\right)}\right)\left(\begin{array}{l}
d u_{1} \\
d u_{2} \\
d u_{3}
\end{array}\right)
$$

Then $[\zeta]^{2}$ is induced by multiplication of the coordinates by ζ^{2} and $[\zeta]^{3}$ is the identity. Moreover, we have

$$
\begin{equation*}
\sigma([\zeta] u)=\zeta \sigma(u), \quad \sigma_{\mathrm{h}^{2}}([\zeta] u)=\sigma_{\mathrm{h}^{2}}(u), \quad \sigma_{\mathrm{t}^{1}}([\zeta] u)=\zeta^{2} \sigma_{\mathrm{h}^{1}}(u) . \tag{A.2}
\end{equation*}
$$

Generalized Frobenius-Stickelberger formula. The following generalized FrobeniusStickelberger formula was given by one of the authors([O2], Theorem 4.3).

Definition A.1. For a positive integer $n \geq 1$ and a point $\left(x_{1}, y_{1}\right) \cdots,\left(x_{n}, y_{n}\right)$ in X, we define

$$
\begin{aligned}
& \Delta_{n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right) \\
& =\left|\begin{array}{cccccc}
1 & \varphi_{1}\left(x_{1}, y_{1}\right) & \varphi_{2}\left(x_{1}, y_{1}\right) & \cdots & \varphi_{n-2}\left(x_{1}, y_{1}\right) & \varphi_{n-1}\left(x_{1}, y_{1}\right) \\
1 & \varphi_{1}\left(x_{2}, y_{2}\right) & \varphi_{2}\left(x_{2}, y_{2}\right) & \cdots & \varphi_{n-2}\left(x_{2}, y_{2}\right) & \varphi_{n-1}\left(x_{2}, y_{2}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \varphi_{1}\left(x_{n-1}, y_{n-1}\right) & \varphi_{2}\left(x_{n-1}, y_{n-1}\right) & \cdots & \varphi_{n-2}\left(x_{n-1}, y_{n-1}\right) & \varphi_{n-1}\left(x_{n-1}, y_{n-1}\right) \\
1 & \varphi_{1}\left(x_{n}, y_{n}\right) & \varphi_{2}\left(x_{n}, y_{n}\right) & \cdots & \varphi_{n-2}\left(x_{n}, y_{n}\right) & \varphi_{n-1}\left(x_{n}, y_{n}\right)
\end{array}\right| \\
& \cdot\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-2} & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-2} & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-2} & x_{n-1}^{n-1} \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-2} & x_{n}^{n-1}
\end{array}\right| .
\end{aligned}
$$

Proposition A.2. For a positive integer $n>1$, let $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ in X and $u^{(1)}$, $\cdots, u^{(n)}$ in $\kappa^{-1}\left(W_{1}\right)$ be points such that $\kappa\left(u^{(i)}\right)=\phi_{1}\left(\left(x_{i}, y_{i}\right)\right)$. Then the following relation holds:

$$
\frac{\sigma_{\mathrm{h}^{n}}\left(\sum_{i=1}^{n} u^{(i)}\right) \prod_{i<j} \sigma_{\mathrm{h}^{2}}\left(u^{(i)}+[\zeta] u^{(j)}\right) \sigma_{\mathrm{t}^{2}}\left(u^{(i)}+\left[\zeta^{2}\right] u^{(j)}\right)}{\prod_{i=1}^{n} \sigma_{\mathrm{t}^{1}}\left(u^{(i)}\right)^{2 n-1}}=\Delta_{n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right) .
$$

The generalized addition formulae. For our trigonal curve X, the following generalized addition formulae hold over W_{k}.

Theorem A.3. Assume that (m, n) is a pair of positive integers $(n, m \geq 1)$. Let $\left(x_{i}, y_{i}\right)$ $(i=1, \cdots, m),\left(x_{j}^{\prime}, y_{j}^{\prime}\right)(j=1, \cdots, n)$ be in X and $u \in \kappa^{-1}\left(W_{m}\right), v \in \kappa^{-1}\left(W_{n}\right)$ be points such that $\kappa(u)=\phi_{m}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)\right), \kappa(v)=\phi_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)$, Then the
following relation holds:

$$
\begin{align*}
& \frac{\sigma_{\mathrm{h}^{m+n}}(u+v) \sigma_{\mathrm{h}^{m+n}}(u+[\zeta] v) \sigma_{\mathrm{h}^{m+n}}\left(u+\left[\zeta^{2}\right] v\right)}{\sigma_{\mathrm{h}^{m}}(u)^{3} \sigma_{\mathrm{h}^{n}}(v)^{3}} \\
& =\frac{\prod_{i=0}^{2} \Delta_{m+n}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right),\left(x_{1}^{\prime}, \zeta^{i} y_{1}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, \zeta^{i} y_{n}^{\prime}\right)\right)}{\left(\Delta_{m}\left(\left(x_{1}, y_{1}\right) \cdots,\left(x_{m}, y_{m}\right)\right) \Delta_{n}\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \cdots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)\right)^{3}} \tag{A.3}\\
& \times \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\Delta_{2}\left(\left(x_{i}, y_{i}\right),\left(x_{j}^{\prime}, y_{j}^{\prime}\right)\right)^{2}} .
\end{align*}
$$

Proof. This is proved by the same way as Theorem 5.1.

References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985
[Ba1] H. F. Baker, Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Univ. Press, 1995, reprint of the original 1897 edition.
[Ba2] H. F. Baker, On the hyperelliptic sigma functions, Amer. J. of Math., 20 (1898) 301-384.
[BEL] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, Kleinian Functions, Hyperelliptic Jacobians and Applications, Reviews in Mathematics and Mathematical Physics (London), eds. Novikov, S.P. and Krichever, I.M. Gordon and Breach, India, 1997, pp. 1-125.
[BES] E. D. Belokolos, V. Z. Enolskii, M. Salerno, Wannier functions for quasi-periodic potentials, Teor.Mat.Fiz., 144(2): 1081-1099 (2005).
[EEP] J. C. Eilbeck, V. Z. Enolskii, and E. Previato, On a generalized Frobenius-Stickelberger addition formula, Lett. Math. Phys, 65 (2003) 5-17.
[EMO] V. Z. Enolskii, S. Matsutani, and Y. Ônishi, The addition law attached to a stratification of hyperelliptic Jacobian variety, math.AG/0508366.
[F] J.D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973.
[G] R.C. Gunning, Riemann surfaces and their associated Wirtinger varieties, Bull. Amer. Math. Soc. (N.S.), 11:2 (1984) 287-316.
[I] K. Iwasawa, Algebraic Functions (Translations of Mathematical Monographs, 118), A.M.S., 1993.
[O1] Y. Ônishi, Determinant expressions for hyperelliptic functions, Proc. Edinb. Math. Soc., 48 (2005) 705-742.
[O2] Y. Onnishi, Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case, math.NT/0503696.

